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CO’s Course outcomes

CO1 Understand coulomb’s law and gauss’s  law to different  charge 
distributions, it’s applications and applications of Laplace’s 
and 
Poisson’s equations.

CO2 Evaluate the physical interpretation of Maxwell’s equations 
and 
applications for various fields.
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COs Course Outcomes

CO3 Understand the behavior of electromagnetic waves 
incident 
on the interface between two different media.

CO4 Understand the significance of transmission lines and 
concept of attenuation, loading, and analyze the loading 
technique to the transmission lines.

CO5 Formulate and analyze the smith chart to estimate 
impedance, VSWR, reflection coefficient, OC and SC 
lines.
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1. vector algebra.

2. Coordinate Systems.

3. Vector calculus.

Prerequisites for EMTL



COOR DIN ATES YS TEM S

Choice is based on  

s y m m e t r y  of  

problem

• RECTANGULAR or Cartesian

• CYLINDRICAL

• SPHERICAL

Examples:

Sheets - RECTANGULAR

Wires / Cables - CYLINDR ICAL 

Spheres - SPHERICAL

Prerequisites for EMTL



Coordinate system variables are P (x, y,  
z)

y

z

P(x,y,z)

Cartesian Coordinates Or Recatangular Coordinates

−  x  

−   y 

−   z 
x

A vector A in Cartesian coordinates can be written as

(Ax , Ay , Az ) or Ax ax + Ay ay + Az az

where ax,ay and az are unit vectors along x, y and z-directions.



Cylindrical Coordinates

P (ρ, Φ, z)
z

Φ

z

ρ
x

y

P(ρ, Φ, z)
0    

0   2

−   z 

A vector A in Cylindrical coordinates can be written as

(A , A , Az ) or Aa + Aa + Azaz

where aρ,aΦ and az are unit vectors along ρ, Φ and z-directions.

x= ρ cos Φ, y=ρ sin Φ, z=z

x
x2 = + y2 , = tan−1 y 

, z =z



Spherical Coordinates

P (r, θ, Φ) 0  r 

0   

0   2

A vector A in Spherical coordinates can be written as

or(Ar , A , A ) Ar ar  + Aa + Aa

where ar, aθ, and aΦ are unit vectors along r, θ, and Φ-directions.

x=r sin θ cos Φ, y=r sin θ sin Φ, Z=r cos θ

θ

Φ

r

z

y
x

P(r, θ, Φ)

x

y

z

x2

x2 + y2

r = + y2  + z 2 ,= tan−1 , = tan−1



Differential Length, Area and Volume

Differential area

dS = dydzax = dxdzay = dxdyaz

Differential Volume
dV =dxdydz

Cartesian Coordinates

Differential displacement

dl = dxax + dyay +dzaz



Cylindrical Coordinates

ρ ρ

ρ

ρ

ρ ρ

ρ

ρ

ρρ

ρ



Differential Length, Area and Volume

Cylindrical Coordinates

Differential displacement

dl = da + da + dzaz

Differential area

dS = ddza = ddza = ddaz

Differential Volume

dV =dddz



Differential Length, Area and Volume

Spherical Coordinates

Differential displacement

dl = drar + rda + rsinda

Differential area

dS = r 2 sindda = r sindrda = rdrda
r  

Differential Volume

dV = r 2 sindrdd



Line, Surface and Volume Integrals

Line Integral

 A.dl
L

Surface Integral

Volume Integral

 =  A.dS
S

 pv dv
V



Gradient of a scalar function is a  vector quantity.

Divergence of a vector is a scalar  quantity.

Curl of a vector is a vector  quantity.

•

The Laplacian of a scalar A

The Del Operator

f

.A

 A

2 A

Gradient, Divergence and Curl



Del Operator

Cartesian Coordinates

zyx
z

+


a +


a
x y

 =


a

Cylindrical Coordinates

Spherical Coordinates

z
z
+ 

a =


a


 
+

1 
a

r +
r r 

 =


a
r sin 

1 
a+

1 
a



The gradient of a scalar field V is a vector that represents  

both the magnitude and the direction of the maximumspace  

rate of increase of V.

zx y
y z

+ V
a +

V
a

x
V =

V
a

z

+ V
aV =

V
a


 

+ 1 V
a

r +
r r

V =
V

a
r sin 

z

1 V
a

+ 1 V
a

Gradient of a Scalar



v

The divergence of A at a given point P is the outward flux per  

unit volume as the volume shrinks about P.

 A.dS

divA = .A = lim S

v→0

.A =
A 

+
A 

+
A

+ Az
A

  z 





x y z

 1
(A )+.A =

1

Divergence of a Vector



The curl of A is an axial vector whose magnitude is the

maximum circulation of A per unit area tends to zero and

whose direction is the normal direction of the area when the

area is oriented to make the circulation maximum.

an


max

 


S
curlA =  A =  lim L 

 A.dl 

s→0



Where ΔS is the area bounded by the curve L and an is the unit  

vector normal to the surface ΔS

Curl of a Vector



  


Az 


Ax

ax ay az 


 A = 

x

 

 
A A Az 

  A = 
y z  

Ay

1   


 z






 


 A =

r sinA

ar ra r sina





1

r 2 sin r

Ar rA

Cartesian Coordinates Cylindrical Coordinates

Spherical Coordinates

Curl of a Vector



The divergence theorem states that the total outward flux of  

a vector field A through the closed surface S is the same as the  

volume integral of the divergence of A.

 A.dS = .Adv
V

Diverg en ce or  Gauss ’ Theorem



 A.dl =  ( A).dS
L S

Stokes’s theorem states that the circulation of a vector field A around a  

closed path L is equal to the surface integral of the curl of A over the open

are continuous on Ssurface S bounded by L, provided A and  A

S t ok es ’s    Theorem
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OBJECTIVES

COULOMB’S LAW

ELECTRIC FIELD INTENSITY

ELECTRIC FLUX DENSITY

DIFFERENT CONTINUOUS CHARGE DISTRIBUTIONS

GAUSS’S LAW

APPLICATIONS OF GAUSS’S LAW

ELECTRIC POTENTIAL

RELATION B/W E&V

ENERGY DENSITY

EMTL(ECE)



COULOMB’S LAW:

 Coulomb’s law is an experimental law formulated in 1785 by Charles

Augustine dc Coulomb.

 It deals with the force, a point charge on another point charge. The

polarity of charges may be positive or negative ,like charges repel while

unlike charges attract.

 Charges are generally measured in coulomb(C)

 One coulomb is approximately equivalent to 6*1018 electrons

 One electron charge(e)=-1.6019*10-19 C

EMTL(ECE)



Coulomb’s law states that  the force ‘F’ between two point charges  Q1 

and  Q2 is

1.Along the line joining them

2.Directly proportional to the product 𝑄1𝑄2of the charges

3.Inversely proportional to the square of the distance ‘R’ between them.        

F = 
𝐾𝑄1𝑄2

𝑅2
----------------(1)

where K is proportionality constant and K = 
1

4𝜋𝜖0
-----------(2)

where 𝜖0 is permittivity of free space and is given by

𝜖0 = 8.854*10−12 ≅
10−9

36𝜋
F/m                  

K = 
1

4𝜋𝜖0
≅ 9*109 m/F

EMTL(ECE)



If point charges 𝑄1 & 𝑄2 are located at points having position vectors

𝑟1 & 𝑟2, then the force  𝐹12 on 𝑄2 due to 𝑄1 is given by

𝐹12 = 
𝑄1𝑄2

4𝜋𝜖0𝑅
2 𝑎𝑅12 ------------------(4)  

Substitute equation(2) in equation(1),

F = 
𝑄1𝑄2

4𝜋𝜖0𝑅
2 --------------(3)

EMTL(ECE)



where                  𝑅12 = 𝑟2 - 𝑟1-------------(a)

R = 𝑅12 ------------(b)

𝑎𝑅12 = 
𝑅12

𝑅
------------(c) 

by substituting  eq (c) in eq(4) then,

𝐹12 = 
𝑄1𝑄2

4𝜋𝜖0𝑅
3 𝑅12

𝐹12 = 
𝑄1𝑄2( 𝑟2 − 𝑟1)

4𝜋𝜖0 𝑟2 − 𝑟1
3 ----------(5)

The force  𝐹21 on 𝑄1 due to 𝑄2 is given by

𝐹21 = 𝐹12 𝑎𝑅21 = 𝐹12 (−𝑎𝑅12)

(or)           𝐹21 = - 𝐹12 since 𝑎𝑅21 = −𝑎𝑅12

EMTL(ECE)



If there are ‘N’ point charges 𝑄1, 𝑄2,------𝑄𝑁 located respectively, at  points  

with position vectors     𝑟1, 𝑟2, -------- 𝑟𝑁 ,the resultant force ‘F’ on a charge ‘Q’ 

located at point ‘r’ is the forces exerted on ‘Q’ by each of the charges 

𝑄1, 𝑄2,------𝑄𝑁.

F = 
𝑄𝑄1(r− 𝑟1)

4𝜋𝜖0 r− 𝑟1
3 + 

𝑄𝑄2(r− 𝑟2)

4𝜋𝜖0 𝑟 − 𝑟2
3 + ----------------- + 

𝑄𝑄𝑁(𝑟 − 𝑟𝑁)

4𝜋𝜖0 𝑟 − 𝑟𝑁
3

(or)

F = 
𝑄

4𝜋𝜖0
σ𝐾=1
𝑁 𝑄(r− 𝑟𝐾)

r− 𝑟𝐾
3 --------------(6)
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ELECTRIC FIELD INTENSITY(E):

The electric field intensity or electric field strength ‘E’ is the force per unit charge 

when placed in an electric field.

E = lim
𝑄→0

𝐹

𝑄
(or)   E = 

𝐹

𝑄
-------(7)

The electric field intensity at point   r  due to a point charge located at  r’ is obtained from 

eq(5) &eq(7) is

E =   
𝑄

4𝜋𝜖0𝑅2
𝑎𝑅 = 

𝑄 (𝑟−𝑟′)

4𝜋𝜖0 𝑟−𝑟′
3---------(8)

For ‘N’ point charges 𝑄1, 𝑄2,------𝑄𝑁 located at  𝑟1, 𝑟2, -------- 𝑟𝑁 ,the electric field 

intensity at point ‘r’ is obtained from  eq’s(6) & (7) as

E = 
𝑄1(r− 𝑟1)

4𝜋𝜖0 r− 𝑟1
3 + 

𝑄2(r− 𝑟2)

4𝜋𝜖0 𝑟 − 𝑟2
3 + ----------------- + 

𝑄𝑁(𝑟 − 𝑟𝑁)

4𝜋𝜖0 𝑟 − 𝑟𝑁
3(or)

E = 
1

4𝜋𝜖0
σ𝐾=1
𝑁 𝑄𝐾(r− 𝑟𝐾)

r− 𝑟𝐾
3 --------------(9)

EMTL(ECE)



ELECTRIC FIELDS DUE TO CONTINUOUS CHARGE DISTRIBUTIONS:

The continuous charge densities are line charge density, surface charge density  and 

volume charge density by ρl (in C/m) , ρs(in C/𝑚2), ρv(in C/𝑚3) respectively.

The charge element  dQ and the total charge Q due to these charge distributions are 

obtained as           

dQ = ρldl     → Q=׬ρldl (line charge)

dQ= ρSds    → Q=׬ρsd𝑠 (surface charge)                              

dQ= ρvdv    → Q=׬ρ𝑣d𝑣 (volume charge)

EMTL(ECE)



By replacing Q in eq(8) with charge element  dQ=ρldl, ρSds &ρvdv ,

E = ׬
ρldl

4𝜋𝜖0𝑅
2 𝑎𝑅 (line charge)   --------(10)

E = ׬
ρsd𝑠

4𝜋𝜖0𝑅
2 𝑎𝑅 (surface charge)  ------------(11)

E = ׬
ρvd𝑣
4𝜋𝜖0𝑅

2 𝑎𝑅 (volume charge)  ---------(12)
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A LINE CHARGE:

Line charge with uniform charge density 𝜌𝐿 extending from A to B along 

the z-axis.

EMTL(ECE)



charge element dQ associated with element dl = dz of line is,

dQ = 𝜌𝐿 dl = 𝜌𝐿 dz,

The total charge is,

Q = ׬𝑍𝐴
𝑍𝐵 𝜌𝐿 dz

The electric field intensity due to line charge is,

E = 
𝜌𝐿

2𝜋𝜖0𝜌
𝑎𝜌

EMTL(ECE)



A SURFACE CHARGE:

An infinite sheet of charge in the xy-plane with uniform charge 

density 𝜌𝑆.The charge associated with an elemental area dSis

dQ= 𝜌𝑆dS

EMTL(ECE)



The total charge is,

Q = ׬𝜌𝑆 d𝑆

The contribution to the E field at point P(0, 0, h) by the elemental surface1 ,

dE = 
𝑑𝑄

4𝜋𝜖0𝑅
2 𝑎𝑅

In general, for an infinite sheet of charge,

E = 
𝝆𝑺

𝟐𝝐𝟎
𝒂𝒏

In a parallel plate capacitor, the electric field existing between the two plates 

having equal and opposite charges is given by,

E = 
𝜌𝑆

2𝜖0
𝑎𝑛+ (-

𝜌𝑆

2𝜖0
(−𝑎𝑛)) = 

𝜌𝑆

𝜖0
𝑎𝑛
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A VOLUME CHARGE:

The volume charge distribution with uniform charge density 𝜌𝑣.

The charge dQ associated with the elemental volume dv is

dQ = 𝜌𝑣dv

EMTL(ECE)



The total charge in a sphere of radius  a  is,

Q = ׬𝜌𝑣 d𝑣 = 𝜌𝑣 ׬ d𝑣

= 𝜌𝑣
4𝜋𝑎3

3

The electric field dE at P(0, 0, z) due to the elementary volume charge is,

dE = 
𝜌𝑣 d𝑣
4𝜋𝜖0𝑅

2 𝑎𝑅

For a volume charge,

E = 
𝑄

4𝜋𝜖0𝑍
2 𝑎𝑍

Due to the symmetry of the charge distribution, the electric field ,

E = 
𝑄

4𝜋𝜖0𝑟
2 𝑎𝑟
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ELECTRIC FLUX DENSITY:

A new vector field D is defined as 

D=εE  ------(1)

The electric flux ‘ψ’  in terms  of  ‘D’ is 

ψ = ∫ D.ds  -------(2)

The electric flux density is also  known as  electric displacement.

The surface charge electric field intensity  for an infinite  sheet  of charge,

E = 
𝜌𝑠

2𝜀0
𝑎𝑛

D = 
𝜌𝑠

2
𝑎𝑛-------(3)

For a volume charge distribution,

D= ׬
ρvd𝑣
4𝜋𝑅2

𝑎𝑅 -------(4)
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GAUSS’S LAW:   

“Gauss law states that total electric flux ‘𝝍’ through any closed surface is 

equal to the charge enclosed by that surface”.

