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Course outcomes

CO1 Understand coulomb’s law and gauss’s law to different charge
distributions, it’s applications and applications of Laplace’s
and
Poisson’s equations.

CO2 Evaluate the physical interpretation of Maxwell’s equations
and
applications for various fields.




COs Course Outcomes

co3 Understand the behavior of electromagnetic waves
incident
on the interface between two different media.

co4 Understand the significance of transmission lines and
concept of attenuation, loading, and analyze the loading
technique to the transmission lines.

cos Formulate and analyze the smith chart to estimate
impedance, VSWR, reflection coeftficient, OC and SC
lines.




Prerequisites for EMTL

1. vector algebra.
2. Coordinate Systems.

3. Vector calculus.




Prerequisites for EMTL

COORDINATESYSTEMS

s RECTANGULAR or Cartesia

s CYLINDRICAL E Choice is based on
. symmetry of
SPHERICAL oroblem A
Examples: \/ N

Sheets - RECTANGULAR
Wires/ Cables - CYLINDRICAL

Spheres - SPHERICAL



Cartesian Coordinates Or Recatangular Coordinates

Coordinate system variables are P (x, y,

Z A
— 0 <Y <
> Y
— 0 < Z <o

X

A vector A In Cartesian coordinates can be written as

(AGALA) o Aa+Aa+A3,

where a,,a,and a, are unit vectors along X, y and z-directi



Cylindrical Coordinates

P(p, ®,2) 0< p <oo ZIZ 2
o e 4P(pa ¢, Z)
0<¢<2r
— 00 < Z <o « N >y

A vector A in Cylindrical coordinates can be written as

(Ap 1 A\b 1 Az) or Apap + A(‘)a(b + Azaz
where a,,a,and a, are unit vectors along p, ® and z-directions.

Xx=pcos O, y=psin P, z=z

P :\/X2 +y2 0 =tanty, z =7
X



Spherical Coordinates

Z
P (r’ e, qD) O S r < 00 o
; r"P(r, 0, D)
0<0<m 3
0< (I) <27 X s~ Ty

A vector A In Spherical coordinates can be written as

(Aﬂ A€)1 A(j)) or Arar T Aeae T A(j)acb

where a,, a5, and a,, are unit vectors along r, 6, and ®-directions.

x=rsin®cos ®,y=rsindsin d, Z=rcosH

2

X + V2
4 ,d):tan‘ll
Z X

r=X+y? +22,9=tan‘1‘/




Differential Length, Area and Volume

Cartesian Coordinates

Differential displacement
dl = dxa, + dya, +dza,

Differential area

dS = dydza, = dxdza, = dxdya,

Differential Volume

z
4

s
ds. = Z dx dy

N
ds, = ¥ dx dz

dv=dxdydz

dV =dxdydz

=y




Cylindrical Coordinates

L\\ 2 T
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Differential Length, Area and Volume

Cylindrical Coordinates

Differential displacement

dl =dpa, + pdpa, +dza,
Differential area
dS = pd¢dza, = dpdza, = pdpdoa,

Differential Volume

dV = pdpdddz




Differential Length, Area and Volume

Spherical Coordinates

Differential displacement
dl =dra, +rdba, + rsinbd¢a,

Differential area

dS =r “sinBdOdda = rsinedrdcl)a9 = rdrdea(b

Differential Volume

dV = r 2sin@drdodd




Line, Surface and Volume Integrals

Line Integral

5EA.ou
L

Surface Integral

W :J‘A.dS
S

Volume Integral

| p,av
V




Gradient, Divergence and Curl

The Del Operator

V=ii+ij+ik

Gradient of a scalardtinct¥dn is 8<vector quantity.

. Divergence of a vector is a scalar quantity. Vit

V.A

Curl of a vector is a vector quantity.

The Laplacian of a scalar



Del Operator

Cartesian Coordinates
\% =gaX Jriay +gaZ
OX oy 0z

Cylindrical Coordinates

v="C4 +1 9,4 +9 4

op ° pop * oz C
Spherical Coordinates

V:gar +Eia@ + 1 C
r 00 rsinod

d




Gradient of a Scalar

The gradient of a scalar field Vis a vector that represents
both the magnitude and the direction of the maximum space

rate of increase of V.

gy N N, AV,

ox =~ oy ' oz °
:ga+1ava+ava

vV . a
op 7 p ob 0z
Ui, HLV, 1

or " r o0 rsinf.a¢



Divergence of a Vector fIARE ¢
The divergence of Aat a given point P is the outward flux per

unit volume as the volume shrinks about P,

§A.ds
divA=V.A=1lIm=
Av—0 AV
V.Aza_A+a_A+5_A
oX oy oz
O
V.Azii(p )+1 » + OA,




Curl of a Vector

The curl of A is an axial vector whose magnitude is the
maximum circulation of A per unit area tends to zero and
whose direction i1s the normal direction of the area when the
area Is oriented to make the circulation maximum.

( pAdl

curlA=VxA=| lim+ a.
| As—>0  AS

\ j Max

Where AS is the area bounded by the curve L and a, is the unit
vector normal to the surface AS




Curl of a Vector

X y Z
Gua @ 8 2| yea-llo o @
OX oy oz plop 0Op oz
A A A A, PA, A
Cartesian Coordinates Cylindrical Coordinates

a, ra, rsinfa,
1 0 0 0

r’sind| or o0 o

A rAy rsinBA,

Spherical Coordinates

VxA=

L —



Divergence or Gauss’ Theorem

The divergence theorem states that the total outward flux of
a vector field Athrough the closed surface Sis the same as the

volume integral of the divergence of A.

§ A.dS = j V.Adv
V



S tokess Theorem

Stokes’s theorem states that the circulation of a vector field Aaround a

closed path Lis equal to the surface integral of the curl of Aover the open

surface Sbounded by L, provided Aand V x A are continuous on S

pAdI=[(VxA).dS

S
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COULOMB’S LAW
ELECTRIC FIELD INTENSITY
ELECTRIC FLUX DENSITY
DIFFERENT CONTINUOUS CHARGE DISTRIBUTIONS
GAUSS’S LAW
APPLICATIONS OF GAUSS’S LAW
ELECTRIC POTENTIAL
RELATION B/W E&V

ENERGY DENSITY



Coulomb’s law is an experimental law formulated in 1785 by Charles

Augustine dc Coulomb.

It deals with the force, a point charge on another point charge. The
polarity of charges may be positive or negative ,like charges repel while

unlike charges attract.
Charges are generally measured in coulomb(C)
One coulomb is approximately equivalent to 6*1018 electrons

One electron charge(e)=-1.6019*101° C

EMTL(ECE)



and Q2 is
1.Along the line joining them
2.Directly proportional to the product Q, Q,of the charges

3.Inversely proportional to the square of the distance ‘R’ between them.

