

Dundigal, Hyderabad – 500043 Electronics and Communication Engineering List of Laboratory Experiments

ANTENNAS AND MICROWAVE ENGINEERING LABORATORY											
Course Code	Category	Hours / Week Credits			Credits	Maximum Marks					
AECB30	Core	L	Т	Р	С	CIA	SEE	Total			
		0	0	3	1.5	30	70	100			
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36			Total Classes:36						
Branch: ECE	Semester: VII	Academic Year: 2021-22				Regulation: R18					

Course overview:

This course deals with the measurements of the signals at micro frequency range. It introduces students to the broad area of RF microwave engineering. It involves measurement of frequency, wave length, VSWR, impedance and scattering parameters of various micro wave devices like circulator, directional coupler, and magic-tee. Microwave devices support larger bandwidth and hence higher data rates are transmitted. There are a wide variety of applications for microwaves like outdoor

broadcasting transmissions and long distance telephone calls.

Course objectives:

The students will try to learn:

- I. The characteristics of microwave components, electrical characteristics of waveguides and transmission lines through electromagnetic field analysis.
- II. Fundamental parameters of the antenna, their structures and principles of microwave power generation.
- III. The design of microstrip patch antenna with a particular operating frequency using High Frequency Structure Simulator.

Course outcomes:

After successful completion of the course, students will be able to:

CO1: Summarize the waveguide components and their specifications using microwave test bench set-up. .

CO2: Sketch the characteristics of Reflex klystron to obtain the electronic tuning range using Klystron bench set up.

CO3: Analyze the characteristics of Directional coupler, circulator and magic tee using microwave test bench setup.

CO4: Distinguish the low and high Voltage Standing Wave Ratio of unknown load to find out the reflection coefficient using slotted line section.

CO5: Identify fundamental parameters of the antenna to measure far-field radiation pattern using High Frequency Structure Simulator.

CO6: Design antennas to find out the antenna parameters using test setup and high frequency structure simulator.

WEEK NO	EXPERIMENT NAME	СО		
WEEK – I	STUDY OF MICROWAVE COMPLONENTS	001		
	To study the different wave guide components in the microwave bench setup	CO1		
WEEK – II	MODE CHARACTERISTICS OF REFLEX KLYSTRON			
	To study the characteristics of Reflex Klystron oscillator, finding the mode numbers and efficiencies of different modes.	CO2		
WEEK – III	GUNN DIODE CHARACTERISTICS	CO2		
	To study the characteristics of Gunn diode oscillator.			
WEEK – IV	DIRECTIONAL COUPLER CHARACTERISTICS	<u> </u>		
	To measure coupling factor, insertion loss, isolation and directivity of a Directional coupler.	CO3		
3WEEK – V	MEASUREMENT OF VSWR	CO4		

		1
	To measure the low and high VSWR,,s of matched terminals	
WEEK – VI	CIRCULATOR CHARACTERISTICS	
	To measure the isolation and insertion loss of a three port circulator	CO3
WEEK – VII	MEASURMENT OF SCATTERING PARAMETERS OF MAGIC TEE	CO3
	To find the scattering parameters of a four port Magic Tee.	003
WEEK –VIII	INTRODUCTION TO HFSS	
	Introduction To HFSS Tool	CO5
WEEK - IX	MONOPOLE ANTENNA DESIGN	CO5
	To find the gain of Monopole Antenna.	
WEEK - X	DIPOLE ANTENNA DESIGN	
	To draw the Radiation Pattern of Dipole Antenna Design.	CO5
WEEK - XI	MICROSTRIP FEED ANTENNA DESIGN	CO5
	To find the gain and radiation pattern of Microstrip Feed Antenna Design.	CO5
WEEK - XII	PROBE FEED PATCH ANTENNA DESIGN	
	To draw the 3D polar plot of Probe Feed Patch Antenna Design.	CO6
WEEK - XIII	SLOT COUPLED PATCH ANTENNA	C04
	To draw the 3D rectangular plot of Slot Coupled Patch Antenna.	CO6
WEEK - XIV	MICROSTRIP LINE DESIGN	
	To find the gain of Microstrip Line Design.	CO6