ψ = Qenc ------(1)

i.e.           ψ dψׯ = .Dׯ = ds

=total charge enclosed Q = ׬ ρvdv -------(2)

(or)                  Q = ׯ𝑫. 𝒅𝒔 𝝆𝒗d𝒗׬ = -------(3)

From the divergence theorem 

.𝐷ׯ 𝑑𝑠 𝛻.D׬ = dv   -------(4)

𝝆𝒗 = 𝜵.D   ⇒ Maxwell’s first equation.        

Gauss law is an alternative statement  of coulomb’s law                          

EMTL(ECE)



APPLICATIONS OF GAUSS’S LAW:

Gauss's law is particularly useful in computing  E or D, where the charge 

distribution has some symmetry.

An infinite line charge:

Fig: an infinite line charge

EMTL(ECE)



If we consider a close cylindrical surface, using Gauss's theorem,

𝜌𝐿𝑙 = 𝑄 = .𝐷ׯ 𝑑𝑆 = 𝐷 𝑑𝑆ׯ = D2𝜋𝜌𝑙

The unit normal vector to areas S1 and S3 are perpendicular to the 

electric field,  the surface integrals for the top and bottom surfaces 

evaluates to zero.

𝜌𝐿𝑙 = D2𝜋𝜌𝑙 (or)

𝜌𝐿𝑙 = 𝜀0E2𝜋𝜌𝑙

E = 
𝜌𝐿

2𝜋𝜀0𝜌
(or)

D =  
𝜌𝐿

2𝜋𝜌
𝑎𝜌
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AN INFINITE SHEET OF CHARGE:

An infinite charged sheet covering the x-z plane, using Gauss's theorem,

𝜌𝑆 ׬ dS = Q = ׯ𝐷. 𝑑𝑆 = 𝐷𝑧 𝑑𝑆׬ + 𝑑𝑆׬

D = 
𝜌𝑆

2
𝑎𝑧 (or)            E = 

𝐷

𝜀0
= 

𝜌𝑆

2𝜀0
0𝑎𝑧

A surface charge density of  𝜌𝑆 for the infinite surface charge and a cylindrical 

volume having         sides placed symmetrically .

EMTL(ECE)
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UNIFORMLY CHARGED SPHERE:

A sphere of radius r0 having a uniform volume charge density of  𝜌𝑣

EMTL(ECE)



For the region r≤ r0 ,the total enclosed charge,

𝑄𝑒𝑛𝑐 𝜌𝑣𝑑𝑣׬ = = 𝜌𝑣 𝑑𝑣׬

𝑄𝑒𝑛𝑐 =𝜌𝑣 0=∅׬
2𝜋

𝑑∅׬𝜃=0
𝜋

𝑟2sin𝜃dr d𝜃

𝑄𝑒𝑛𝑐 = 𝜌𝑣
4

3
𝜋𝑟3 ------------(1)

&𝜓 𝐷𝑑𝑆ׯ = = Dׯ𝑑𝑆

𝜓 = =D0=∅׬
2𝜋

𝑑∅׬𝜃=0
𝜋

𝑟2sin𝜃dr d𝜃

𝜓 = D4𝜋𝑟2 -------------(2)

Hence,       𝜓 =𝑄𝑒𝑛𝑐,

D4𝜋𝑟2 = 𝜌𝑣
4

3
𝜋𝑟3

D = 
𝒓

𝟑
𝝆𝒗𝒂𝒓-------(3)        0≤r≤ 𝒓𝟎
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For the region  r≥ r0 ; the total enclosed charge,

𝑄𝑒𝑛𝑐 𝜌𝑣𝑑𝑣׬ = = 𝜌𝑣 𝑑𝑣׬

𝑄𝑒𝑛𝑐 =𝜌𝑣 𝑟=0׬
𝑟0 𝑑𝑟 0=∅׬

2𝜋
𝑑∅׬𝜃=0

𝜋
𝑟2sin𝜃dr d𝜃

𝑄𝑒𝑛𝑐 =𝜌𝑣
4

3
𝜋𝑟0

3 -------(4)

&𝜓 𝐷𝑑𝑆ׯ = = Dׯ𝑑𝑆

𝜓 = D4𝜋𝑟2-------------(4)

Hence,       𝜓 =𝑄𝑒𝑛𝑐,𝜌𝑣
4

3
𝜋𝑟0

3 = D4𝜋𝑟2 ------------(5)

D = 
𝒓𝟎

𝟑

𝟑𝒓𝟐
𝝆𝟎𝒂𝒓 r≥ 𝒓𝟎 -----------(6)
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D  = ൞

𝒓

𝟑
𝝆𝒗𝒂𝒓 0 ≤ r ≤ 𝒓𝟎

𝒓𝟎
𝟑

𝟑𝒓𝟐
𝝆𝟎 𝒂𝒓 r ≥ 𝒓𝟎

---------(7)      

EMTL(ECE)



ELECTRIC POTENTIAL:

Electrostatic potential is related to the work done in carrying a charge from 

one point to the other in the presence of an electric field.

dW = -Fdl

dW = -EQdl -----------(1)

The negative sign indicates that the work is being done by an external agent.

EMTL(ECE)



The potential difference b/w two points,

𝑉𝐴𝐵 =
𝑊

𝑄
= - 𝐴׬

𝐵
𝐸. 𝑑𝑙

If the E field is due to a point charge Q located at the origin,

E = 
𝑄

4𝜋 𝜀0𝑟2
𝑎𝑟

𝑉𝐴𝐵 = - 𝑟𝐴׬
𝑟𝐵 𝑄

4𝜋 𝜀0𝑟2
𝑎𝑟 . 𝑑𝑟 𝑎𝑟

𝑉𝐴𝐵 =
𝑄

4𝜋 𝜀0
1

𝑟𝐵
−

1

𝑟𝐴
(or)      𝑉𝐴𝐵 = 𝑉𝐵 −𝑉𝐴

If we assume the potential at infinity is zero. If  𝑉𝐴 =0, as r→ ∞&𝑟𝐵 = 𝑟,

V=
𝑄

4𝜋 𝜀0𝑟

The potential at any point is the potential difference between  that point & a 

chosen point at which the potential is zero.

𝑽𝑨𝑩 = 𝑽𝑩 −𝑽𝑨 =  
𝑾

𝑸
= - 𝑨׬

𝑩
𝑬. 𝒅𝒍
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Assume zero potential at infinity , the potential at a distance ‘r’ from the point  

charge is the work done per unit charge by an external agent in transferring a test 

charge from infinity to that point.

V= - ∞−׬
𝑟
𝐸. 𝑑𝑙

If the point charge is not located at the origin but at a point where position vector is 

r’ The potential V(r),

V(r) = 
𝑄

4𝜋 𝜀0 𝑟−𝑟′

For  ‘n’ point charges 𝑄1, 𝑄2,------𝑄𝑁. Located at points with position 

vectors     𝑟1, 𝑟2,------𝑟𝑛, the potential at r is

V(r) = 
𝑄1

4𝜋 𝜀0 𝑟−𝑟1
+ 

𝑄2

4𝜋 𝜀0 𝑟−𝑟2
+    ------------ + 

𝑄𝑛

4𝜋 𝜀0 𝑟−𝑟𝑛
(or)

V(r) = 
1

4𝜋 𝜀0
σ𝑘=1
𝑛 𝑄𝑘

𝑟−𝑟𝑘
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For continuous charge distributions ,with charge element   𝜌𝐿𝑑𝑙,

𝜌𝑠𝑑𝑆&𝜌𝑉𝑑𝑉

V(r) = 
1

4𝜋 𝜀0
𝐿׬

𝜌𝐿(𝑟
′)𝑑𝑙′

𝑟−𝑟′
(Line charge)

V(r) = 
1

4𝜋 𝜀0
𝑆׬

𝜌𝑆(𝑟
′)𝑑𝑆′

𝑟−𝑟′
(Surface charge)

V(r) = 
1

4𝜋 𝜀0
𝑣׬

𝜌𝑣(𝑟
′)𝑑𝑣′

𝑟−𝑟′
(Volume charge)

If E is known ,

V = - .𝐸׬ 𝑑𝑙 +C
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RELATIONSHIP BETWEEN  E AND V –MAXWELL’S EQUATION:

The potential difference between points A & B is independent of path taken.

𝑉𝐵𝐴 = - 𝑉𝐴𝐵

𝑉𝐵𝐴+ 𝑉𝐴𝐵 = .𝐸ׯ 𝑑𝑙 =0   -------(1)

Applying Stokes’s theorem to eq(1),

.𝐿𝐸ׯ 𝑑𝑙 𝑆׬ = 𝛻 × 𝐸 . 𝑑𝑆 = 0       (or)

𝛻 × 𝐸=0
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Conservative vectors:

“The vectors whose line integral does not depend on the path of 

integration are known as conservative vectors.”

V = -׬𝐸. 𝑑𝑙

dV = -E.dl = -𝐸𝑥dx –𝐸𝑦dy −𝐸𝑧dz

dV = 
𝜕𝑉

𝜕𝑥
𝑑𝑥 +

𝜕𝑉

𝜕𝑦
𝑑𝑦 +

𝜕𝑉

𝜕𝑧
𝑑𝑧 then,

𝐸𝑥 = -
𝜕𝑉

𝜕𝑥
,        𝐸𝑦 = -

𝜕𝑉

𝜕𝑦
,      &𝐸𝑧 = -

𝜕𝑉

𝜕𝑧

E= - 𝜵 𝑽
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ENERGY DENSITY IN ELECTROSTATIC FIELDS:

 Consider the three point charges  𝑄1, 𝑄2,𝑄3 are placed in an empty space.

 No work is required to transfer 𝑄1 from infinity to 𝑃1 because the space is 

initially charge free and there is no electric field.

W = -Q ׬𝐴
𝐵
𝐸. 𝑑𝑙 i.e. W=0
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 The work done in transferring 𝑄2 from infinity to 𝑃2 is equal to the product 

of 𝑄2 and the potential 𝑉21 at 𝑃2 due to 𝑄1.

 The work done in positioning 𝑄3 at 𝑃3 is equal to 𝑄3(𝑉32 + 𝑉31).

The total work done in positioning the three charges,

𝑊𝐸 = 𝑊1 +𝑊2 +𝑊3

𝑊𝐸 = 0 + 𝑄2𝑉21 + 𝑄3(𝑉32 + 𝑉31)

If the charges are positioned in reverse order,

𝑊𝐸 = 0 + 𝑄2𝑉23 + 𝑄1(𝑉12 + 𝑉13)

2𝑊𝐸 = 𝑄1(𝑉12 + 𝑉13) + 𝑄2(𝑉21 + 𝑉23) +𝑄3(𝑉32 + 𝑉31)

2 𝑊𝐸 =   𝑄1𝑉1+𝑄2𝑉2 + 𝑄3𝑉3

2 𝑊𝐸=1/2( 𝑄1𝑉1+ 𝑄2𝑉2 + 𝑄3𝑉3)
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If there are ‘n’ point charges,

𝑊𝐸 =
1

2
σ𝐾=1
𝑛 𝑄𝐾 𝑉𝐾

Instead of point charges, the region has a continuous charge distributions,

𝑊𝐸 =
1

2
𝐿׬ 𝜌𝐿Vdl (Line charge)

𝑊𝐸 = 
1

2
𝑆׬ 𝜌𝑆 VdS (Surface charge)

𝑊𝐸 = 
1

2
𝑉׬ 𝜌𝑣 Vdv (Volume charge)

Since 𝜌𝑣 = 𝛻 .𝐷,

𝑊𝐸 = 
1

2
𝑉(𝛻׬ . 𝐷)Vdv

𝛻 . 𝑉𝐴 = A.𝛻V +V(𝛻 . 𝐴) (or)

V(𝛻 . 𝐴)= 𝛻 . 𝑉𝐴- A.𝛻V                           Vector identity
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𝑊𝐸 = 
1

2
𝑉(𝛻׬ . 𝑉𝐷) dV -

1

2
.𝑉(𝐷׬ 𝛻𝑉)dV

By applying divergence theorem to the first term on the right hand side of the 

above equation,

𝑊𝐸 = 
1

2
.𝑆𝑉𝐷ׯ 𝑑𝑆 −

1

2
.𝑉(𝐷׬ 𝛻𝑉)dV

𝑊𝐸 = −
1

2
.𝑉(𝐷׬ 𝛻𝑉)dV

𝑊𝐸 = 
1

2
.𝑉(𝐷׬ 𝐸)dV (∵ E = -𝛻𝑉& D = 𝜀0𝐸 )

𝑊𝐸 = 
1

2
𝑉׬ 𝜀0𝐸

2 dV

𝑾𝑬 = 
𝟏

𝟐
𝜺𝟎𝑬

𝟐 Which is the electrostatic energy density
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INTRODUCTION:

Materials may be classified in terms of their conductivity (𝜎) as

conductors and non-conductors      or 

technically as   metals and insulators (or dielectrics)

A material with high conductivity (𝜎>> 1) is termed as metal.

Ex: copper & aluminum.

A material with low conductivity (𝜎<<1) is termed as an insulator.

Ex: glass & rubber

A material whose conductivity lies between metals and insulators are called

as semiconductors.

Ex: Si & Ge

At T=0 K,  some conductors exhibit infinite conductivity and are called   

superconductors .

Ex: Lead & aluminium



CONVECTION CURRENT:       

The current through a given area is the electric charge passing through 

the area per unit time.

i.e. I = 
𝑑𝑄

𝑑𝑡
---------(1)

If current ′∆I′ flows through a planar surface ‘∆S′ , the current density is

J = 
∆I

∆S
or

∆I = J∆S −−−−−(2)

Total current flowing through  a surface is ‘S’ 

I = ׬ J. ds---------(3)



Consider a filament of the above fig. If there is a flow of charge of density, 

ρvat velocity  u = 𝑢𝑦𝑎𝑦

The current through the filament is 

∆I = 
∆Q
∆t

= ρv∆s
∆𝑦

∆t
= ρv∆s 𝑢𝑦 -------(4)

The current density at a given point is the current through a unit 

normal area at that point.



The ‘y’ directed current density ‘𝐽𝑦’ is given by

𝐽𝑦 = 
∆I
∆s

= ρv𝑢𝑦 --------(5)

In general         J = ρvu

Where ‘I’ is the convection current(A) and

‘J’ is convection current density(A/𝑚2)



CONDUCTION CURRENT:   

when an electric field ‘E’ is applied, the force on an electron with

charge  -e  is

F = - eE--------(1)    (∵ F = QE    or   E = 
𝐹

𝑄
)

If an electron with mass ‘m’ is moving in an electric field ‘E’ with an average 

drift velocity ‘u’ , according to Newton’s law the average change in momentum 

of the free electron must match the applied force.

𝑚𝑢

𝜏
= - eE

or  u = -
𝑒𝜏

𝑚
E ---------(2)

from the above eq’ the drift velocity  of the electron is directly proportional to 

the applied field.