1

4-7'[60

where K is proportionality constant and K =

----------- @

where €, Is permittivity of free space and is given by

-9
€, = 8.854%10712 = % F/m

VA

K=— =~9*10% m/F

4-7TEO




1, & 1y, then the force F;, on Q, due to Q, is given by

Figure 4.1 Coulomb vector force on point
changes ¢ and (.

Origin

Substitute equation(2) in equation(1),

F= Q@ (3)

" 4meyR?







with position vectors  ry, 1y, -------- Ty .the resultant force ‘F’ on a charge ‘Q’

located at point ‘r’ is the forces exerted on ‘Q’ by each of the charges

_ Q0.(I— 7"1) QQx(I— 13) o QQN(T —TN)
T amey|r— )3 4n60|r — 1 47T€0|T —ryl?
(or)
N QUTTR)
4-7TE ZK 1 |,,._ T.Kl?, (6)







Figure 4.5 Various charge distributions

and charge elements.
0 5
+
+ e X
Point Line Surface




E=]

pdl

4TTEGR?

deS
4TT€EGR?

pvdv

41€QR?

ap (line charge) ------

ar  (surface charge)

ar  (volume charge)




Line charge with uniform charge density p; extending from A to B along

the z-axis.

£ Figure 4.6 Evaluation of the E field due to a
line charge.




charge element dQ associated with element dl = dz of line is,




X

Figure 4.7 Evaluation of the E field due to an infinite sheet of charge.




The total charge Is,




dv‘ (r'- O'I ¢‘)

Figure 4.8 Evaluation of the E field due to a volume charge
distribution.



The total charge in a sphere of radius a 1is,







“Gauss law states that total electric flux ‘P’ through any closed surface is

equal to the charge enclosed by that surface”.

Q=¢D.ds= | p,dv

p,=V.D =

Gauss law is an alternative statement of coulomb s law



APPLICATIONS OF GAUSS’S LAW:

An infinite line charqe:







top







For the region 1< r, ,the total enclosed charge,




Qenc
Qenc

Qenc =

= [ pydv=p, [ dv

=py, [, dr f ,d® [, r2singdr do







Figure 4.18 Displacement of point charge () in
an elecirostatic field E.




VAB =:'f Edl
If the E field is due to a point charge Q located at the origin,

___Q

T A gyr2 Ar

_ _(B_ Q@
Vig = frA y a,.dr a,
Vis = g o= O Vas = V5 =V,
If we assume the potential at infinity is zero. If V, =0, asr— co&rg =,
__Q
V— 47'[ EgT

The potential at any point is the potential difference between that point & a
chosen point at which the potential is zero.

VAB_VB_VA__:'I E.dl



charge is the work done per unit charge by an external agent in transferring a test

charge from infinity to that point.

V=- [ E.dl
If the point charge is not located at the origin but at a point where position vector is
r’ The potential V(r),
VO = g
For ‘n’ point charges Q¢, Q,,------ Q. Located at points with position
vectors 1y, 1y,------ Ty, the potential at r is

Q>

+
olr—"72] 4 go|lr—rp

_ Q1
V(I’) T 4ne r—rq| * 4r ¢

ol

1 n Qk
V() = Ay go “K=1 |r—r |

EMTL(ECE)



V(r) = 4ﬂ8 fL”L(’” Jau (Line charge)

Ll

V(r) = 47“3 fp S(r) (Surface charge)

p(rdvr
sl

V(r) = 4;80 [° (Volume charge)

If E i1s known

V=-[E.dl+C




The potential difference between points A & B is independent of path taken.

Vpa =-Vap

Voat Vg = PE.dl =0 ------- (1)
Applying Stokes’s theorem to eq(1),

$ E.dl=[(VXE).dS=0 (or)

V x E=0

Figure 4.19 Conservative nature of an electrosta-
i tic field.




“The vectors whose line integral does not depend on the path of

integration are known as conservative vectors.’

V=-[E.di

dV =-E.dl =-E,dx -E,dy —E,dz

LW LW
dVv = ™ dx + 3y dy +— dz then,

_ v __ov — .9
Ex_-ax’ Ey_ oy’ &E, = 0z

=-VVv




» Consider the three point charges Q,, Q,,0Q5 are placed in an empty space.

* No work is required to transfer Q; from infinity to P; because the space is

Initially charge free and there is no electric field.

W=-Q [, E.dl ie W=0

Figure 4.22 Assembling of charges.




of Q, and the potential V,; at P, due to Q;.

* The work done in positioning Q5 at P5 is equal to Q3(V3, + V34).
The total work done in positioning the three charges,
Wg =W, +W, +W5
Wi =0+ Q;V21 + Q3(V3z + V3q)
If the charges are positioned in reverse order,
Wg =0+ Q;Va3 + Q1(Viz + Vi3)

2Wg = Q1(Viz + Vi3) + Q2(Vor + Va3) +Q3(V3y + V3q)

2 Wg = Q1V1+Q2V2 + Q3V3

2 Wg=1/2( Q1V1+ Q;V, + Q3V3)

EMTL(ECE)



1
Wg =5 Z?ﬂ Qx Vk

Instead of point charges, the region has a continuous charge distributions,

Wg :% J, pLVdl  (Line charge)
Wg = % JpsVdS  (Surface charge)

Wg = % J, Py Vdv  (Volume charge)
Since p, =V .D,
_1
WE =3 fV(V . D)VdV

V.VA=AVV+V(V.A) (or)

Vector identity

V(V.A)=V.VA-ATV



By applying divergence theorem to the first term on the right hand side of the

above equation,

Wg =—$.VD.dS —~ [, (D.VV)dV

Wg = —= [,(D.VV)dV

Wg=2[,(D.E)dV  (vE=-PV&D=gE)
Wy =~ J,(E?) dV

Wg = %SOEZ Which is the electrostatic energy density
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OBJECTIVES

CONVECTION CURRENT
CONDUCTION CURRENT

CONTINUITY EQUATION

RELAXATION TIME

POISSON’S AND LAPLACE’S EQUATION
POLARIZATION

DIELECTRIC CONSTANT

BOUNDARY CONDITIONS

RESISTANCE & CAPACITANCE




Materials may be classified in terms of their conductivity (o) as
conductors and non-conductors  or
technically as metals and insulators (or dielectrics)
A material with high conductivity (o>> 1) is termed as metal.
Ex: copper & aluminum.
A material with low conductivity (o<<1) is termed as an insulator.
Ex: glass & rubber
A material whose conductivity lies between metals and insulators are called
as semiconductors.
Ex: Si & Ge

At T=0 K, some conductors exhibit infinite conductivity and are called
superconductors .