If there are ‘n’ electrons per unit volume , the electric charge density is given 

by

ρv = - ne -------(3)

J = ρvu =
𝜏𝑛𝑒2

𝑚
E = 𝜎𝐸 or  J = 𝜎𝐸 ------(4)    

where   𝜎 = 
𝜏𝑛𝑒2

𝑚
is the conductivity of the conductor

J = 𝝈𝑬 is the  point form of ohm’s law         



CONTINUITY EQUATION: 

The principle of charge conservation, the time rate of decrease of  charge within 

a given volume must be equal to the net outward current flow through  the 

surface of the volume.

current  𝐼𝑜𝑢𝑡 coming out of the closed surface is 

𝐼𝑜𝑢𝑡 = ׯ 𝐽. ds = -
𝑑𝑄𝑖𝑛

𝑑𝑡
-------(1)

where 𝑄𝑖𝑛 is the total charge enclosed by the closed surface and  

J  is conduction current density.



By the divergence theorem ,

ׯ 𝐽. ds 𝛻.𝐽׬= dv   -------(2)

but    -
𝑑𝑄𝑖𝑛

𝑑𝑡
= -

𝑑

𝑑𝑡
𝝆𝒗׬ dv = -׬

𝜕𝜌𝑣

𝜕𝑡
dv -------(3)

sub eq(2) & (3) in eq(1)

𝛻.𝐽׬ dv = -׬
𝜕𝜌𝑣

𝜕𝑡
dv 

or            𝜵.𝑱 =  -
𝝏𝝆𝒗

𝝏𝒕

The above equation is termed as continuity of current equation   

or    continuity equation



RELAXATION TIME:

The Maxwell's first  equation  is given by     𝝆𝒗 = 𝜵.D

we know that     J = 𝜎𝐸

𝜌𝑣 = 𝛻.𝜀E      (∵ D = 𝜀E)

𝜌𝑣

𝜀
= 𝛻.E               (from the Gauss law)

𝜎𝜌𝑣

𝜀
= 𝛻.𝜎E ⇒

𝜎𝜌𝑣

𝜀
= 𝛻.𝐽

From the continuity equation  𝜵.𝑱 =  -
𝝏𝝆𝒗

𝝏𝒕

𝜕𝜌𝑣

𝜕𝑡
=  -

𝜎𝜌𝑣

𝜀
⇒

𝜕𝜌𝑣

𝜌𝑣
=  -

𝜎

𝜀
𝜕𝑡

𝜌𝑣 = 𝜌𝑣0 𝑒
−𝑡

𝑇𝑟

where  𝑻𝒓 = 
𝜺

𝝈
is known as relaxation time  or rearrangement time



POISSON’S AND LAPLACE’S EQUATION:

The Maxwell's first  equation  is given by     𝝆𝒗 = 𝜵.D

𝜌𝑣 = 𝛻.𝜀E      (∵ D = 𝜀E)

𝜌𝑣 = 𝜀 𝛻.E

𝜌𝑣 = 𝜀 𝛻.(-𝛻V)       (∵E = - 𝛻V )
𝜌𝑣

𝜀
= - 𝛻2V or 

𝜵𝟐V = -
𝝆𝒗

𝜺
which is known as Poisson's law

A special case of the above equation occurs when    𝜌𝑣 = 0  (i.e. for a free charge  

region)             

𝜵𝟐V = 0 which is known as Laplace's equation

Laplace’s equation in Cartesian coordinate system as

𝝏𝟐𝑽

𝝏𝒙𝟐
+ 
𝝏𝟐𝑽

𝝏𝒚𝟐
+ 
𝝏𝟐𝑽

𝝏𝒛𝟐
= 0



POLARIZATION:

The macroscopic effect of an electric field on a dielectric, consider an atom 

of the    dielectric as consisting of a negative charge - Q (electron cloud) and 

a positive charge +Q (nucleus).



• When an electric field E is applied, the positive charge is displaced from its 

equilibrium position in the direction of E by the force F+ = QE while the 

negative charge is displaced in the opposite direction by the force F_ = QE.

• A dipole results from the displacement of the charges and the dielectric is said 

to be polarized. 

• In the polarized state, the electron cloud is distorted by the applied electric 

field E. This distorted charge distribution is equivalent, by the principle of 

superposition, to the original distribution plus a dipole whose moment is

P = Qd -----(1) 

where d is the distance vector from  -Q to +Q of the dipole.



Dipole: An electric dipole is formed when two point charges 

of equal magnitude but opposite sign are separated by a 

small distance.

If there are N dipoles in a volume Av of the dielectric, the total dipole moment 

due to the electric field is 

Q1d1 + Q2d2 + -----------+ QNd𝑁 = σ𝑘=1
𝑁 Q𝑘d𝑘 --------(2)

Polarization P: The dipole moment per unit volume of the 

dielectric(in C/𝑚2)

P = lim
∆𝑉→0

σ𝑘=1
𝑁 Q𝑘d𝑘

∆𝑣
-----------(3)



For some dielectrics, P is proportional to the applied electric field E

P = 𝑿𝒆𝜺𝟎E   

Where  𝑿𝒆 is known as the electric Susceptibility of the material



DIELECTRIC CONSTANT & STRENGTH:

We know that        P = 𝑿𝒆𝜺𝟎E -------(1)

D = 𝜀0E + P ---------(2)

D = 𝜀0(1+𝑋𝑒)E

D = 𝜀0𝜀𝑟 E--------(3)

or    D = 𝜀E    -------(4)

where  𝜀 = 𝜀0𝜀𝑟--------(5)

𝜺𝒓 = 1+𝑿𝒆 = 
𝜺

𝜺𝟎
which is known as dielectric constant or 

relative permittivity 



BOUNDARY CONDITIONS:  

If the field exists in a region consisting of two different media, the conditions 

that the field must satisfy at the interface separating the media are called 

boundary conditions.

we will consider the boundary conditions at an interface separating

• dielectric (𝜀𝑟1) and dielectric (𝜀𝑟2)

• conductor and dielectric

• conductor and free space 

To determine the boundary conditions, we need to use Maxwell's equations:

𝐸.dl = 0ׯ

.𝐷ׯ 𝑑𝑠 = 𝑄𝑒𝑛𝑐



DIELECTRIC – DIELECTRIC BOUNDARY CONDITIONS:

We need to decompose the electric field intensity E into two orthogonal 

components:

E = 𝐸𝑡 + 𝐸𝑛---------(I)

where 𝐸𝑡 and 𝐸𝑛are the tangential and normal components of E to the inter-

face of interest respectively.

Consider the E field existing in a region consisting of two different dielectrics 

characterized by     𝜀1= 𝜀0𝜀𝑟1 and      𝜀2= 𝜀0𝜀𝑟2

The fields E1 and E2 in media 1 and 2 respectively can be decomposed as

𝐸1 = 𝐸1𝑡 + 𝐸1𝑛 --------(1)                    𝐸2 = 𝐸2𝑡 + 𝐸2𝑛 ----------(2)

we know that            ׯ𝐸.dl = 0   -----------(3)



Fig a):determining  𝐸1𝑡= 𝐸2𝑡 b) determining  𝐷1𝑛 = 𝐷2𝑛



We apply eq(3) to the closed path  abcda of fig(a).

assuming that the path is very small with respect to the variation of E. We 

obtain as 

0 = 𝐸1𝑡∆𝑤 - 𝐸1𝑛
∆ℎ

2
- 𝐸2𝑛

∆ℎ

2
- 𝐸2𝑡∆𝑤 + 𝐸1𝑛

∆ℎ

2
+ 𝐸2𝑛

∆ℎ

2
-------(4)

where    𝐸𝑡= 𝐸𝑡 and       𝐸𝑛 = 𝐸𝑛

0 = (𝐸1𝑡 - 𝐸2𝑡) ∆𝑤

As      ∆ℎ → 0 ,

𝐸1𝑡= 𝐸2𝑡 ---------(5)

The tangential components of  E are the same on the two sides of the boundary 

In other words,  E, undergoes no change on the boundary and it is said to be 

continuous across the boundary. 



Since   D = 𝜀E = 𝐷𝑡 + 𝐷𝑛 , eq. (5) can be written as

𝐷1𝑡

𝜀1
= 𝐸1𝑡 = 𝐸2𝑡 =  

𝐷2𝑡

𝜀2

or   
𝐷1𝑡

𝜀1
=  

𝐷2𝑡

𝜀2
----------(6)

that is, D, undergoes some change across the interface. Hence D, is said to be 

discontinuous across the interface.

we know that           ׯ𝐷. 𝑑𝑠 = 𝑄𝑒𝑛𝑐 ----------(7)

From fig(b) ,     As   ∆ℎ → 0 ,

∆Q = 𝜌𝑠∆s = 𝐷1𝑛∆s  - 𝐷2𝑛∆s 

or  𝐷1𝑛 - 𝐷2𝑛 =𝜌𝑠 -------(8)



Where  𝜌𝑠 is the free charge density placed deliberately at the boundary.

If no free charges exist at the interface     𝜌𝑠= 0,

𝐷1𝑛 = 𝐷2𝑛 ----------(9)

Thus the normal component of  D is continuous across the interface; that is, 

𝐷𝑛undergoes  no change at the boundary.

Since      D = 𝜀E

𝜀1𝐸1𝑛 =𝜀2𝐸2𝑛-----------(10)

the  above equation tells us that normal component of  E is discontinuous at the 

boundary.

The equations (5), (6), (9) & (10) are collectively called as boundary conditions.

they must be satisfied by an electric field at the boundary separating two 

different dielectrics.



we can use the boundary conditions to determine the "refraction" of the electric 

field across the interface. Consider  𝐷1or 𝐸1, and 𝐷2 or 𝐸2 making angles 𝜃1 & 𝜃2

with the normal to the interface.



𝐸1 sin 𝜃1 = 𝐸1𝑡 = 𝐸2𝑡 = 𝐸2 sin 𝜃2

or          𝐸1 sin 𝜃1 = 𝐸2 sin 𝜃2 -----------(11)

𝜀1𝐸1 cos 𝜃1=𝐷1𝑛=𝐷2𝑛 = 𝜀2 𝐸2 cos 𝜃2

or        𝜀1𝐸1 cos 𝜃1 = 𝜀2 𝐸2 cos 𝜃2 ----------(12)

𝐸1 sin 𝜃1

𝜀1 𝐸1 cos 𝜃1
= 

𝐸2 sin 𝜃2

𝜀2 𝐸2 cos 𝜃2

tan 𝜃1

𝜀1
= 
tan 𝜃2

𝜀2

𝒕𝒂𝒏 𝜽𝟏

𝒕𝒂𝒏 𝜽𝟐
= 
𝜺𝒓𝟏

𝜺𝒓𝟐
----------(13)   (∵ 𝜀1= 𝜀0𝜀𝑟1and 𝜀2= 𝜀0𝜀𝑟2 )

Which is known as law of refraction of the electric field at a boundary free of 

charge



CONDUCTOR – DIELECTRIC BOUNDARY  CONDITIONS:

• The conductor is assumed to be perfect (i.e., 𝜎 → ∞ or 𝜌𝑐 → 0). 

• Although such a conductor is not practically realizable, we may regard 

conductors such as copper and silver as though they were perfect conductors.



To determine the boundary conditions for a conductor-dielectric interface, we 

follow the same procedure used for dielectric-dielectric interface except that we 

incorporate the fact that E = 0 inside the conductor. 

we know that    

𝐸.dl = 0  ------(1)ׯ

Applying   eq (1) to the closed path  abcda  of  Figure (a)  gives

0 = 0* ∆w + 0 * 
∆ℎ

2
+ 𝐸𝑛

∆ℎ

2
- 𝐸𝑡∆w - 𝐸𝑛

∆ℎ

2
- 0 * 

∆ℎ

2

as   ∆h →0 ,       𝐸𝑡 = 0 -----(2)

we know that     

.𝐷ׯ 𝑑𝑠 = 𝑄𝑒𝑛𝑐 -------(3)



Similarly, by applying eq. (3) to the cylindrical Gaussian surface  of  Figure 

(b) and letting   ∆h →0 ,

∆Q = 𝐷𝑛∆s – 0* ∆s ------(4)

Because  D = 𝜀E = 0 inside the conductor,

𝐷𝑛 = 
∆Q
∆s

= 𝜌𝑠or            𝐷𝑛 = 𝜌𝑠 --------(5)



Thus under static conditions, the following conclusions can be made about a 

perfect conductor:

1. No electric field may exist within a conductor;  that is,

𝜌𝑣 = 0,      E= 0 ------(6)

2. Since E= -∆v = 0, there can be no potential difference between any two points 

in the conductor; that is, a conductor is an equipotential body.

3. The electric field E can be external to the conductor and normal to its surface;  

that is  

𝐷𝑡 =  𝜀0𝜀𝑟𝐸𝑡 = 0,     𝐷𝑛 =  𝜀0𝜀𝑟𝐸𝑛 = 𝜌𝑠 ----------(7)

An important application of the fact that E = 0 inside a conductor is in 

electrostatic screening or shielding.



CONDUCTOR – FREE SPACE BOUNDARY  CONDITIONS:

The boundary conditions at the interface between a conductor and free space

can be obtained from eq (7) by replacing 𝜀𝑟 by 1 (because free space  as a special 

dielectric for which 𝜀𝑟 = 1). 

The electric field E to be external to the conductor and normal to its surface. Thus 
the boundary conditions are

𝐷𝑡 =  𝜀0𝐸𝑡 = 0,     𝐷𝑛 =  𝜀0𝐸𝑛 = 𝜌𝑠



RESISTANCE AND CAPACITANCE:

R = 
𝑉

𝐼
= 

׬ 𝐸.𝑑𝑙

ׯ 𝜎𝐸.𝑑𝑠

(∵ I= ׯ J. 𝑑𝑠 , J=𝜎𝐸)



Consider  the two-conductor capacitor of  figure shown. The conductors are 

maintained at a potential difference V given by

V = V1 - V2

V = - 2׬
1
𝐸. 𝑑𝑙 ---------(2) 

The capacitance  C of the capacitor as the ratio of  the magnitude of the 

charge on one of the plates to the potential difference between them.

C = 
𝑄

𝑉

C =  
𝜀 ׯ 𝐸.𝑑𝑠

׬ 𝐸.𝑑𝑙
-----------(3)



PARALLEL PLATE CAPACITOR:



Consider the parallel-plate capacitor of  fig shown, Suppose that each of the 

plates has an area S and they are separated by a distance d.

We assume that plates 1 and 2, respectively, carry charges +Q and  -Q 

uniformly distributed on them so that

𝜌𝑠 = 
Q

S
(∵ Q = 𝜌𝑠 S)    ---------(1)

An ideal parallel-plate capacitor is one in which the plate separation d is very 

small compared with the dimensions of the plate. 

If the space between the plates is filled with a homogeneous dielectric  with 

permittivity e and we ignore flux fringing at the edges of the plates

we know that    

dQ = 𝜌𝑣 dv



From surface charge distribution,

D = 
𝜌𝑠

2
𝑎𝑧 D = -𝜌𝑠𝑎𝑥 or 

E = 
𝜌𝑠

𝜀
(−𝑎𝑥)

E = -
𝑄

𝜀𝑆
𝑎𝑥 ----------(2)

V = - 2׬
1
𝐸. 𝑑𝑙 = - 0׬

𝑑
(−

𝑄

𝜀𝑆
𝑎𝑥) dx 𝑎𝑥 (or)       V = 

𝑄𝑑

𝜀𝑆

For a parallel plate capacitor 

C = 
𝑄

𝑉
= 
𝜀𝑆

𝑑
-------(3)

𝜀𝑟 =  
𝐶

𝐶0
---------(4)

We know that    𝑊𝐸 𝜀0׬ = 𝐸
2dv  --------(5)

the energy stored in a capacitor,   𝑾𝑬 = ½ C𝑽𝟐= ½ QV = 
𝐐𝟐

𝟐𝐂



COAXIAL CAPACITOR:

A coaxial capacitor is essentially a coaxial cable or coaxial cylindrical capacitor.

• Consider  length L of  two coaxial conductors of  inner radius  a  and outer  

radius  b (b > a) .

• Let the space between the conductors be filled with a homogeneous 

dielectric with permittivity  𝜀.



We assume that conductors 1 and 2, respectively, carry  +Q and  -Q uniformly  

distributed on them.

By applying  Gauss's law to an arbitrary  Gaussian cylindrical  surface of  radius  

ρ (a <ρ< b),  

Q = ׯ𝐷. 𝑑𝑠

= 𝜀 .𝐸ׯ 𝑑𝑠 = 𝜀𝐸𝜌2𝜋𝜌L      (∵ D = 𝜀E)

Hence    E=  
𝑄

𝜀 2𝜋𝜌L
𝑎𝜌 --------(1)

Neglecting flux fringing at the cylinder ends, 

V = - 2׬
1
𝐸. 𝑑𝑙 𝑏׬- =

𝑎
(

𝑄

𝜀 2𝜋𝜌L
𝑎𝜌).dρ 𝑎𝜌

V=  
𝑄

2𝜋𝜀L
ln

𝑏

𝑎

The capacitance of a coaxial cylinder is given by 

C = 
𝑸

𝑽
= 

2𝝅𝜺L

𝒍𝒏
𝒃

𝒂



SPHERICAL  CAPACITOR:

• A spherical capacitor  is the case of two concentric spherical conductors.

• Consider the inner sphere of radius  a  and outer sphere of  radius  b  (b> a)  

separated by a dielectric medium with permittivity   𝜀 .



• We assume charges  +Q  and  -Q  on the inner and outer spheres 

respectively. 

• By applying Gauss's law to an arbitrary Gaussian spherical surface of 

radius r     (a < r < b)

Q = ׯ𝐷. 𝑑𝑠 = 𝜀 .𝐸ׯ 𝑑𝑠 = 𝜀𝐸𝑟4𝜋𝑟
2

where  E= 
𝑄

4𝜋𝑟2
𝑎𝑟 ------------(1)

The potential difference between the conductors is

V = - 2׬
1
𝐸. 𝑑𝑙 𝑏׬- =

𝑎
(

𝑄

𝜀4𝜋𝑟2
𝑎𝑟).dr 𝑎𝑟

V = 
𝑄

4𝜋𝜀
[
1

𝑎
-
1

𝑏
]



The capacitance of the spherical capacitor is

C = 
𝑸

𝑽
= 
4𝝅𝜺
𝟏

𝒂
− 𝟏

𝒃

let  b→ ∞ ,    C= 𝟒𝝅𝜺a 

which is the capacitance of a spherical capacitor whose outer plate is 

infinitely large.



Two capacitors with capacitance  C1  and C2 are in  parallel, the total 

capacitance is 

C = 𝐶1 + 𝐶2

Two capacitors with capacitance C1 and C2 are in series, the total capacitance is,

C= 
C1C2

C1+C2

R = 
𝑉

𝐼
= 

׬ 𝐸.𝑑𝑙

ׯ 𝜎𝐸.𝑑𝑠

C = 
𝑄

𝑉
=  

𝜀 ׯ 𝐸.𝑑𝑠

׬ 𝐸.𝑑𝑙

RC = 
𝜀

𝜎
which is the relaxation time, 𝑇𝑟



For a parallel plate capacitor,

C = 
𝑄

𝑉
= 
𝜀𝑆

𝑑
,         R = 

𝑑

𝜎𝑆

For a cylindrical capacitor,

C = 
𝑄

𝑉
= 

2𝜋𝜀L

𝑙𝑛
𝑏

𝑎

,       R = 
𝑙𝑛

𝑏

𝑎

2𝜋σL

For a spherical capacitor,

C = 
𝑄

𝑉
= 
4𝜋 𝜀
1

𝑎
− 1

𝑏

,    R = 

1

𝑎
− 1

𝑏

4𝜋 𝜎

For an isolated spherical conductor,           

C = 4𝜋𝜀a,     R = 1/4𝜋𝜎a
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INTRODUCTION:

• An electrostatic field is produced by static or stationary charges. If the 

charges are moving with constant velocity, a static magnetic (or magneto 

static) field is produced.

• A magneto static field is produced by a constant current flow (or direct 

current). This current flow may be due to magnetization currents as in 

permanent magnets, electron-beam currents as in vacuum tubes, or 

conduction currents as in current-carrying wires.

• In this chapter, we consider magnetic fields in free space due to direct 

current. Magneto static fields in material space.
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Right Hand Rule and Right Hand Screw Rule:

The direction of dH can be determined by the right-hand rule with the right-hand 

thumb pointing in the direction of the current, the right-hand fingers encircling the 

wire in the direction of dH.
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Different charge configurations and we can have different current 
distributions: 
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APPLICATIONS OF AMPERE'S LAW:

We will consider an infinite line current, an infinite current sheet, and an 

infinitely long coaxial transmission line.

Infinite Line Current:
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INFINITE SHEET OF CURRENT:
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INFINITELY LONG COAXIAL TRANSMISSION LINE:
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The magnetic flux line is the path to which B is tangential at every point in a 

magnetic field. It is the line along which the needle of a magnetic compass will 

orient itself if placed in the magnetic field. 

For example, the magnetic flux lines due to a straight long wire are shown in 

below Figure.

126





127





128



MAXWELL'S EQUATIONS FOR STATIC EM FIELDS:

Having derived Maxwell's four equations for static electromagnetic fields, we 

may take a moment to put them together as in Table.
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FORCES DUE TO MAGNETIC FIELDS:

There are at least three ways in which force due to magnetic fields can be 

experienced. 

The force can be

(a) due to a moving charged particle in a B field,

(b) on a current element in an external B field, or

(c) between two current elements.
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MAXWELL’S EQUATIONS

(TIME VARYING FIELDS)



OBJECTIVES

FARADAY’S LAW

TRANSFORMER EMF

INCONSISTENCY OF AMPERE’S LAW

DISPLACEMENT CURRENT DENSITY

MAXWELL’S EQUATIONS IN FINAL FORMS

BOUNDARY CONDITIONS



INTRODUCTION:

• Electrostatic fields denoted by E(x, y, z) and these are usually produced by 

static electric charges.

• Magneto static fields denoted by H(x, y, z) and these are due to motion of 

electric charges with uniform velocity  or static magnetic charges .

• Time-varying fields or waves are usually due to accelerated charges or time-

varying currents



• Stationary charges         → electrostatic fields

• Steady currents              → magnetosiatic fields

• Time-varying currents   → electromagnetic fields (or waves)



FARADAY’S LAW:

A static magnetic field produces no current flow, but a time-varying 

field produces an induced voltage (called electromotive force or emf)  in a 

closed circuit, which causes a flow of current.

Faraday discovered that the induced emf  𝑉𝑒𝑚𝑓 in any closed circuit is equal to 

the time rate of change of the magnetic flux linkage by the circuit. This is 

called Faraday's law.

𝑉𝑒𝑚𝑓 = -
𝑑𝜆

𝑑𝑡
=  -N 

𝑑Ψ

𝑑𝑡
(∵ λ =NΨ)

Where  ‘n ‘ is no.  of turns in the circuit

‘Ψ’ is the flux through each turn



Induced EMF:

A current flows through the loop when a 
magnet is moved near it, without any 
batteries.



LENZ’S LAW:

The direction of current flow in the circuit is such that the induced magnetic 

field produced by the induced current will oppose the original magnetic field.

The total electric field at any point is,

E = 𝐸𝑓 + 𝐸𝑒



Note that 𝐸𝑓 is zero outside the battery,  𝐸𝑓 and  𝐸𝑒 have opposite directions in 

the battery,  and the direction of  𝐸𝑒 inside the battery is opposite to that  

outside it.

.Eׯ dl .Efׯ  = dl N׬ =    0+
P
Ef. dl        (∵ .Eeׯ dl = 0)

The emf of the battery is the line integral of the emf-produced field

Vemf N׬ =
P
Ef. dl  = - N׬

P
Ee. dl  = IR

Note:

An electrostatic field 𝐸𝑒 cannot maintain a steady current in a closed circuit 

since ׯ𝐸𝑒 . 𝑑𝑙 = 0

An emf produced field 𝐸𝑓 is nonconservative.



TRANSFORMER emf:

For a single turn(N=1) , Faraday’s law is

𝑽𝒆𝒎𝒇 = -
𝒅𝜳

𝒅𝒕

In terms of  E and B is, 

𝑉𝑒𝑚𝑓 .𝐸ׯ = 𝑑𝑙 = -
𝑑

𝑑𝑡
.𝐵׬ 𝑑𝑠 (∵ Ψ = .𝐵׬ 𝑑𝑠)

The variation of flux with time  may be caused in three ways:

• By having a stationary loop in a time-varying  B  field

• By having a time-varying loop area in a static  B  field

• By having a time-varying loop area in a time-varying  B  field.



A STATIONARYLOOPIN A TIME VARYING B FIELD 

(TRANSFORMER emf):

This emf induced by the time-varying current (producing the time-

varying B field) in a stationary loop is often referred to as transformer emf in 

power analysis since it is due to transformer action. 



𝑉𝑒𝑚𝑓 .𝐸ׯ = 𝑑𝑙 = -
𝑑

𝑑𝑡
.𝐵׬ 𝑑𝑠 (∵ Ψ = .𝐵׬ 𝑑𝑠) 

Due to the transformer action,

𝛻)׬ × E ) .ds = -׬
𝜕𝐵

𝜕𝑡
.ds    (stokes’s theorem)

For the two integrals to be equal, their integrands must be equal,

𝛻 × E = -
𝜕𝐵

𝜕𝑡
Maxwell’s equation for time varying fields.

It shows that the time varying E field is not conservative 

i.e.            (𝛻 × E ≠ 0)



Moving loop in a static  B  field(Motional emf):

When a conducting loop is moving in a static B field, an emf is induced in the 

loop.

The force on a charge moving with uniform velocity  u  in a magnetic field B 

is

𝐹𝑚 = 𝑄𝑢 X B



𝐸𝑚 = 𝐹𝑚/Q = u X B

𝑉𝑒𝑚𝑓 .𝐸𝑚ׯ = 𝑑𝑙 ׯ = u X B . 𝑑𝑙

𝜵X𝑬𝒎 = 𝜵 Xu X B

Moving loop in a time-varying field:

A moving conducting loop is in time varying field constitutes both the 

transformer emf and motional emf.

𝑉𝑒𝑚𝑓 .𝐸𝑚ׯ = 𝑑𝑙 ׬- =
𝜕𝐵

𝜕𝑡
.ds + ׯ (u X B) . 𝑑𝑙

𝜵X𝑬 =-
𝝏𝑩

𝝏𝒕
+ 𝜵 Xu X B



DISPLACEMENT CURRENT:

For static EM fields,       𝛻x H = J

The divergence of the curl of any vector field is identically zero,

𝛻.(𝛻x H ) = 0=𝛻.J

The continuity of current  equation,   𝛻.𝐽 =  -
𝜕𝜌𝑣

𝜕𝑡
≠ 0

𝛻x H = J + Jd ,     Where    Jd = 
𝜕𝐷

𝜕𝑡

𝛻x H = J + 
𝜕𝐷

𝜕𝑡

The term Jd = 
𝜕𝐷

𝜕𝑡
is known as displacement  current  density and 

J  is the conduction current density ( J= 𝜎𝐸).



INCONSISTANCY OF AMPERE’S LAW:

• Without the term Jd, the propagation of electromagnetic waves would be 

impossible.

• At low frequencies, ′Jd’ is usually neglected compared with ‘J’.



Based on the displacement current density, we define the displacement current 

is given by,

Id ׬ = Jd.dS ׬ =
𝜕𝐷

𝜕𝑡
.dS ----------(1)

Applying an unmodified form of Ampere's circuit law to a closed path  L,

.𝐻ׯ 𝑑𝑙 ׬ = 𝐽.dS = 𝐼𝑒𝑛𝑞 = I    -------(2)

.𝐻ׯ 𝑑𝑙 ׬ = 𝐽.dS = 𝐼𝑒𝑛𝑞 = 0 -------(3)  (∵ no conduction current (J = 0) flows 

through S2)

To resolve the conflict, we need to include the displacement current in 

Ampere’s circuit law.

𝑯.𝒅𝒍ׯ ׬ = 𝑱𝒅.dS = 
𝒅

𝒅𝒕
.𝑫׬ 𝒅𝑺 =

𝒅𝑸

𝒅𝒕
= I



MAXWELL’S EQUATIONS IN FINAL FORMS

Differential form

𝛻.𝐷 = 𝜌𝑉

𝛻. 𝐵 = 0

𝛻 × E =-
𝜕𝐵

𝜕𝑡

𝛻x H = J + 
𝜕𝐷

𝜕𝑡

Integral form

.𝐷ׯ 𝑑𝑆 = 𝜌𝑉׬ dv

ර𝐵. 𝑑𝑆 = 0

.𝐸ׯ 𝑑𝑙 = -
𝑑

𝑑𝑡
.𝐵׬ 𝑑𝑠

.𝑯ׯ 𝒅𝒍 J)׬= +
𝜕𝐷

𝜕𝑡
).dS

Remarks

Gauss's law

Nonexistence of isolated magnetic 
charge

Faraday's law

Ampere's circuit law



CONDITIONS AT A BOUNDARY SURFACES:

• The concepts of linearity, isotropy, and homogeneity of a material 

medium still apply for time-varying fields;

• In a linear, homogeneous, and isotropic medium characterized by 𝜎, 𝜀, 𝜇.