Ex: Lead & aluminium



The current through a given area is the electric charge passing through

the area per unit time.

. _ d_Q _________
lLe. | = — (1)

If current "Al' flows through a planar surface ‘AS’ , the current density is

Al
J—AS or

Al = JAS ———— —(2)

Total current flowing through a surface is ‘S’
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Consider a filament of the above fig. If there is a flow of charge of density, %,

The current density at a given point is the current through a unit

normal area at that point.

Figure 5.1 Current in a filament.

A5 P



The “y’ directed current density ‘/,,” is given by

]y = i_ = PvlUy (5)

S

In general J=pyU

Where ‘I’ 1s the convection current(A) and

‘)’ is convection current density(A/m?)




when an electric field ‘E’ is applied, the force on an electron with

charge -e is
F=-eE-----—--- (1) (- F=QE or E:g)

If an electron with mass ‘m’ is moving 1n an electric field ‘E’ with an average
drift velocity ‘u’, according to Newton’s law the average change in momentum

of the free electron must match the applied force.

_ et
oru—-mE (2)

from the above eq’ the drift velocity of the electron is directly proporti

the applied field.
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If there are ‘n’ electrons per unit volume , the electric charge density is given .

J = oFE is the point form of ohm’s law




The principle of charge conservation, the time rate of decrease of charge within

a given volume must be equal to the net outward current flow through the

surface of the volume.

current I,,; coming out of the closed surface is

dQin
lout =$J.ds =- 2 —emnne(l)

where Q,, Is the total charge enclosed by the closed surface and

J Is conduction current density.




By the divergence theorem,

The above equation is termed as continuity of current equation

or continuity equation




The Maxwell's first equation isgivenby p,=V.D

we know that J=oFE
py, =V.eE (v D=¢E)

e v = (from the Gauss law)

&
oy oE=>=py
& &

From the continuity equation V.J = - %

= = =
Jat £ Pv

0py _ 0Py _ 0Py _ _%at

—t
Py = Pyo €T

where T, :§ Is known as relaxation time or rearrangement ti




py, =V.eE (v D=¢E)
py, =€eV.E
py, =eV.(-VV) (vE=-VV)

%: -2V or

V2V =- %which is known as Poisson's law

A special case of the above equation occurs when p,, =0 (i.e. for a free charge
region)

V2V = 0 which is known as Laplace's equation

Laplace’s equation in Cartesian coordinate system as

2 2 2
av+a V_I_aV
dx% dy% 0z

=0




(a) {h)

Figure 5.6 Polarization of 2 nonpolar atom or molecule.




equilibrium position in the direction of E by the force F+ = QE while the

negative charge is displaced in the opposite direction by the force F_ = QE.

A dipole results from the displacement of the charges and the dielectric is said
to be polarized.
In the polarized state, the electron cloud is distorted by the applied electric

field E. This distorted charge distribution is equivalent, by the principle of

superposition, to the original distribution plus a dipole whose moment is

where d is the distance vector from -Q to +Q of the dipole.



of equal magnitude but opposite sign are separated by a

small distance.

If there are N dipoles in a volume Av of the dielectric, the total dipole moment

due to the electric field is
Qid; +Qady + -----mmm-- +Qndy = XR=q Qudy - (2)
Polarization P: The dipole moment per unit volume of the

dielectric(in C/m?)

1= 212’:1 dek ___________
P= All}r—r}O Av )




Figure 5.7 Polarization of a polar molecule:
(a) permanent dipole (E = 0), (b) alignment of
permanent dipole (E # 0).

() (b)

P = XeSOE

Where X, is known as the electric Susceptibility of the



g =1+X, = gi which is known as dielectric constant or
0

relative permittivity




If the field exists in a region consisting of two different media, the conditions

that the field must satisfy at the interface separating the media are called

boundary conditions.

we will consider the boundary conditions at an interface separating
« dielectric (&,1) and dielectric (&,5)

 conductor and dielectric

« conductor and free space

To determine the boundary conditions, we need to use Maxwell's equations:

$EdI=0

¢D'd5:Qenc






(a)

Figure 5.10 Dielectric-dielectric boundary.

Fig a):determining E{;=E,; b)determining D;,, = Dy,



assuming that the path is very small with respect to the variation of E. We

obtain as

Ah
0= EltAW Eln_ - EZn_ - EZtA w + Eln + EZn 5 (4)

where E;=|E;| and E, =|E,]|
0=(Ey¢ - Eop) Aw
As Ah->0,

The tangential components of E are the same on the two sides of the boundary

In other words, E, undergoes no change on the boundary and it is said to be

continuous across the boundary.



Since D=¢E=D; +D,, ,eq.(5) can be written as




If no free charges exist at the interface  p,=0,

Din =Dap  =mmmmmmmm- (9)

Thus the normal component of D is continuous across the interface; that is,

D,undergoes no change at the boundary.

Since D=c¢E

the above equation tells us that normal component of E is discontinuous at the

boundary.
The equations (5), (6), (9) & (10) are collectively called as boundary conditions.

they must be satisfied by an electric field at the boundary separating two

different dielectrics.



field across the interface. Consider D;or E;, and D, or E, making angles 6, & 6,

with the normal to the interface.

Figure 5.11 Refraction of D or E
at a dielectric—dielectric boundary.




or E,sin6; = E, sin 0, ----------- (11)
£1E1 COS 01=D1n=D2n = & EZ COS 92

or g&1E;cos0, = &, E, cos B, ---------- (12)

El sin 01 _ E2 sin 92

&1 E{ cos 04 &>, E5 cos 6,

tan 6; _ tan 0,

€1 &2

tan 04 &r1
— = 13) (v &= gyeqand &,= gy&
tan 0, £0 (13) (v &= €o&r1 2= €0&r2 )

Which is known as law of refraction of the electric field at a boundar

charge
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Figure 5.12 Conductor-diclectric boundary.

The conductor is assumed to be perfect (i.e., 0 = o or p. — 0).

Although such a conductor is not practically realizable, we may regard

conductors such as copper and silver as though they were perf




follow the same procedure used for dielectric-dielectric interface except that we

Incorporate the fact that E = 0 inside the conductor.

we know that

Applying eq (1) to the closed path abcda of Figure (a) gives
0=0% AW+ 0* 2+ E, 2 - EAW - E, 20 - 0% =

as Ah-0, E;=0--(2

we know that
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Similarly, by applying eq. (3) to the cylindrical Gaussian surface of Figure®,

D, = ps

Figure 5.13 Electrostatic screening.




perfect conductor:

1. No electric field may exist within a conductor; that is,

Pv = O’ E=0------ (6)
2. Since E= -Av = 0, there can be no potential difference between any two points
In the conductor; that is, a conductor is an equipotential body.