D = 𝜀E = 𝜀0E + P

B = 𝜇H = 𝜇0 (H + M)              constitutive relations

J = 𝜎E + 𝜌𝑉 u



For time-varying fields, The boundary conditions ,

𝐸1𝑡 = 𝐸2𝑡 or    (𝐸1 - 𝐸2) X 𝑎𝑛12 = 0

𝐻1𝑡 - 𝐻2𝑡 =K            or    (𝐻1 - 𝐻2) X 𝑎𝑛12 = K

𝐷1𝑛 - 𝐷2𝑛 =𝜌𝑠 or    (𝐷1 - 𝐷2).𝑎𝑛12 = 𝜌𝑠

𝐵1𝑛 - 𝐵2𝑛 = 0           or    (𝐵2 - 𝐵1).𝑎𝑛12 = 0

For a perfect conductor (𝜎 ≅ ∞)in a time varying field,

E = 0,       H = 0,    J = 0

𝐵𝑛 = 0,           𝐸𝑡 = 0





For a perfect dielectric (𝜎 = 0),

i) Compatibility equations:

V • B = 𝜌𝑚 ,             𝛻X𝐸 =-
𝜕𝐵

𝜕𝑡
= J

ii) Constitutive equations:

B = 𝜇H ,              D = 𝜀E      

iii) Equilibrium equations:

𝛻. D = ρV , 𝛻x H = J + 
𝜕𝐷

𝜕𝑡



TIME-HARMONIC MAXWELL’S EQUATIONS

POINT FORM

𝛻. 𝐷𝑠 = 𝜌𝑣𝑠

𝛻. 𝐵𝑠 = 0

𝛻 × 𝐸𝑠 = -j𝜔𝐵𝑠

𝛻 × 𝐻𝑠 =𝐽𝑠 +j𝜔𝐷𝑠

INTEGRAL FORM

.𝐷𝑠ׯ 𝑑𝑠 𝜌𝑣𝑠׬= dv

ර𝐵𝑠. 𝑑𝑠 = 0

.𝐸𝑠ׯ 𝑑𝑙 = − 𝑗𝜔 .𝐵𝑠׬ 𝑑𝑠

.𝐻𝑠ׯ 𝑑𝑙 𝐽𝑠)׬= + j𝜔𝐷𝑠) ds



EM WAVE 

CHARACTERISTICS-I



OBJECTIVES

WAVE EQUATIONS FOR MEDIA

UNIFORM PLANE WAVES

RELATIONS BETWEEN E&H

WAVE PROPAGATION IN LOSSLESS MEDIA

WAVE PROPAGATION IN GOOD CONDUCTORS

WAVE PROPAGATION IN GOOD DIELECTRICS

POLARIZATION



WHAT ARE WAVES?

Definition:  A disturbance that transfers energy from place to place.

What carries waves?  A medium, a medium is the material through which a wave 

travels. 

A medium can be a gas, liquid, or solid. 

Not all waves require a medium to travel.
Light from the sun travels through empty space.

• Waves are means of  transporting energy or information.

• A wave is a function of both space and time.

Ex: Radio waves, TV signals, radar beams, and light rays.



EM wave motion in the following media:

1. Free space               (𝜎= 0, ε = ε0 , μ = μ0)

2. Lossless dielectrics (𝜎= 0, ε = ε0ε𝑟 , μ = μ0μ𝑟 , or 𝜎≪𝜔𝜀)

3. Lossy dielectrics     (𝜎 ≠0, ε = ε0ε𝑟 , μ = μ0μ𝑟)

4. Good conductors    (𝜎 ≅ ∞, ε = ε0, μ = μ0μ𝑟, or 𝜎≫𝜔𝜀)



UNIFORM PLANE WAVES:

Definition:The wave that will have variation only in the direction of 

propagation and its characteristics remain constant across the planes normal 

to the direction of propagation.

UNIFORM PLANE WAVES IN FREE SPACE:

Assume an EM wave travelling in free space. Consider an electric field is in x-

direction and a magnetic field is in y- direction.

𝛻x H = J + 
𝜕𝐷

𝜕𝑡

𝛻x H = J + 
𝜕𝐷

𝜕𝑡
(if   J = 0)

𝛻x H = 
𝜕

𝜕𝑡
(𝐷𝑥𝑎𝑥 +𝐷𝑦𝑎𝑦 + 𝐷𝑧𝑎𝑧)



𝛻x H = 

𝑎𝑥 𝑎𝑦 𝑎𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐻𝑥 𝐻𝑦 𝐻𝑧

As H is in Y- direction, 𝐻𝑥 = 𝐻𝑧 =0,

∴ -
𝜕𝐻𝑦

𝜕𝑧
𝑎𝑥 + 

𝜕𝐻𝑦

𝜕𝑥
𝑎𝑧= 

𝜕

𝜕𝑡
(𝐷𝑥𝑎𝑥 +𝐷𝑦𝑎𝑦 + 𝐷𝑧𝑎𝑧)

𝐻𝑦 is not changing with x, and it is uniform in x-y plane,

-
𝜕𝐻𝑦

𝜕𝑥
=0,  

∴ -
𝜕𝐻𝑦

𝜕𝑧
𝑎𝑥 = 

𝜕

𝜕𝑡
(𝐷𝑥𝑎𝑥 +𝐷𝑦𝑎𝑦 + 𝐷𝑧𝑎𝑧)

-
𝜕𝐻𝑦

𝜕𝑧
= 
𝜕𝐷𝑥

𝜕𝑡
or    

𝝏𝑯𝒚

𝝏𝒛
=-𝜺

𝝏𝑬𝒙

𝝏𝒕
--------(1) (since D=𝜀E)



Form faraday’s law ,  

𝛻x E = -
𝜕𝐵

𝜕𝑡

𝛻x E =  

𝑎𝑥 𝑎𝑦 𝑎𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐸𝑥 𝐸𝑦 𝐸𝑧

As E is in X- direction, 𝐸𝑦 = 𝐸𝑧 =0,

∴ -
𝜕𝐸𝑥

𝜕𝑧
𝑎𝑦 + 

𝜕𝐸𝑥

𝜕𝑦
𝑎𝑧= -

𝜕

𝜕𝑡
(𝐵𝑥𝑎𝑥 +𝐵𝑦𝑎𝑦 + 𝐵𝑧𝑎𝑧)

𝐸𝑥 is not changing with y, and it is uniform in x-y plane,

𝜕𝐸𝑥

𝜕𝑦
= 0,∴

𝜕𝐸𝑥

𝜕𝑧
𝑎𝑦 = -

𝜕

𝜕𝑡
(𝐵𝑥𝑎𝑥 +𝐵𝑦𝑎𝑦 + 𝐵𝑧𝑎𝑧)



𝜕𝐸𝑥

𝜕𝑧
= -

𝜕𝐵𝑦

𝜕𝑡

𝝏𝑯𝒚

𝝏𝒕
= -

𝟏

𝝁

𝝏𝑬𝒙

𝝏𝒛
----------(2)    (since  B = 𝜇H )

Differentiating  eq(1) with respect  to ‘t’

𝜕

𝜕𝑡
(
𝜕𝐻𝑦

𝜕𝑧
) = - 𝜀

𝛛2EX

𝛛𝐭𝟐
----------(3)

Differentiating  eq(2) with respect  to ‘z’

𝜕

𝜕𝑧
(
𝜕𝐻𝑦

𝜕𝑡
) = -

1

𝜇

𝝏2𝐸𝑋

𝝏𝒁𝟐
------------(4)

𝜕2𝐸𝑋

𝜕t2
= 

1

𝜇𝜀

𝝏2𝐸𝑋

𝝏𝒁𝟐
----------(5)

𝜕2𝐸𝑋

𝜕t2
= 𝑣2

𝝏2𝐸𝑋

𝝏𝒁𝟐
,             v = 

𝟏

𝝁𝜺
---------(6)



Attenuation constant (𝜶):

When any wave propagates in the medium, it gets attenuated. The 

amplitude  of the signal reduces. It is represented  by an attenuation constant 

(𝛼)

𝛼 is measured in neper per meter (Np/m)

1 Np = 8.686 Db

Phase constant(𝜷):

When any wave propagates in the medium, phase change also takes place. 

Such a phase change is expressed by a phase constant(𝛽)

𝛽 is measured in radians per meter (rad/m)



Propagation constant(𝜸):

Attenuation constant (𝛼) and phase constant(𝛽) together constitutes  a 

propagation constant (𝛾)

𝜸 = 𝜶 + j𝜷

Intrinsic Impedance(𝜼):

The ratio of amplitudes of  E to H of the waves in either direction is called 

intrinsic impedance of the material in which wave is travelling.

𝜼 = 
𝑬𝒎+

𝑯𝒎+
= -

𝑬𝒎−

𝑯𝒎−
= 
𝝎𝝁

𝜷
= v𝝁 = 

𝝁

𝜺



WAVE EQUATIONS IN PHASOR FORM:

From the faraday’s law,  

𝛻x E = -
𝜕𝐵

𝜕𝑡
= - μ

𝜕𝐻

𝜕𝑡
--------(1)

𝛻x𝛻x E = - μ[𝛻x
𝜕𝐻

𝜕𝑡
]

𝛻x𝛻x E = - μ[
𝜕

𝜕𝑡
(𝛻xH)]    --------(2)

Using vector identity,

𝛻(𝛻.)E-𝛻2E = - μ[
𝜕

𝜕𝑡
(𝛻xH)]  ---------(3)

𝛻x H = J + 
𝜕𝐷

𝜕𝑡

𝛻(𝛻.E)-𝛻2E = - μ[
𝜕

𝜕𝑡
(J + 

𝜕𝐷

𝜕𝑡
)] -------(4)



-𝛻2E = - μ[
𝜕

𝜕𝑡
(J + 

𝜕𝐷

𝜕𝑡
)]       (since 𝛻.E =0)     or

𝛻2E =  μ[
𝜕

𝜕𝑡
(J + 

𝜕𝐷

𝜕𝑡
)]    ---------(5)  

When any field varies with respect  to time, its partial derivative taken with 

respect  to time can be replaced by  j𝝎

𝛻2E = μ[j𝜔(J +j𝜔D)]

𝛻2E = [j𝜔μ(𝜎 +j𝜔𝜀)]E  -------(6)

𝛻2H = [j𝜔μ(𝜎 +j𝜔𝜀)]H ---------(7)



𝛻2E = 𝛾2E    &𝛻2H = 𝛾2H,

𝛾 = 𝛼 + j𝛽 = j𝜔μ(𝜎 +j𝜔𝜀)  ------(8)

𝛼=𝜔
𝜇𝜀

2
1 + (

𝜎

𝜔𝜀
)2−1-------(9)

𝛽 = 𝜔
𝜇𝜀

2
1 + (

𝜎

𝜔𝜀
)2+1-------(10)

𝜂 = 
j𝜔μ

𝜎 +j𝜔𝜀
-------(11)

𝜂 = 

𝜇

𝜀

4
1+(

𝜎

𝜔𝜀
)2

tan2θ = 
𝜎

𝜔𝜀
,    0<θ<45



UNIFORM PLANE WAVE  IN LOSSY DIELECTRICS:

• A lossy dielectric is a medium in which an EM wave loses power as it 

propagates

due to poor conduction.

• A lossy dielectric is a partially conducting  medium ( imperfect dielectric  

or imperfect conductor)  with 𝜎 ≠0

𝛾 = 𝛼 + j𝛽 = ± j𝜔μ(𝜎 +j𝜔𝜀)  -------(1)

By rearranging the terms,

𝛾 = 𝛼 + j𝛽 = j𝜔 𝜇𝜀 1−j
𝜎

𝜔𝜀
-------(2)

𝜂 = 
j𝜔μ

𝜎 +j𝜔𝜀
= 𝜂 ≤ 𝜃𝑛Ω or   -----(3)



𝜂 = 
μ

𝜀

1

1−j 𝜎
𝜔𝜀

Ω --------(4)

𝜃𝑛 = 
1

2
[
𝜋

2
- tan−1(

𝜔𝜀

𝜎
) rad   ------(5) ,      0<𝜃𝑛<

𝜋

4

• This angle depends on the properties of the lossy dielectric medium as well 

as the frequency of a signal.

• For low frequency  signal, 𝜔 becomes very small, 𝜃𝑛 = 
𝜋

4

• For every high frequency  signal, 𝜃𝑛 = 0



UNIFORM PLANE WAVES IN PRACTICAL DIELECTRICS:

For a perfect dielectric, 𝜎 = 0,But for practical dielectric, 𝜎 ≠0  (i. e. 𝜎≪𝜔𝜀)

𝛾 = 𝛼 + j𝛽 = j𝜔 𝜇𝜀 1 +
𝜎

𝑗𝜔𝜀

Consider the radical term, Mathematically using binomial theorem,

(1 + 𝑥)𝑛= 1+nx+
𝑛(𝑛−1)

2!
𝑥2 + 

𝑛(𝑛−1)(𝑛−2)

3!
𝑥3 + -------- ,   where 𝑥 <1,

If 𝑥 <1 and  n= ½ , then neglecting the higher order  terms,

(1 +
𝜎

𝑗𝜔𝜀
)
1

2 = 1 +
1

2

𝜎

𝑗𝜔𝜀

𝛾 = 𝛼 + j𝛽 = j𝜔 𝜇𝜀 [1 +
𝜎

2𝑗𝜔𝜀
]



𝛾 = 𝛼 + j𝛽 = 
𝜎

2

𝜇

𝜀
+ j𝜔 𝜇𝜀 -------(1)

𝛼 =  
𝜎

2

𝜇

𝜀
--------(2)

𝛽 = 𝜔 𝜇𝜀 --------(3)

𝜂 = 
j𝜔μ

𝜎 +j𝜔𝜀
= 

j𝜔μ
j𝜔𝜀(1+ 𝜎

𝑗𝜔𝜀
)

𝜂 = 
𝜇

𝜀
(1 +

𝜎

𝑗𝜔𝜀
)−

1

2,

Using binomial theorem,

(1 + 𝑥)−𝑛= 1-nx+
𝑛(𝑛−1)

2!
𝑥2 -

𝑛(𝑛−1)(𝑛−2)

3!
𝑥3 + --------



As  x= 
𝜎

𝑗𝜔𝜀
is very small as compared to 1, neglecting the higher order terms,

(1 + 𝑥)−𝑛= 1-nx

𝜂 = 
𝜇

𝜀
[1 −

𝜎

2𝑗𝜔𝜀
]    or     

𝜇

𝜀
[1 + 𝑗

𝜎

2𝜔𝜀
] Ω

Maxwell’s equation,

𝛻x H = J + 
𝜕𝐷

𝜕𝑡

= 𝜎E + 𝜀
𝜕𝐸

𝜕𝑡

= 𝜎E + j𝜔𝜀 E = E(𝜎 + j𝜔𝜀)

𝛻x H = 𝐽𝑐 + 𝐽𝐷

𝐽𝑐

𝐽𝐷
= 

𝜎E
j𝜔𝜀 E

= 
𝜎

j𝜔𝜀



Loss angle ,         𝜃 = tan−1
𝜎

𝜔𝜀

Loss tangent of dielectric,       tan𝜃 = 
𝜎

𝜔𝜀

If 𝜎≪𝜔𝜀, the loss tangent is small, and medium is said to be good dielectric.

If 𝜎 ≫ 𝜔𝜀, the loss tangent is high, and medium is said to be good conductor.