3. The electric field E can be external to the conductor and normal to its surface;
that is

Dy = €0&Et =0, Dy = go&Ep = pg-----mmmv (7)

An important application of the fact that E = 0 inside a conductor is in

electrostatic screening or shielding.



can be obtained from eq (7) by replacing &, by 1 (because free space as a special
dielectric for which ¢, = 1).

Figure 5.14 Conductor-free space
boundary.

the boundary conditions are
g0Et =0, Dp= &k, = ps




v _ [JE.adl
I $oEds

R =

(~1=§J.ds ,I=0E)

Figure 6.12 A two-conductor ca-
pacitor.
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Consider the two-conductor capacitor of figure shown. The conductors are .




Figure 6.13 (a) Parallel-plate capacitor,
(b) fringing effect due to a parallel-plate

capacitor.

diclectric « plate area S

(a)

+Q
-@
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Consider the parallel-plate capacitor of fig shown, Suppose that each of the "o ..




1 d _Qd
V=-[Edl=-[ (-=ay)dxa, (o) V=%

For a parallel plate capacitor




AS4AVIRIe] AV L] | I\.;IIHLII L. UI LVWWU vuuniul vuvlivuuvuviwvio vl 111ivi tuuivuo ua ualiv Uuter

radius b (b >a).

Let the space between the conductors be filled with a homogeneous
dielectric with permittivity e.




distributed on them.

By applying Gauss's law to an arbitrary Gaussian cylindrical surface of radius

p (a<p<b),
Q=¢D.ds
=eE.ds =eE,2mpL (D = ¢E)
_ Q
Hence E= map -------- (1)

Neglecting flux fringing at the cylinder ends,
1
V=-[ Edl= -fba(ﬁ a,).dp a,

__Q . b
V_ 27T€L ln a
The capacitance of a coaxial cylinder is given by
C= Q — 21t£bL

|4 In=
a



« Aspherical capacitor is the case of two concentric spherical conductors.

« Consider the inner sphere of radius a and outer sphere of radius b (b>a)

separated by a dielectric medium with permittivity ¢ .

Figure 6.15 Spherical capacitor.




We assume charges +Q and -Q on the inner and outer spheres




4.'11'8

ngz —let b—» oo, C=4mea

b

which is the capacitance of a spherical capacitor whose outer plate is

Infinitely large.

- Figure 6.16 Capacitors in (a) series, and
T (b) parallel,




capacitance is

C=C, +C,

Two capacitors with capacitance C1 and C2 are in series, the total capacitance is,

C,C
C: 1%2
C,1C;

1%4 E.dl
R=-= J
I ¢oEds

E.d
C:Q: £$ >
1% [E.dl

RC = which is the relaxation time, T,

&
o




For a parallel plate capacitor,
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OBJECTIVES

AMPERE’S LAW OF FORCE
MAGNETIC FLUX DENSITY
LORENTZ FORCE
BIOT-SAVART 'S LAW
APPLICATIONS OF AMPERE’S LAW IN INTEGRAL FORM
VECTOR MAGNETIC POTENTIAL
MAGNETIC DIPOLE

MAGNETIC FLUX



O V Fundamental laws of f
classical electromagnetics

Special lil&iﬂlum— gNne BECro-magneils %
cases staties at AVE Jptic

N l
Statics: ¢ | Transmission
Line
Theory

[nput from . v
- Kirchoff’s
disciplines Laws







TABLE 7.1 Analogy between Electric and Magnetic Fields*

Term Electric Magnetic
Basic laws F - f;—fg— a, dB = “‘Jf’:l:, Ba
fD'a'S=Q,,,,,. %H-dl=lm
Force law F = QE F-=0COuxB
Souarce element dQ COu = [ dl
| % 7
Ficld intensity E = ¢ (V/im) H = F(_Alm)
X o - w 5
Flux deasity D = 5 (C/im™) B = K3 (Whi/im™)
Relationship between fields D = =E B = uH
Potentials E= —VV H=-YV,{J=0)
v [ oy dl A I o £ dl
dwer 4wR
Flux W= fD-d4dS ¥Y=JB-dS
Y=0 =CV Y = LI
dVv a7
I1=C % VvV = -d—l
Energy density wg—-;-D°E w"-=%B-H
Poisson’s equation vy = -2 VA = —ud




“Biot-Savart's law states that the magnetic field intensity dH produced at a point P, by the

differential current clement 1d] is proportional to the product 1d] and the sine of the angle &
between the element and the line joining P to the element and is inversely proportional to the

square of the distance R between P and the element.”

Figure 7,1 magnetic field JH at P due to current
element [l

dH (inward)



dH o Idl;izn « (1)
dH = KIdll?s;n « (2)

where k is the constant of proportionality. In SI units, k = 1/4m, so eq. (2)

becomes
_ Kldlsina
dH= =" (3)
dH = Idixap _ IdIXR (4)

4mR?  4nR3




Figure 7.2 Determining the direction of dH using
gy (@) theright-hand rule, or (b) the nght-handed screw
rule,

(a) (b}
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Different charge configurations and we can have different current *.,, .

{ Wy

!
Kds
(a) (b) (c)

Figure 7.4 Current distributions: (a) line current, (b) surface
current, (¢) volume current.




density ,the source elements are related as

Idl = Kds = Jdv - (5)

Thus in terms of the distributed current sources, the Biot-Savart law becomes

Idl x .
H=[ 4nRC;R (line current) ~  ------- (6)
H= [ K Z:;CZLR (surface current) — ------- (7)
= [ ldvxar (volume current) ------- (8)

v 4mR?




The field due to a straight current carrying filamentary conductor of

finite length AB.

We assume that the conductor 1s along the z-axis with its upper and lower
ends respectively subtending angles a, and a1 at P, the point at which H is to

be determined.

2 Figure 7.5 Field at point P due to a straight filamen-
tary conductor,

H {into the page)




Idl XR

Butdl=dza, andR=pa,—-za,

dlXR=pdzay ------—---- (10)
H:f Ipdzag p— (11)
An(p2+ 7%)2

Letting z=p cota, dz=- p cosec’ a da

I rayp?cosec’ada

H=

4t Ya1  p3cosecda




4mp A1

I
(or) H= pres (cosa, - cosarq) ag  -------- (12)

As a special case, when the conductor is semi-infinite (with respect to P) so
that point A is now at O (0, 0, 0) while B is at (0, 0,00); a1 =90°, a, = 0°, and
eq. (12) becomes

H=—a,; - (13)

Another special case 1s when the conductor 1s infinite in length. For this case,
point A 1s at (0, 0, -00) while B 1s at (0, 0, o); a;= 180°, @, =0°, so eq. (12)

I

reduces to H= 30 (14)




Ampere's circuit law states that the line integral of the tangential component of

H around a dosed path is the same as the net current I, . enclosed by the path.

In other words, the circulation of H equals /,,,.. that is,

By applying Stoke's theorem to the left-hand side of eq. (1), we obtain
Ienec = $ H.dl = [(VXH).dS ----mmmmm- (2)

But enc f ] as - (3)

Comparing the surface integrals in egs. (2) and (3) clearly reveals that

VXxH=J e (4)

VX H =] # 0; that 1s, magneto static field is not conservati



: Figure 7.10 Ampere's law applied to an infinite filamentary
line current,

Amperian path

= |




in the above figure.

To determine H at an observation point P, we allow a closed path pass
through P. This path, on which Ampere's law 1s to be applied,is known as

an Amperian path .

We choose a concentric circle as the Amperian path, which shows that H 1s

constant provided p is constant. Since this path encloses the whole current I

According to Ampere's law,

I=[ Hpag.pdPag = Hy | pd® = Hg 2mp

NI
Or H=% forp,-a<p<p, ta

NI NI

An approximate value of H opprox = ;Po =




{a) (h)

Figure 7.11 Application of Ampere's law to an infinite sheet: (a) closed path 1-2-3-4-1, (b) sym-
metrical pair of current filaments with current along a,.




uniform current Density K = K, a,, A/m as shown in above Figure.

By applying Ampere's law to the rectangular closed path (Amperian path)
gives $H.dl = Ippe= Kyb -------em- (1)
The resultant dH has only an x-component. Also, H on one side of the sheet

is the negative of that on the other side.

Due to the infinite extent of the sheet, the sheet can be regarded as
consisting of such filamentary pairs so that the characteristics of H for a

pair are the same for the infinite current sheets, that is,

_( Hpa, z>0
H_{—Hoax z<0 (2)

17



g1ves

$H.dl = ([ + [+ [, + [HHdI
=0(-a) + (-Ho)(=Db) +0(a) +Hob
$¢H.dl = 2H,b - 3)
From eqgs. (1) and (3), we obtain
Hy="%K,
Substituting H( in eq. (2) gives

H = Y2 Kyay z>0
—% Kya, 2<0

In general, for an infinite sheet of current density K A/m,
H=%KXa,

where a,, 1s a unit normal vector directed from the current sheet to the point of

Iinterest.



Ampersan paths — Figure 7,12 Cross section of the

fransmission line; the positive z-direc-
tion is out of the page.



cylinders having their axes along the z-axis.

The cross section of the line is shown in above Figure. where the z-axis 1s

out of the page.

The inner conductor has radius a and carries current I while the outer

conductor has inner radius b and thickness t and carries return current -I.

To determine H everywhere assuming that current is uniformly distributed
in both conductors. Since the current distribution is symmetrical, we apply
Ampere's law along the Amperian path for each of the four possible
regions:

0< p <a, as p <b, b< p<b+t &p=btt

120



enc_ § H.dl _f]dS """""" (1)

Since the current is uniformly distributed over the cross section,

J=La dS=pdp dd a,

ma?
)i 2
Ione f] dS__ffpdp dp = Haz pZZ%
Hence, eq(1) becomes,
Ip?
Hyp [ dl= Hg2mp=—
Ip

Or Hy = 2ma? (D




or Hy = (IT)

Since the whole current I is enclosed by L, .

For region b< p < b+ t, we use the L3 is amperian path,
Ipp, = 4SL3 H.dl = Hy 2mp

Where I,,, =1+ [].dS




along -a, thatis,

B I 2m p _ _ p—b’
ThUS, Ienc =1- ﬂr[(b+t)2)—b2] f@:o ao fp:b pdp =1 [1 t2+2bt]
__1 [yt
Hy = 27p 1 t2+2bt] _________ b

For region p = b+t we use the L, is amperian path,

gﬁL4H.dl =1-1=0

Hy=0 Iv)







The magnetic flux density B is similar to the electric flux density D.As D = ¢E

in free space, the magnetic flux density B is related to the magnetic field

intensity H according to
B=u, H W --mmmm- (1)
where p, is a constant known as the permeability of free space.

The constant is in henrys/meter (H/m) and has the value of

Hy= 4r X107 Hm  --mmmmm- (2)

The magnetic flux through a surface S is given by,




g e M e s
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The magnetic flux line is the path to which B is tangential at every point in a .«

Figure 7.16 Magnetic flux lines due to a straight
Magnetic flux lines  Wire with current coming out of the page.




as the charge enclosed; that 1s, Y=¢D.dS=Q.

Thus it 1s possible to have an isolated electric charge as shown in below Figure

(a), which also reveals that electric flux lines are not necessarily closed.

Unlike electric flux lines, magnetic flux lines always close upon themselves as
in Figure(b). This 1s due to the fact that it 1s not possible to have isolated

magnetic charges. o P o

closed surface, ¥ = 0

(a) (b}

Figure 7.17 Flux leaving a closed surface due to: (a) isolated electric
charge ¥ = §.D - dS = Q. (b) magnetic charge, ¥ = §. B - dS = 0.
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Thus the total flux through a closed surface in a magnetic field must be zero;

that is, $B.dS=0

This equation 1s referred to as the law of conservation of magnetic flux or

Gauss's law for Magneto static fields just as
é¢ D.dS =Q is Gauss's law for electrostatic fields.
By applying the divergence theorem to eq. (7.33), we obtain
¢.B.dS=[,V.Bdv =0

V.B=0

This equation 1s the fourth Maxwell's equation to be derived.



TABLE 7.2 Maxwell’s Equations for Static EM Fields

Differential (or Point) Form  Integral Form Remarks
v:D=p fﬂ*dE=Jp,dv Gauss's law
¥ [
V-B=10 ﬁl;li'd5=ﬂ Nonexistence of magneiic
5 moenopoke
TXE=10 @ E-dl=1 Conservativeness of
L electrostatic ficld
VxH=]J HH~:1'I-=IJ-;1'E Ampere’s law
L 5




The electric potential V to the electric field intensity E (E =— VV).
To define V,,, and A involves recalling two important identities:
Vx(VV)=0 & V.(VXA)=0
which must always hold for any scalar field V and vector field A.
Just as =-VV,

we define the magnetic scalar potential I/,,, (in amperes) as related to H

according to
H=-VV, If J=0)
J=VXH=VX(-VV_)=0

Thus the magnetic scalar potential V., 1s only defined in a region



Hence, ViV, =0 (J=0)

We know that for a magneto static field, V+ B = 0.