UNIFORM PLANE WAVES IN GOOD CONDUCTORS:

A perfect, or good conductor,    or    σ≫ωε,

σ ≅ ∞, ε = ε0, μ = μ0μr

γ = α + jβ = jωμ(σ +jωε)    --------(1)

γ =  jωμσ = ωμσ j

but j = 1∠90

γ = ωμσ 1∠90 = ωμσ∠45

γ = ωμσ (cos 45 + j sin 45)

γ = 2πfμσ [
1

2
(1+j)]



𝛾 = 𝛼 + j𝛽 = 𝜋𝑓μ𝜎 + j 𝜋𝑓μ𝜎 ------(2),

𝛼 = 𝜋𝑓μ𝜎 Np/m , 𝛽 = 𝜋𝑓μ𝜎 rad/m

For a good conductor, 𝛼 and 𝛽 are equal and both are directly proportional to 

the square root of frequency and conductivity(𝜎 )

𝜂 = 
j𝜔μ

𝜎 +j𝜔𝜀
------(3)   

𝜂 = 
j𝜔μ
𝜎

= 
𝜔μ

𝜎
𝑗 (since   𝜎≫𝜔𝜀)

𝜂 = 
𝜋𝑓μ

𝜎
(1+j)  --------(4) , The angle of intrinsic impedance is 450



The component of the electric field 𝐸𝑥 is travelling in positive z- direction.

𝐸𝑥 = 𝐸𝑚 + 𝑒−𝛼𝑧 = 𝐸𝑚 + 𝑒−𝑗𝛽𝑧

• At  z = 0, amplitude of the component 𝐸𝑥 is 𝐸0,

• At  z = 𝛿, amplitude is  𝐸0𝑒
−𝛼𝑑.



In distance z = 𝛿, the amplitude is gets reduced by a factor    𝑒−𝛼𝑑.

If we select   𝛿 = 1/𝛼 , then the factor becomes   𝑒−1= 0.368

The skin depth is a measure of the depth to which an EM wave can

penetrate  the medium.

E (or H) wave travels in a conducting medium, its amplitude is attenuated by

the factor 𝑒−𝛼𝑧. The distance 𝛿, through which the wave amplitude decreases 

by a factor 𝑒−1 (about 37%) is called skin depth or penetration depth of the 

medium.

E0e
−δα = E0e

−1

𝜹 =
𝟏

𝜶
=
𝟏

𝜷
= 

𝟏

𝜋𝑓μ𝜎



UNIFORM PLANE WAVES IN LOSSLESS DIELECTRICS:

In a lossless dielectric, 𝜎≪𝜔𝜀,

𝜎= 0, ε = ε0ε𝑟 , μ = μ0μ𝑟

α =0,   𝛽= 𝜔 μ𝜀

𝛾 = 𝜔 μ𝜀

v = 𝜔/𝛽 = 
1

μ𝜀
,   

𝜆 = 
2𝜋

𝛽
,     𝜂= 

μ

ε∠0𝑜

E and H are in time phase with each other.



UNIFORM PLANE WAVES IN FREE SPACE:

In a free space medium,𝜎= 0, ε = ε0 , μ = μ0

α =0,   𝛽= 𝜔 μ0ε0 = 𝜔/𝑐

v = 
1

𝜇0𝜀0
= c,    

𝜆 = 
2𝜋

𝛽
where c = 3 X 108 m/s

𝜂0= 
μ0
ε0

= 120𝜋 = 377Ω is called the intrinsic impedance of free space



EM WAVE 

CHARACTERISTICS-II



OBJECTIVES

REFLECTION AND REFRACTION OF PLANE WAVES

NORMAL AND OBLIQUE INCIDENCES

BREWSTER ANGLE

CRITICAL ANGLE AND TOTAL INTERNAL REFLECTION

SURFACE IMPEDANCE

POTNTING VECTOR AND POYNTING THEOREM-

APPLICATIONS

POWER LOSS IN A PLANE CONDUCTOR



Reflection and refraction:

When a light wave strikes a smooth interface of two transparent media 

(such as air, glass, water etc.), the wave is in general partly reflected and 

partly refracted (transmitted).

Reflected rays            Incident rays

Refracted rays

ar

b

bb

a a



• If a transmission line having a characteristic impedance ′𝑍0′ and that line 

is terminated in load impedance  ′𝑍𝐿′.

• If  𝑍𝐿 ≠ 𝑍0, then there is no mismatch between two impedances and the 

line is not properly terminated, at this case reflection occurs.

• If  𝑍𝐿 = 𝑍0, the line is properly terminated



Types of  incidences:

1. Normal Incidence: 

When a uniform plane wave is incidences normally to the 

boundary  between the media then it is known as normal incidence.

1. Oblique incidence:

When a uniform plane wave is incidences normally to the 

boundary between the media then it is known as normal incidence.



Normal Incidence at plane dielectric Boundary:

• A uniform plane wave  striking the interface between the two dielectrics at right 
angles.

• A uniform plane wave travels along  +z- direction and incidence at right angles 
at z=0.



• Below  z = 0, let the properties of  medium 1 be 𝜀1,𝜇1, 𝜎1 , 𝜂1 and above  z=0, 

the properties of  medium 2 be 𝜀2,𝜇2, 𝜎2 , 𝜂2.

• Let  𝐸𝑖,𝐻𝑖 be the field strengths of the incident wave striking the boundary.

• Let  𝐸𝑡,𝐻𝑡 be the field strengths of the transmitted wave in the medium 2.

• Let  𝐸𝑟,𝐻𝑟 be the field strengths of the reflected wave in the medium 

1returning back from the interface.

For medium 1,

E1 = Ei+ Er&H1 =  Hi+  Hr

For medium 2,

E2 =  Et&H2 =  Ht

According to the boundary conditions, the tangential components of  E and H 

must be continuous at the interface,  z = 0.



The waves are transverse in nature, at the boundary  the fields E and H both 

tangential to the interface.

E1tan =  E2tan&H1tan =  H2tan

At the interface, z = 0

Ei = η1Hi ,      Er=- η1Hr&Et = η2Ht

Et =  Ei+  Er -------(1)

Ht= Hi+  Hr -------(2)

Ei

η1
-
Er

η1
= 
Et

η2
⇒

Ei−E𝑟

η1
= 
Et

η2

Ei − E𝑟 = 
η1

η2
Et --------(3)



Add eq(1) &eq(2),

Ei+  Er +Ei − E𝑟 = Et + 
η1

η2
Et

2Ei = (1+
η1

η2
)Et ⇒ Et = 

2η2
η1+η2

Ei -------(4)

The transmission coefficient (𝜏),

𝝉 = 
𝑬𝒕

𝑬𝒊
= 

2𝜼𝟐
𝜼𝟏+𝜼𝟐

-------------(5)

Eliminating the Et from eq(1) &(3),

Ei+  Er = 
η2

η1
(Ei − E𝑟)     ⇒ η1(Ei+  Er) = η2(Ei − E𝑟)

E𝑟 = 
η2−η1

η2+η1
Ei ----------(6)

The reflection coefficient (Γ),

𝜞 = 
𝑬𝒓

𝑬𝒊
= 
𝜼𝟐−𝜼𝟏

𝜼𝟐+𝜼𝟏
-----------(7)



From eq(5) & (7),

a)  1 + Γ = 𝜏 b) 0 ≤ Γ ≤1

c)  Both the coefficients,  Γ, 𝜏 are dimensionless and may be complex in nature.

According to the poynting theorem,

𝑷𝒂𝒗𝒈 = 
𝟏

𝟐

𝑬𝐦
𝟐

𝜼
W/ 𝒎𝟐

The average power incident in medium1 ,

𝑃𝑖𝑎𝑣𝑔 = 
1

2

E𝑖
2

η1
W/ 𝑚2

The average power reflected in medium1 ,

𝑃𝑟𝑎𝑣𝑔 = 
1

2

E𝑟
2

η1
W/ 𝑚2

The average power transmitted in medium2 ,

𝑃𝑡𝑎𝑣𝑔 = 
1

2

E𝑡
2

η2
W/ 𝑚2



The ratio of power transmitted to power  incident,

𝑃𝑡𝑎𝑣𝑔

𝑃𝑖𝑎𝑣𝑔
= 

1

2

E𝑡
2

η2

1

2

E𝑖
2

η1

= 
η1

η2
(
Et

Ei
)2

𝑷𝒕𝒂𝒗𝒈

𝑷𝒊𝒂𝒗𝒈
= 

𝟒𝜼𝟏𝜼𝟐

(𝜼𝟏+𝜼𝟐)
𝟐-------(8)    (since,

𝐸𝑡

𝐸𝑖
= 

2𝜂2
𝜂1+𝜂2

)

The ratio of power reflected to power  incident,

𝑃𝑟𝑎𝑣𝑔

𝑃𝑖𝑎𝑣𝑔
= 

1

2

E𝑟
2

η1

1

2

E𝑖
2

η1

= (
E𝑟

Ei
)2

𝑷𝒓𝒂𝒗𝒈

𝑷𝒊𝒂𝒗𝒈
= 
(𝜼𝟐−𝜼𝟏)

𝟐

(𝜼𝟏+𝜼𝟐)
𝟐 --------(9)  (since,

𝐸𝑟

𝐸𝑖
= 
η2−η1

η2+η1
)

Add eq(8) &(9),

𝑃𝑡𝑎𝑣𝑔

𝑃𝑖𝑎𝑣𝑔
+ 
𝑃𝑟𝑎𝑣𝑔

𝑃𝑖𝑎𝑣𝑔
= 

4𝜂1𝜂2

(𝜂1+𝜂2)
2 + 

(𝜂2−𝜂1)
2

(𝜂1+𝜂2)
2

𝑷𝒕𝒂𝒗𝒈 + 𝑷𝒓𝒂𝒗𝒈 = 𝑷𝒓𝒂𝒗𝒈 --------(10)



Normal Incidence at Plane Conducting Boundary:  

x

Medium 1

(perfect dielectric)                                 Medium 2

𝜎 = 0 (perfect conductor)

~ 𝜎 = ∞ ,η2 =0

Incident wave

~

Reflected wave 

z = 0   

Fig: Normal incident at plane conducting boundary

• A uniform plane wave  striking the interface between the two media.

• Where medium1 is perfect dielectric (𝜎 = 0, lossless)  and medium2 is 
perfect conductor (𝜎 = ∞)

For medium2 ,𝜂2 =0, being a perfect conductor.

.



STANDING WAVES: 

• Standing waves are nothing but it consists of two travelling waves, one is 

incident and  the other is reflected  and are does not travel.

• Both the waves have same amplitudes but the directions in which they 

propagate are different.

Let the standing wave in medium be denoted by E1s,

E1s= Ei+  Er = (𝐸𝑖𝑒
−𝛾1𝑧 + 𝐸𝑟𝑒

𝛾1𝑧)𝑎𝑥 ------(1)

But  𝛤 = 
𝐸𝑟

𝐸𝑖
= -1

For medium 1, 𝜎 = 0,

𝛾1 = 𝛼 + j𝛽1 where 𝛼 = 0 for 𝜎 = 0,

𝛾1 = j𝛽1



E1s= (𝐸𝑖𝑒
−j 𝛽1𝑧- 𝐸𝑖𝑒

j 𝛽1𝑧)𝑎𝑥 (since  
𝐸𝑟

𝐸𝑖
= -1)

E1s= -2j 𝐸𝑖
𝑒j 𝛽1𝑧 − 𝑒−j 𝛽1𝑧)

2𝑗
𝑎𝑥

E1s= -2j 𝐸𝑖 sin 𝛽1𝑧 𝑎𝑥 ------------(2)

The field in the medium1,

E1 = Re (E1s𝑒
jωt )

E1 = 2 𝐸𝑖 sin𝛽1𝑧 sinωt 𝑎𝑥 -----------(3)

𝐻1= 
2Ei

η1
cos 𝛽1𝑧 cosωt 𝑎𝑦 -----------(4)

If   𝛽1𝑧 =n𝜋 ,                  n = 0,± 1, ±2  ----------

z = 
n𝜋
𝛽1

,        but   𝛽1 =  
2𝜋

𝜆1
,

z = 
n𝜋
2𝜋

𝜆1

⇒ z = n
𝜆1

2



Representation of  instantaneous values of the total electric field at  t=𝜆1/2 in 

medium1.

The magnitude of the magnetic field is maximum at the  positions  where the 

electric field is zero.



STANDING WAVE RATIO(SWR): 

A uniform plane wave travelling in a lossless medium , it gets reflected back by 

the perfect conductor, results in which a standing wave is generated.



The total field in the medium1 along the standing wave,

E1s= Ei+  Er = (𝐸𝑖𝑒
−𝛾1𝑧 + 𝐸𝑟𝑒

𝛾1𝑧)    ------------(1)

The reflection coefficient,

𝛤 = 
𝐸𝑟

𝐸𝑖
or    Er =𝛤Ei

E1s=  𝐸𝑖𝑒
−j 𝛽1𝑧 + 𝛤Ei𝑒

j 𝛽1𝑧 -----------(2)

The reflection coefficient in phasor form,

𝛤= Γ 𝑒jϕ

E1s=  (𝑒−j 𝛽1𝑧+ Γ 𝑒j(𝛽1𝑧+ϕ) )𝐸𝑖 ----------(3)

E1smax =(1 + Γ )𝐸𝑖 -----------(4)

E1sm𝑖𝑛 =(1 − Γ )𝐸𝑖 -----------(5)

⇒Standing wave ratio is defined as the ratio of  maximum to minimum 

amplitudes of  voltage.

S = 
𝑬𝟏𝐬𝐦𝐚𝒙

𝑬𝟏𝐬𝐦𝒊𝒏
= 

1 + 𝜞

1 − 𝜞
(or)

𝜞 = 
𝑺−𝟏

𝑺+𝟏



OBLIQUE INCIDENCE AT A PLANE DIELECTRIC BOUNDARY:



• The incident and reflected waves travel in medium1,  while transmitted 

wave in medium2.

• The velocity for the waves in medium 1 is same and the distances travel by 

the waves are same.

𝜽𝒊 = 𝜽𝒓-------(1)

Snell’s law of reflection: 

The angle of incidence and  angle of reflection waves are equal.

sin 𝜽𝒕

sin 𝜽𝒊
= 

𝑣2

𝑣1
= 

𝛽1

𝛽2
------------(2)    (∵ v = 𝜔/𝛽)

𝒔𝒊𝒏 𝜽𝒕

𝒔𝒊𝒏 𝜽𝒊
= 
𝒏𝟏

𝒏𝟐
-----------(3)     (∵ n = c/v)

which is snell’s law of refraction



sin 𝜽𝒕

sin 𝜽𝒊
= 

ε1

ε2
------(4)     (∵ v = 

1

𝜇𝜀
)

sin 𝜽𝒕

sin 𝜽𝒊
= 
𝜂2

𝜂1
--------(5)  (∵ 𝜂 = 

𝜇

𝜀
)

𝒔𝒊𝒏 𝜽𝒕

𝒔𝒊𝒏 𝜽𝒊
=
𝒗𝟐

𝒗𝟏
= 
𝜷𝟏

𝜷𝟐
=
𝐧𝟏

𝐧𝟐
= 
𝜼𝟐

𝜼𝟏
= 

𝜺𝟏

𝜺𝟐

incident raysreflected rays

refracted rays

ar

b

b

a



CRITICAL ANGLE AND  TOTAL INTERNAL REFLECTION:

Medium1                 x                 Medium 2

𝑎𝑛𝑟 reflected wave           𝑎𝑛𝑡
transmitted wave

𝜃𝑡 = 𝜋/2

z  

𝑎𝑛𝑖

incident wave       

z = 0      

Fig: total reflection at 𝜃𝑡 = 𝜋/2

• The medium1 is denser than the  medium2   i.e. ε1>ε2
• The angle of transmission  𝜃𝑡 becomes greater than the angle of incidence.



CRITICAL  ANGLE: (𝜽𝒄)

The angle of incidence at which the total reflection takes place is known 

as critical angle.

At 𝜃𝑡= 𝜋/2,    𝜃𝑖 = 𝜃𝑐,

sin 𝜽𝒕

sin 𝜽𝒊
= 

ε1

ε2

⇒
sin

𝜋

2

sin 𝜽𝒄
= 

ε1

ε2

sin𝜽𝒄 = 
ε2

ε1

𝜽𝒄 = 𝐬𝐢𝐧−𝟏
𝜺𝟐

𝜺𝟏
(or)

𝜽𝒄 = 𝒔𝒊𝒏−𝟏
𝐧𝟐
𝐧𝟏



POLARIZATION:

• Horizontal or perpendicular polarization.

• Vertical  or parallel polarization.

HORIZONTAL  OR PERPENDICULAR POLARIZATION:



The incident electric field intensity vector in medium1,

𝐸𝑖 = 𝐸𝑖𝑒
−𝑗𝛽1(𝑥 sin 𝜃𝑖+𝑧 cos 𝜃𝑖)𝑎𝑦 ------(1)

The incident magnetic field intensity vector in medium1,

𝐻𝑖=
𝐸𝑖

𝜂1
(-cos 𝜃𝑖𝑎𝑋 + sin 𝜃𝑖 𝑎𝑍) 𝑒

−𝑗𝛽1(𝑥 sin 𝜃𝑖+𝑧 cos 𝜃𝑖)------(2)

The reflected electric and magnetic fields,

𝐸𝑟 = 𝐸𝑟𝑒
−𝑗𝛽1(𝑥 sin 𝜃𝑟 − 𝑧 cos 𝜃𝑟)𝑎𝑦 ------(3)

𝐻𝑟 =
𝐸𝑟

𝜂1
(cos 𝜃𝑟𝑎𝑋 + sin 𝜃𝑟 𝑎𝑍) 𝑒

−𝑗𝛽1(𝑥 sin 𝜃𝑟−𝑧 cos 𝜃𝑟) ----------(4)

The transmitted electric and magnetic fields,

𝐸𝑡 = 𝐸𝑡𝑒
−𝑗𝛽2(𝑥 sin 𝜃𝑡+ 𝑧 cos 𝜃𝑡)𝑎𝑦------(5)

𝐻𝑡 =
𝐸𝑡

𝜂2
(-cos 𝜃𝑡𝑎𝑋 + sin 𝜃𝑡 𝑎𝑍) 𝑒

−𝑗𝛽2(𝑥 sin 𝜃𝑡+𝑧 cos 𝜃𝑡) ---------(6)



From the boundary conditions, the tangential components of  E and H must be 

continuous at the interface,   z=0.   i.e

E1 = E2 ⇒ Ei+Er =Et

Eie
−jβ1(x sin θi) + Ere

−jβ1(x sin θr) = Ete
−jβ2(x sin θt) -------(7)

H1 = H2 ⇒ Hi +Hr = Ht

∴
1

𝜂1
(- 𝐸𝑖 cos 𝜃𝑖 𝑒

−𝑗𝛽1(𝑥 sin 𝜃𝑖) + 𝐸𝑟 cos 𝜃𝑟 𝑒
−𝑗𝛽1(𝑥 sin 𝜃𝑟)) 

=  -
1

𝜂2
𝐸𝑡(cos 𝜃𝑡 𝑒

−𝑗𝛽2(𝑥 sin 𝜃𝑡) ------------(8)

𝛽1𝑥 sin 𝜃𝑖 = 𝛽1𝑥 sin 𝜃𝑟 = 𝛽2𝑥 sin 𝜃𝑡 ----------(9)

We know that,  Snell’s law of reflection (𝜃𝑖 = 𝜃𝑟)

Snell’s law of reflection (
sin 𝜽𝒕

sin 𝜽𝒊
=

𝛽1

𝛽2
)



POLARIZATION OF UNIFORM PLANE WAVES:

The polarization of a plane wave can be defined as the orientation of 

the electric field vector as a function of time at a fixed point in space.

For an electromagnetic wave, the specification of the orientation of the 

electric field is sufficient as the magnetic field components are related to 

electric field vector by the Maxwell's equations.

Types:

1. Linear polarization

2. Elliptical polarization

3. Circular polarization



LINEAR POLARIZATION

The electric field E has only x component and  y component of E is 0. Then the 

wave is said to be linearly polarized in x- direction.

(or)

The resultant vector E is oriented in a 

direction which is constant with time,

and the wave is said to be linearly polarized.

Ex and Ey components are in phase with  either equal or unequal amplitudes , 

for a uniform plane wave travelling in z- direction, the polarization is linear.



ELLIPTICAL POLARIZATION

The electric field E has both the components which are not having same 

amplitudes and are not in phase.

The amplitudes of Ex and Ey are 

different and the phase difference

between the two is other than 90,

then the axis of the ellipse are 

inclined at an angle θ with the 

coordinate axis.

The components Ex and Ey of unequal amplitudes have a constant ,non zero 

phase difference between two, for a uniform plane wave travelling in z-

direction, the polarization is elliptical.



CIRCULAR POLARIZATION

• The amplitudes of Ex and Ey are 

same and the phase difference 

between the two is exactly 90.

• In one wavelength span, the 

resultant vector  E completes one 

cycle of rotation such a wave is said 

to be circularly polarized.

•

circular polarization



SURFACE IMPEDANCE

DEFINITION:

The ratio of the tangential component of  the electric field to the surface current 

density  at the conductor surface.

𝑍𝑠 = 
𝐸𝑡𝑎𝑛

𝐽𝑠
--------(1)                                 z

𝐽0𝑒
−𝛾𝑧

Flat

plate conductor

J                                               z=0

Fig: Current distribution in flat plate conductor



With the surface at z=0, plane, then the current distribution in z-direction is 

given by,

J= 𝐽0𝑒
−𝛾𝑧 -------------(2)

Linear current  density is given by,

Js 0׬ =
∞
J0e

−γzdz

Js = 
J0

𝛾

But we know that,   J0 = 𝜎𝐸𝑡𝑎𝑛

Js = 
𝜎𝐸𝑡𝑎𝑛

𝛾

𝑍𝑠 = 
𝛾

𝜎



The propagation constant ‘ 𝛾’ is given by,

𝛾 = 𝑗𝜔𝜇(𝜎 + 𝑗𝜔𝜀)

For conducting medium, 𝜎>>𝜔𝜀

𝛾 = 𝑗𝜔𝜇𝜎

𝑍𝑠 = 
𝑗𝜔𝜇𝜎

𝜎

𝑍𝑠 = 
𝑗𝜔𝜇

𝜎
= 𝜂 (∵ 𝜂 =

𝑗𝜔𝜇

𝜎
)

For a good conductor, The surface impedance of a plane conductor with 

thickness greater than the skin depth of a conductor is equal to the 

characteristic impedance of the conductor.

𝒁𝒔 = 𝜼



POYNTING VECTOR & POYNTING THEOREM:

The energy stored in an electric field and magnetic field is transmitted at a 

certain rate of energy flow which can be calculated with the help of poynting 

theorem.

The power density is given by,

ത𝑃 = ത𝐸 × ഥ𝐻

Where  ത𝑃 is called poynting vector.

• Poynting theorem is based on law of conservation of energy in 

electromagnetism.

• The direction of  ത𝑃 indicates instantaneous power flow at that point.



DEFINITION:

“The net power flowing out of a given volume ‘v’ is equal to the time 

rate of decrease in the energy stored within volume ‘v’ minus the ohmic power 

dissipated”.

ഥE = Ex ax &ഥH = Hy ay

Then        ഥP = (Ex ax ) × (Hy ay )

ഥP = ExHy az (∵ ax × ay = az )

ഥ𝐏 = 𝐏𝐙𝐚𝐳

Where ത𝑃, ത𝐸,ഥ𝐻 𝑎𝑟𝑒 𝑚𝑢𝑡𝑢𝑎𝑙𝑙𝑦 𝑝𝑒𝑟𝑝𝑒𝑛𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟.



The electric field propagates in free space given by,
ഥE = Em cos(𝜔𝑡 − 𝛽𝑧) ax

In the medium , the ratio of magnitudes of  ഥE and  ഥH depends on its intrinsic 

impedance (𝜂),

ഥH = Hm cos(𝜔𝑡 − 𝛽𝑧) ay

or    ഥH = 
Em

𝜂0
cos(𝜔𝑡 − 𝛽𝑧) ay

According to the poynting theorem,      ത𝑃 = ത𝐸 × ഥ𝐻

ത𝑃 = (Em cos(𝜔𝑡 − 𝛽𝑧)( ax ) × (
Em

𝜂0
cos(𝜔𝑡 − 𝛽𝑧) ay )

ത𝑃 = 
Em

2

𝜂0
𝑐𝑜𝑠2(𝜔𝑡 − 𝛽𝑧)az W/𝑚2

The power passing particular area is given by,

power = power density × area



AVERAGE POWER DENSITY: (𝑃𝑎𝑣𝑔):

To find the average power density , let us integrate power density in z-

direction over one cycle and divide by the period T of one cycle.

𝑃𝑎𝑣𝑔 =
1

𝑇
0׬
𝑇 Em

2

𝜂
𝑐𝑜𝑠2(𝜔𝑡 − 𝛽𝑧) dt

= 
Em

2

𝜂𝑇
0׬
𝑇 1+cos2(𝜔𝑡 −𝛽𝑧)

2
dt

= 
Em

2

𝜂𝑇

𝑡

2
+

sin2(𝜔𝑡 −𝛽𝑧)

4𝜔

𝑃𝑎𝑣𝑔 =
Em

2

𝜂𝑇

𝑇

2
+
sin(2𝜔𝑇 − 𝛽𝑧)

4𝜔
+
sin(2𝛽𝑧)

4𝜔

0



Let 𝜔𝑇 =2𝜋,   

𝑃𝑎𝑣𝑔 =
Em

2

𝜂𝑇

𝑇

2
+
sin(4𝜋 − 𝛽𝑧)

4𝜔
+
sin(2𝛽𝑧)

4𝜔

𝑃𝑎𝑣𝑔 =
Em

2

𝜂𝑇

𝑇

2
−
sin(2𝛽𝑧)

4𝜔
+
sin(2𝛽𝑧)

4𝜔

𝑃𝑎𝑣𝑔 =
Em

2

𝜂 𝑇

𝑇

2

𝑷𝒂𝒗𝒈 =
𝟏

𝟐

𝑬𝐦
𝟐

𝜼
W/𝑚2



TRANSMISSION LINES-I



OBJECTIVES

TRANSMISSION LINES TYPES

TRANSMISSION LINE EQUATIONS

CHARACTERISTIC IMPEDANCE

PROPAGATION CONSTANT

LOSSLESS TRANSMISSION LINE

DISTORTIONLESS TRANSMISSION LINE

LOADING- TYPES



DEFINITION: 

The transmission line is a structure which can transport electrical energy 

from one point to another.



•At low frequencies, a transmission line consists of two linear conductors

separated by a distance.

•When an electrical source is applied between the two conductors, the line

gets energized and the electrical energy flows along the length of the conductors.

Co-axial cable:

Consists of a solid conducting rod surrounded by the two conductors. This line has 

good isolation of the electrical energy and has low Electromagnetic Interference 

(EMI).

Parallel wire transmission line:

• Consists of two parallel conducting rods. In this case the electrical energy 

is distributed between and around the rods.

• Theoretically the electric and magnetic fields extend over infinite distance 

though their strength reduces as the distance from the line. Obviously this line has 

higher EMI.



• Micro strip line:

• Consists of a dielectric substrate having ground plane on one side and a thin  metallic 

strip on the other side.

• The majority of the fields are confined in the dielectric substrate between the strip and 

the ground plane.

• Some fringing field exist above the substrate which decay rapidly as a function          of 

height. 

• This line is usually found in printed circuit boards at high frequencies.

Balanced and Un-balanced line:

• If the two conductors are symmetric around the ground, then the line is called the 

balanced line, otherwise the line is an un-balanced line.

• Transmission lines (a), (c) and (d) are un-balanced line, whereas the line (b) is a 

balanced line.



•No Signal can travel with infinite velocity. That is to say that if a voltage or 
current changes at some location, its effect cannot be felt instantaneously at some 
other location. 

•There is a finite delay between the 'cause' and the effect. This is called the 
' Transit Time' effect.



DISTRIBUTED CIRCUIT ELEMENTS:

A conductor carrying a current has magnetic field and consequently has flux 

linkage. The conductor therefore has inductance.



• Due to transit time effect the whole line inductance or capacitance cannot

be assumed to be located at a particular point in space.

• The inductance and capacitance are distributed throughout the length of 

the line. These are therefore called the ' Distributed Parameters' of the line.



PROPAGATION CONSTANT:(𝜷)

• The propagation constant in general is complex.

• The wave amplitude varies as 𝑒−𝛼𝑥.That is ′𝛼’ denotes the exponential decay of the 

wave along its direction of propagation. Therefore is called the 'Attenuation 

Constant' of the line.



The wave amplitude reduces to 1/e of its initial value over a distance of 1m.

The wave phase has two components:

• Time phase 𝜔𝑡

• Space phase ±𝛽𝑥

The parameter 𝛽 gives the phase change per unit length and hence called the

′Phase Constant′ of the line. Its units are Radian/m.

For a wave the distance over which the phase changes by 2𝜋 is called the 

wavelength (𝜆).

𝜷 = 
𝟐𝝅

𝝀



CHARACTERISTIC IMPEDANCE OF TRANSMISSION LINE:

𝑉+

𝐼+
= 
𝑅+𝐽𝜔𝐿

𝛾
= 

𝑅+𝐽𝜔𝐿

𝐺+𝐽𝜔𝐶

𝑉−

𝐼−
= -

𝑅+𝐽𝜔𝐿

𝛾
= −

𝑅+𝐽𝜔𝐿

𝐺+𝐽𝜔𝐶

𝑍0= 
𝑅+𝐽𝜔𝐿

𝐺+𝐽𝜔𝐶

The ratio of Forward Voltage and Current waves is always 𝑍0,and the ratio of the 

Backward Voltage and Current waves is always -𝑍0



LOSS LESS TRANSMISSION LINE:

In any electrical circuit the power loss is due to ohmic elements. A loss less 

transmission line therefore implies R= 0, G = 0.