We can define the vector magnetic potential A (in Wb/m) such that

B=VXA
d
Just as we defined, V=] Q
4regr

_ ( Hora :
A== for line current

_ ( Hokds
A= poe for surface current

Hoja
A= [ & for volume current
UV 4mR



FORCES DUE TO MAGNETIC FIELDS:




The electric force F, on a stationary or moving electric charge Q in an electric

field 1s given by Coulomb's experimental law and 1s related to the electric field

intensity E as
F,=QE
This shows that if Q 1s positive, F, and E have the same direction.

A magnetic field can exert force only on a moving charge. From experiments,
it 1s found that the magnetic force F,,, experienced by a charge Q moving with

a velocity u in a magnetic field B 1s

F,=QuXxB

This clearly shows that F,, 1s perpendicular to both u and B.



charge and change its kinetic energy.

F,,, cannot perform work because it is at right angles to the direction of motion

of the charge
(F,,»dl=0)
The magnitude of F,, is generally small compared to F, except at high

velocities.

For a moving charge Q in the presence of both electric and magnetic fields, the

total force on the charge is given by, F=F,+F,

Or F=Q (E +u X B)

This is known as the Lorentz force equation.



second law of motion.

F=m<'=Q(E+uxB)

The solution to this equation is important in determining the motion of charged
particles in E and B fields. We should bear in mind that in such fields, energy

transfer can be only by means of the electric field.

TARLE .1 Force on a Charged Particle

State of Particle ~ EField B Field Combined E and B Fields

Stanonary QE — QE
Moving (F {ux B (NE +uxB




To determine the force on a current element I dl of a current-carrying

conductor due to the magnetic field B,

J=pu e (1)
we recall the relationship between current elements:

[dI=KdS=Jdv =  -—-e- (2)
Combining egs. (1) and (2) yields,

Idl=p udv =dQu

Alternatively, ~ Idl= “2dl=2dQ=dQu

Hence, @ Idl=dQu  ----m—-



by merely replacing Qu by Idl;

1.e. dF=1dIXB W -—--eeem- (4)
If the current I 1s through a closed path L or circuit, the force on the circuit 1s
given by
F=¢IdIXB  --mmmeeeeev (5)

If instead of the line current element Idl, we have surface current elements

KdS or a volume current element Jdv,

dF=KdS X B or dF=Jdv X B

F=¢. KdS x B or F=¢ JdvxB

The magnetic field B is defined as the force per unit curren



Figure 8.1 Force between [wo current loops.

Let us now consider the force between two elements I,dl; and I,dl,.
According to Biot-Savart's law, both current elements produce magnetic fields.
So we may find the force d(dF;) on element I;dl; due to the field dB,

produced by element I,dl[,.
d(dF{)=1;dl; XxdB, = e




ﬂofzdiz xaR21

2 4-1IR212

Hence,

Ildll xﬂofzdiz xaR21

d(dFq) = 4Ry

The total force F, on currentloop 1 due to current loop 2.

dl{xdl XaR21

_ Honny
Fi=—p2f § =—58 e ©

The force F, on loop 2 due to the magnetic field B; from loop 1 is

obtained from eq. (3) by interchanging subscripts 1 and 2.

It can be shown that F, =—F; thus F; , and F,obey Newton's third law that

action and reaction are equal and opposite.



The magnetic susceptibility y = or the relative permeability p . to classify
materials in terms of their magnetic property or behavior.

A material is said to be nonmagneticif y =0 (or u. = 1); it is magnetic

otherwise.

Free space, air, and materialswith y =0 (or u. = = 1) are regarded as

nonmagnetic.
Mapnetic Materials
Linear 1 Monlinear
| Diamagnetics - Paramagnetics Ferromagmnetics
| X = 0, g, = 1.0 X = O 2 X 0, 3 |

Figure 8.13 Classification of magnetic materials,




MAGNETIC BOUNDARY CONDITIONS:

We define magnetic boundary conditions as the conditions that H (or B)

field must satisfy at the boundary between two different media.

We make use of Gauss's law for magnetic fields ,

I A | E— (1)

and Ampere's circuit law,

¢H.dl=1 = e (2)




respectively, by p; and u, as shown in below Figure.

@ "

1a) {b)

Figure 8.16 Boundary conditions between two magnetic media: (a) for B, (b) for H,
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Biy AS -Byy AS=0  —ccomeeeeee 3)

Bin=B3, or pyHin=p,Hyyy oo (4)
Equation (4) shows that the normal component of B 1s continuous at the
boundary. It also shows that the normal component of H 1s discontinuous at the

boundary;

Similarly, we apply eq.(2) to the closed path abcda of figure(b) where surface

current K on the boundary is assumed normal to the path. We obtain

Ah Ah Ah Ah
K'szHlt AW+H1n7+H2n?'HZtAW'HZn?'H1n7




Hy -Hy;; =K (6)

This shows that the tangential component of H 1s also discontinuous. Equation

(6) may be written in terms of B as

B1: Byt
—_— e 2 = K 7
v, (7)

In the general case, eq. (6) becomes

(H,-H3) X a,12=K (8)

where a,,1, 1s a unit vector normal to the interface and 1s directed from

medium 1 to medium 2.




current density), K = 0 and eq. (6) becomes,

B1t _ B¢
H,,=H — === e 9
1t 2t or P 9)
Thus the tangential component of H is continuous while that of B is
discontinuous at the boundary. If the fields make an angle 6 with the normal

to the interface, eq. (4) results in

B]_ COS 91:Bln:an=B2 COS 92 (10)




‘While eq. (9) produces

Pl Gin@, =Hqy;=Hyp= “28in 0, -nmmeemeer (11)
(251 u2

Dividing eq. (11) by eq. (10) gives

tan6; _
tan6, u» (12)

which is similar to the law of refraction for magnetic flux lines at a boundary

with no surface current.




A circuit (or closed conducting path) carrying current I produces a magnetic
field B which causes a flux ¥ = [ B ¢ dS to pass through each turn of the

circuit as shown in below Figure.

—p—— Figure 8.19 Magnetic field B produced by a circui.




A=N¥ o (D)

Also, 1f the medium surrounding the circuit 1s linear, the flux linkage A 1s

proportional to the current I producing it; that is,
Al or A=LI - (2)
where L 1s a constant of proportionality called the inductance of the circuit.

The inductance L 1s a property of the physical arrangement of the circuit. A

circuit or part of a circuit that has inductance 1s called an inductor.

From egs. (1) and (2), we may define inductance L of an inductor as the ratio

of the magnetic flux linkage X to the current/ through the inductor; that 1s,

A_Nw
P 3)



theory as:

|7/ ) (e —— (4)
Or L=232 e (5)

Thus the self-inductance of a circuit may be defined or calculated from energy

considerations.

If instead of having a single circuit we have two circuits carrying current /4

and as I, shown in below Figure a magnetic interaction exists between the

circuits. Four component fluxes W11, ¥, ,¥,1 & W5,. are produced.




I, h Figure 8.20 Magnetic interaction between
g WO Circuils.

circuit 1 gircuit 2

The flux W,, for example, 1s the flux passing through circuit 1 due to current

I, in circuit 2. If B, 1n the field due to I, and S 1s the area of circuit 1, then




A1 = N{W¥, on circuit 1 to current I,

that 1s,

_ Ni¥i2

Similarly, the mutual inductance M, is defined as the flux linkages of circuit

2 per unit
current [; that s,

M., = Aag _NoWopu (8)

I I




The mutual inductance M1, or M, is expressed in henrys and should not be

confused with the magnetization vector M expressed in amperes/meter.

We define the self-inductance of circuits 1 and 2, respectively, as

_ M1 Ny
R (10)
And L, ="f§ =N2;:2 ------------ (11)

Where LP]_ = LP]_]_ + LP]_Z and LPZ = LPZ]_ + LPZZ




and M12 (OI' M21); that iS,

Wm - W1 + W2+ W12

Wm:%L1]12+%L2122+M12]112 ------------- (12)

The positive sign is taken if currents I; & I, flow such that the magnetic
fields of the two circuits strengthen each other. If the currents flow such

that their magnetic fields oppose each other, the negative sign is taken.

An inductor 1s a conductor arranged in a shape appropriate to store

magnetic energy.




1. Choose a suitable coordinate system.

2. Let the inductor carry current I.

3. Determine B from Biot-Savart's law (or from Ampere's law if symmetry

exists) and calculate W from
Y =[BedS.

4. Finally find L from

A NV
I

1




1 an mductor such as a coaxial or a parallel-wire transmission line, the
inductance produced by the flux internal to the conductor 1s called the internal
inductance L;,, while that produced by the flux external to it 1s called external

inductance L,,;.

The total inductance L 1s

L= Lin + Lext -------- (13)

We know that for capacitors,




The potential energy in an electrostatic field as,

Wg="% [D.Edv=" [ €E* AV ---mmmmmmm- (1)

A similar expression for the energy in a magneto static field. A simple

approach 1s using the magnetic energy in the field of an inductor.

W.,,="%LI 2, The energy is stored in the magnetic field B of the

inductor.

Consider a differential volume 1n a magnetic field as shown in below Figure.




surfaces with current Al.

Figure 821 A differential volume
in a magnetic field.

‘ondue ting ——————————— ||
sheets




Each volume has an inductance

_AY  uHAxAz

AL=7 N (2)

Where Al =H Ay. Substituting eq. (2) into energy density equation,

AW, =Y AL AI* = Vs u H*AXAYAZ ~ —---mmme- (3)

AW, =Y uH*Av




The magneto static energy density W,,, (in J/ m3) is defined as

AWy,

— 1 e 1 2
W, A11171'_1')10 ™ Yo uH
BZ
Hence, W, =% uH*="%BH= i — (4)

Thus the energy in a magneto static field in a linear medium 1s

W,=/W,dv or W,,=%[B.Hdv =% [ uH*dv ------- (5)




MAXWELL’S EQUATIONS
(TIME VARYING FIELDS)



OBJECTIVES

FARADAY’S LAW
TRANSFORMER EMF
INCONSISTENCY OF AMPERE’S LAW
DISPLACEMENT CURRENT DENSITY
MAXWELL’S EQUATIONS IN FINAL FORMS

BOUNDARY CONDITIONS



INTRODUCTION:

Electrostatic fields denoted by E(X, y, z) and these are usually produced by

static electric charges.

Magneto static fields denoted by H(X, y, z) and these are due to motion of

electric charges with uniform velocity or static magnetic charges .

Time-varying fields or waves are usually due to accelerated charges or time-

varying currents



 Stationary charges — electrostatic fields

 Steady currents — magnetosiatic fields

« Time-varying currents — electromagnetic fields (or waves)

(a2l {D)

o)

Figure 9.1 Varnous types of time-varying current: {(a) sinusoidal,
(b) rectangular, (¢) triangular.



FARADAY’S LAW:

A static magnetic field produces no current flow, but a time-varying
field produces an induced voltage (called electromotive force or emf) ina

closed circuit, which causes a flow of current.

Faraday discovered that the induced emf V., in any closed circuit is equal to
the time rate of change of the magnetic flux linkage by the circuit. This is

called Faraday's law.

__dA _ dv, . _
Vems = - === -N (= A=N¥)

Where ‘n ¢ 1s no. of turns in the circuit

‘W’ is the flux through each turn



A current flows through the loop when a
magnet is moved near it, without any
batteries.

(b)




LENZ’S LAW:

The direction of current flow in the circuit is such that the induced magnetic

field produced by the induced current will oppose the original magnetic field.

Figure 9.2 A circuit showing emf-producing field E,
and electrostatic field E,.

The total electric field at any point is,
E= Ef + Ee



Note that Ef is zero outside the battery, Ef and E, have opposite directions in

the battery, and the direction of E, inside the battery is opposite to that

outside it.

$E.dl = $E.dI+0 = [[Epdl  (~ $E..dl=0)

The emf of the battery is the line integral of the emf-produced field

emf f Ef dl = fl\l: Ee.dl = IR

Note:

An electrostatic field E, cannot maintain a steady current in a closed circuit

since p E,.dl =0

An emf produced field Ef Is nonconservative.



TRANSFORMER emf:

For a single turn(N=1) , Faraday’s law is

dy
Vems ="

In terms of E and B is,

Vems =$E.dl=-—[B.ds (+¥= [B.ds)

The variation of flux with time may be caused in three ways:
« By having a stationary loop in a time-varying B field

« By having a time-varying loop area in a static B field

« By having a time-varying loop area in a time-varying B field.



A STATIONARYLOOPINATIME VARYING B FIELD

(TRANSFORMER emf):

This emf induced by the time-varying current (producing the time-
varying B field) in a stationary loop is often referred to as transformer emf in

power analysis since it is due to transformer action.

Increasing Bir) Figure 9.3 Induced emf due to a stationary loop in a time-
} } | varying B field.
1 [l
E
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Vemg =$E.dl=-—[B.ds (v¥= [B.ds)

Due to the transformer action,

[(VXE).ds=-f aa—f .ds (stokes’s theorem)

For the two integrals to be equal, their integrands must be equal,

0B

VXE=- EMaxwell’s equation for time varying fields.

It shows that the time varying E field is not conservative

ie. (V x E # 0)



¥ Figure 9.5 Induced emf due to a moving
i B (int) loop in a static B field.

LE
.
k]

When a conducting loop is moving in a static B field, an emf is induced in the
loop.