For a loss less transmission line,Propagation constant is,

𝛾 = 𝐽𝜔𝐿𝐽𝜔𝐶 = j𝜔 𝐿𝐶 (purely imaginary)

𝛼 = 0, 𝛽 = 𝜔 𝐿𝐶

The characteristic impedance is,

𝑍0= 
𝐽𝜔𝐿

𝐽𝜔𝐶
= 

𝐿

𝐶
(purely real)

The reflection coefficient at any point on the line is,

Γ(𝑙) = Γ𝐿𝑒
𝑗2𝛽𝑙 = 

𝑍𝐿−𝑍0

𝑍𝐿+𝑍0
𝑒𝑗2𝛽𝑙



DISTORTIONLESS LINE:

A line in which there is no phase or frequency distortion  and also it is 

correctly terminated , is known as distortion less line.

To derive the condition for distortion less line,

𝛾 =  (𝑅 + 𝐽𝜔𝐿)(𝐺 + 𝐽𝜔𝐶)

γ2= (R + JωL)(G + JωC)

γ2= (RG − ω2LC) + jωC(RC + LG)

We know that  for minimum attenuation  L= CR/G   or LG = CR

γ2= (RG − ω2LC) + j2ωRC

but,    RC = LG= 𝑅𝐶𝐿𝐺

γ2= RG − ω2LC + 2jω 𝑅𝐶𝐿𝐺



γ2= 𝑅𝐺 + 𝑗ω 𝐿𝐶

But  𝛾 = 𝛼 + 𝑗𝛽

Then,     𝛼 = 𝑅𝐺&𝛽= ω 𝐿𝐶

𝛼 does not vary with frequency which eliminates the frequency distortion.

v = 
𝝎

𝜷
= 

𝝎

𝑳𝑪

For the condition RC = LG , the velocity becomes independent of frequency. 

This eliminates the phase distortion.

All the distortions are eliminated  for a condition,

RC = LG    i.e.   
𝑹

𝑮
= 
𝑳

𝑪



LOADING:

Introduction of inductance in series with the line is called loading and 

such lines are called loaded lines.

EFFECT OF LOADING:

Fig: Effect of loading on the cable

Unloaded cable

Loaded cable

f in KHz

𝛼 𝑖𝑛 𝑑𝐵



TYPES:

1.CONTINUOUS LOADING:

Here loading is done by winding a type of iron around the conductor.

This increases inductance but it is expensive.

2.PATCH LOADING:

This type of loading uses sections of continuously loaded cable separated by 

sections of unloaded cable. Hence cost is reduced.

3.LUMPED LOADING:

Here loading is introduced at uniform intervals. It may be noted that hysteresis 

and eddy current losses are introduced by loading and hence, design should be 

optimal.



TRANSMISSION LINES-II



OBJECTIVES

INPUT IMPEDANCE RELATIONS

REFLECTION COEFFICIENT

VSWR

IMPEDANCE TRANSFORMATIONS

SMITH CHART AND APPLICATIONS,

SINGLE AND DOUBLE STUB MATCHING



VOLTAGE STANDING WAVE RATIO:(VSWR)
The maximum and minimum peak voltages measured on the line are,

𝑉 𝑚𝑎𝑥= |𝑉+|(1+|Γ𝐿|)

𝑉 𝑚𝑖𝑛= |𝑉+|(1-|Γ𝐿|)

𝜌 = 
𝑉 𝑚𝑎𝑥

𝑉 𝑚𝑖𝑛

𝜌 = 
|𝑉+|(1+|Γ𝐿|)
|𝑉+|(1−|Γ𝐿|)

𝝆 = 
1+|𝜞𝑳|
1−|𝜞𝑳|

(or) |𝜞𝑳| = 
𝝆−𝟏

𝝆+𝟏

Higher the value of VSWR, higher is |Γ𝐿| i.e., higher is the reflection and is 

lesser the power transfer to the load.

0 ≤ |Γ𝐿| ≤1     and     1 ≤ 𝜌 ≤ ∞





REFLECTION COEFFICIENT:

The ratio of the amplitudes of the reflected and incident  voltage waves at the 

receiving end of the line is called the reflection coefficient.

Γ = 
reflected voltage at the load

incident voltage at the load

The reflected voltage at load is component E2 at the receiving end with s=0.

E2| s = 0 = 
ER(Z𝐿−Z0)

2Z𝐿

The incident  voltage at load is component E1 at the receiving end with s=0.

E1| s = 0 = 
ER(Z𝐿+Z0)

2ZL



Γ = 

ER(Z𝐿−Z0)

2Z𝐿
ER(Z𝐿+Z0)

2Z𝐿

Γ = 

ER
2ZL
ER
2ZL

(Z𝐿−Z0)

Z𝐿+Z0)

Γ =
(𝒁𝑳−𝒁𝟎)

𝒁𝑳+𝒁𝟎)

Observations:

1.When 𝑍𝐿 = 𝑍0,Γ =0, there is no reflection.

2.When 𝑍𝐿 = 0, i.e. The line is short circuited.

Γ = -1 = 1∠ + 1800 The reflection is maximum.

3. When 𝑍𝐿 = ∞, i.e. The line is open circuited.

Γ = 1 = 1∠00 The reflection is minimum.

4.Where K ranges from 0 to 1, and its phase angle ranges from 0 to 180.



INPUT IMPEDANCE RELATIONS:

• Input impedance of a resonant lossless line is either 0 or ∞.

• In practice, the lines have finite loss. This loss has to be included in 

the calculations while analyzing the resonant lines. 

• The complex propagation constant has to be used in impedance 

calculations of a resonant line. 

• The input impedance of a short or open circuited line having propagation 

constant 𝛾 can be written as ,

𝑍𝑠𝑐 = 𝑍0 tanℎ𝛾𝑙 for short circuit load

𝑍𝑜𝑐 = 𝑍0 cot ℎ𝛾𝑙 for open circuit load

𝑍𝑠𝑐 = 𝑍0 tanℎ 𝛼 + 𝑗𝛽 𝑙 = 𝑍0[
tan ℎ𝛼𝑙+tan ℎ(𝑗𝛽)𝑙

1+tan ℎ𝛼𝑙 tan ℎ(𝑗𝛽)𝑙
]



For a low-loss line, taking 𝛼𝑙 ≪ 1 𝑎𝑛𝑑,

tan h𝛼l= 𝛼l  tanℎ(𝑗𝛽)𝑙 = jtan𝛽𝑙

𝑍𝑠𝑐≈ 𝑍0 [
𝛼l + j tan𝛽𝑙

1 + 𝑗𝛼l tan𝛽𝑙
]

Similarly for an open circuited line we get

𝑍𝑜𝑐 ≈ 𝑍0 [
1+𝑗𝛼l tan 𝛽𝑙
𝛼l+j tan 𝛽𝑙

]

If we take l even multiples of
𝜆

4
, tan𝛽𝑙 =0,

𝑍𝑠𝑐≈ 𝑍0 𝛼l

𝑍𝑜𝑐≈
𝑍0
𝛼l



SMITH CHART:

Smith chart is polar plot of the reflection coefficient in terms of normalized 

impedance, r+jx.

(or)

It is a graphical plot of  normalized resistance and reactance in the reflection 

coefficient plane.

CONSTRUCTION:𝜌𝑖
It is constructed within a circle of unit

radius   𝜌 ≤ 1

𝜌𝑟

Fig: Construction of smith chart   on unit circle                  

𝜌 =0 

𝜌 =1 



Smith chart provides the relation between reflection coefficient, 𝜌 load, 𝑧𝐿
and characteristic impedance, 𝑧0.

𝜌 = 
𝑧𝐿−𝑧0

𝑧𝐿+𝑧0

𝜌 = 𝜌 ∠𝜃𝜌 = 𝜌𝑟+j 𝜌𝑖

𝜌 =  𝜌𝑟+j 𝜌𝑖 = 
𝑧𝑛−1

𝑧𝑛+1
( ∵ 𝑧𝑛 = 

𝑧𝐿

𝑧0
= r+jx)

𝑧𝑛= 
(1+𝜌𝑟)+j 𝜌𝑖
(1−𝜌𝑟)−j 𝜌𝑖

r = 
1−𝜌𝑟

2−𝜌𝑖
2

(1−𝜌𝑟)
2+𝜌𝑖

2&  x = 
2𝜌𝑖

(1−𝜌𝑟)
2+𝜌𝑖

2

[𝜌𝑖 -
𝑟

𝑟+1
]2 

+𝜌𝑖
2 = [

1

𝑟+1
]2   --------(1)

(𝜌𝑖-1)2  +  [𝜌𝑖 −
1

𝑥
]2 = [

1

𝑥
]2   ----------(2)

Eq(1) is known as r- circles   and eq(2) is known as x- circles.



Resistance circles:

The constant resistance circles have their centers at (
𝑟

𝑟+1
, 0) and radii (

1

𝑟+1
). 

Figure below shows the constant resistance circles for different values 

of ranging between 0 and ∞ .



Reactance circles:

The constant reactance circles have their centers at (1 , 1/x) and radii (1/x). 

The centers  for these circles lie on a vertical line passing through point (1,0) in 

the -plane. 



The Smith chart is a graphical figure which is obtained by superposing the 

constant resistance and the constant reactance circles within the unity circle in 

the complex Γ -plane. Since we have mapped here the impedances to the -

Γ plane, let us call this Smith chart the Impedance Smith chart.



Let us identify some special points on the Smith Chart.

a) The left most point A on the smith chart corresponds to 𝛾 = 0, 𝑥 = 0 and 

therefore represents ideal short-circuit load.

b) The right most point B on the Smith chart corresponds to 

𝛾 = ∞,𝑥 = ∞ and therefore represents ideal open circuit load.

c) The center of the Smith chart M , corresponds to 𝛾 = 1, 𝑥 = 0 and 

hence represents the matched load.

d) Line AB represents pure resistive loads and the outermost circle 

passing through A and B represents pure reactive loads.

e) The upper most point C represents a pure inductive load of unity 

reactance and the lower most point D represents a pure capacitive load 

of unity reactance.

f) In general the upper half of the Impedance Smith Chart represents

the complex inductive loads and the lower half represents the 

complex capacitive loads.



SINGLE STUB MATCHING TECHNIQUE:

• A stub is a short-circuited section of a transmission line connected in parallel 

to the main transmission line. 

• A stub of appropriate length is placed at some distance from the load such 

that the impedance seen beyond the stub is equal to the characteristic 

impedance.

• Suppose we have a load impedance 𝑍𝐿 connected to a transmission line 

with characteristic impedance 𝑍𝑂.The objective here is that no reflection 

should be seen by the generator. 

• In other words, even if there are standing wavesin the vicinity of the load 𝑍𝐿

, the standing waves must vanish beyond certain distance from the load.



Conceptually this can be achieved by adding a stub to the main line such that 

the reflected wave from the short-circuit end of the stub and the reflected wave 

from the load on the main line completely cancel each other at point B to give 

no net reflected wave beyond point B towards the generator.



• We have a parallel connection of transmission lines, it is more convenient 

to solve the problem using admittances rather than impedances. 

• To convert the impedance into admittance also we make use of the Smith 

chart and avoid any analytical calculation.

• Now onwards treat the Smith chart as the admittance chart.



Matching procedure:

• First mark the load admittance on the admittance smith chart (A).

• Plot the constant |Γ| circle on the smith chart .Move on the 

constant |Γ| circle till you intersect the constant g=1 circle this point of 

intersection corresponds to point 1+jb’ (B). The distance traversed on the 

constant |Γ| circle is 𝑙1 . This is the location of placing the stub on the 

transmission line from the load end .

• Find constant susceptance jb’ circle.

• Find mirror image of the circle to get –jb’ circle.

• Mark 0-jb’ on the outer most circle (D).

• From (D) move circular clockwise uptos.c point (E) to get the stub 

length 𝑙𝑠.



Advantages:

• The single-stub matching technique is superior to the quarter wavelength 

transformer as it makes use of only one type of transmission line for the 

main line as well as the stub. 

• This technique also in principle is capable of matching any complex load to 

the characteristic impedance/admittance. 

• The single stub matching technique is quite popular in matching fixed 

impedances at microwave frequencies.



Drawback:

• The single stub matching technique although has overcome the drawback 

of the quarter wavelength transformer technique, it still is not suitable for 

matching variable impedances. 

• A change in load impedance results in a change in the length as well as the 

location of the stub. 

• Even if changing length of a stub is a simpler task, changing the location of 

a stub may not be easy in certain transmission line configurations.

• For example, if the transmission line is a co-axial cable, the connection of a 

stub would need drilling of a hole in the outer conductor.



DOUBLE STUB MATCHING TECHNIQUE:

The technique uses two stubs with fixed locations. As the load changes only 

the lengths of the stubs are adjusted to achieve matching.



Let us assume that a normalized admittance g+jb is to be matched using the 

double stub matching technique. 

The first stub is located at a convenient distance from the load say 𝑙1 . The 

second stub is located at a distance of 3𝜆/8 from the first stub.



Matching procedure:

• Mark the admittance g+jb on the Smith chart (Point A).

• Move on constant VSWR circle passing through A by a distance 𝑙1 to reach 𝐵−. 

• Move along the constant-conductance (constant- g ) circle to reach 𝐵+ ( a point 

on the rotated g=1 circle). Note that a stub at B will change only the reactive 

part and therefore we move on a circle which keeps the real part of 𝑔1+jb’  

same while going from 𝐵− to 𝐵+ .

• Transform admittance 𝑔1+j 𝑏1 at 𝐵+ to 𝐶− by moving a distance of 3𝜆/

8 on a constant VSWR circle passing through 𝐵+ . The point 𝐶− must be 

lying to the g=1 circle. Let the transformed admittance at point 𝐶− be 1+j 𝑏2

• Add a stub to give susceptance -j𝑏2 at location C so as to move the 

point 𝐶− to 𝐶+ which is the matched point



• To calculate the length of the first stub 𝑙𝑠1 we note that this stub must 

provide a susceptance which is the difference between the susceptances 

at 𝐵+ and 𝐵− . That is, the stub susceptance 𝑏𝑠1 is equal to 𝑏1 − 𝑏′ . Mark 

the susceptance j(b-b’) on the chart to get point 𝑆1 .Distance 

from 𝑆1 to S in the anticlockwise direction gives the length 𝑙𝑠1 of the first 

stub.

• The second stub should have a susceptance of -j𝑏2 . To get the length 𝑙𝑠2 of 

the second stub the procedure is same as that used in the single stub 

matching. That is, mark -j𝑏2 on the Smith chart to get point 𝑆2 . Measure 

distance 𝑆2S in anti-clockwise direction to give 𝑙𝑠2 .



Limitation:

• The whole matching process relies on the fact that by moving along a 

constant conductance circle one can go from point 𝐵− to 𝐵+ . (𝐵+ lies on 

the g = 1 rotated circle). If this step is not realizable then the whole 

matching process is unrealizable.

• If point 𝐵− lies in the hatched region, moving along constant-g circle can 

never bring a point on rotated g=1 circle. Hence that admittance cannot be 

matched by the Double Stub method.