The force on a charge moving with uniform velocity u in a magnetic field B
IS

E,=0Q,XB



E,=F,/Q=uXDB

Vs = $ Em-dl = $u X B .dl

VXE,, =V XuXB

Moving loop in a time-varying field:

A moving conducting loop is in time varying field constitutes both the

transformer emf and motional emf.
Vems = § Em.dl=-[ 27 ds+ 6 (uX B).dl

JB

+V XuXB
at

VXE =-



DISPLACEMENT CURRENT:

For static EM fields, VxH=1J
The divergence of the curl of any vector field is identically zero,

V.WxH)=0=V.J

The continuity of current equation, V.J = - aai" + 0
VXH=J+]q, Where ]d:Z—IZ

rxH=J+2
dat

Theterm J4 = aa—lz IS known as displacement current density and

J is the conduction current density ( J= oE).



INCONSISTANCY OF AMPERE’S LAW:

« Without the term ] 4, the propagation of electromagnetic waves would be

Impossible.

« At low frequencies, 'J4’ is usually neglected compared with ‘J’.

Fieure 910 Two surfaces of integration
showing the need for J, in Ampere’s circuit
law.




Based on the displacement current density, we define the displacement current

IS given by,

[q=[]q.dS = faa_zz dS  ----eeee- (1)

Applying an unmodified form of Ampere's circuit law to a closed path L,
$H.dl=[]dS=Ippg =1 ------- (2)

$H.dl=[].dS=1I,pg =0------- (3) ( no conduction current (J = 0) flows
through S2)

To resolve the conflict, we need to include the displacement current in

Ampere’s circuit law.

aQ _ |
dt

$H.dl=[],dS== [D.dS =



MAXWELL’S EQUATIONS IN FINAL FORMS

Differential form

Integral form

_d
$E.dl = [B.ds

$H.dL=[( + Z2).dS

Remarks

Gauss's law

Nonexistence of isolated magnetic
charge

Faraday's law

Ampere's circuit law




CONDITIONS AT ABOUNDARY SURFACES:

« The concepts of linearity, isotropy, and homogeneity of a material

medium still apply for time-varying fields;

* Ina linear, homogeneous, and isotropic medium characterized by o, ¢, u.

D=cE=¢,E+P B

B=uH=u,(H+M) [~ constitutive relations

J:JE'l'qu —



For time-varying fields, The boundary conditions,

Eie = Ept or (Ey-Ez)Xay;;=0
Hy - Hye =K or (Hy-Hz)Xay;=K

D1y - Doy =ps or (D;1-Dj).ap1; =ps

Bin-B2pn =0 or (Bz-Bp).an12=0

For a perfect conductor (o = oo)in a time varying field,
E=0, H=0, J=0

B, =0, E, =0



_v-sv
on

|
O,

(2)

Vx P | Ao
ik
——= O
vy L-v
@ —V-uv fVm

(D) icl

Figure 9.11 Electromagnetic flow diagram showing the relationship between the potentials
and vector fields: (a) electrostatic system, (b) magnctostatic system, (¢) electromagnetic
system. [Adapted with permission from TEE Publishing Dept.)



For a perfect dielectric (o = 0),

1) Compatibility equations:

VeB=pM, VXE =27 =]

I1) Constitutive equations:
B=uH, D=c¢E

1) Equilibrium equations:

g
V.D= py,VxH=J+=



TIME-HARMONIC MAXWELL'S EQUATIONS

POINT FORM INTEGRAL FORM

$ Ds.ds = [ pys dv

V.Ds = pys

B..ds =
V.B, =0 p Bs-ds =0

E,.dl=—jw | Bs.ds
$ J

V X Eg =-jwBq

V x Hg =] +jwDj ¢ Hg.dl = [(Jg + jwDs) ds




EM WAVE
CHARACTERISTICS-I



OBJECTIVES

WAVE EQUATIONS FOR MEDIA
UNIFORM PLANE WAVES
RELATIONS BETWEEN E&H
WAVE PROPAGATION IN LOSSLESS MEDIA
WAVE PROPAGATION IN GOOD CONDUCTORS
WAVE PROPAGATION IN GOOD DIELECTRICS
POLARIZATION



WHAT ARE WAVES?

Definition: A disturbance that transfers energy from place to place.

What carries waves? A medium, a medium is the material through which a wave
travels.

A medium can be a gas, liquid, or solid.

Not all waves require a medium to travel.

Light from the sun travels through empty space.
» Waves are means of transporting energy or information.
« A wave is a function of both space and time.
Ex: Radio waves, TV signals, radar beams, and light rays.




1. Free space (0=0,e=¢y, U= )
2. Lossless dielectrics (6=0, € = gy€, , L = Yoly , OF K WE)
3. Lossy dielectrics (o #0, € = gy&,- , L = Yoly)

4. Good conductors (o = o, € = gy, L = Ul OF D WE)

TABLE 10.1 Electromagnetic Spectrum

Approximale Frequency Range

EM Phenomena Examples of Lises

Cosmic rays Physics. astronomy

Ciamma rays Cancer therapy

X-TAYS X-ray examination

Ultraviolet radiation Sterlization

WVisihle hghe Human vision

Infrared radiation Photography

Microwave waves Kadar, microwave relays,
satellite communication

Radio waves LUHF television

Y HF television, FM radio
Shaort-wave radio
AM radio

1" GHz and above
1 —10" GH=

10~ 10" GHz
10°-10% GH=

1 —10" GH#
1WP—10r GHz
3K GHz

AT0-806 MH=z
54-216 MH=>
3-26 MHz
5351605 kHz




UNIFORM PLANE WAVES:

Definition:The wave that will have variation only in the direction of

propagation and its characteristics remain constant across the planes normal

to the direction of propagation.

UNIFORM PLANE WAVES IN FREE SPACE:

Assume an EM wave travelling in free space. Consider an electric field is in x-

direction and a magnetic field is in y- direction.
rxH=J+2

ot
PxH=J+52 (if 1=0)

]
VX H = E(Dxax +Dya, + D,a,)



VxH=|+

dH,

9
- —=0y = —(Dyxay +Dyay + D, a,)

0z

ay
0
oy

Hy,

0z

........ (1) (since D=¢E)



Form faraday’s law ,

)
VXE = »

e o o
VXE= 3 3 3z

Ex E, E,

As E is In X- direction, E,, = E, =0,
O, dE, _ @
. - an + gaz— -E(Bxax +Byay + B,a,)

E, is not changing with y, and it is uniform in x-y plane,

OEx _ ~  OE, _ O



......... (2) (since B

=uH)

Differentiating eq(1) with respect to ‘t’

9 aHy
)=

Differentiating eq(2) with respect to ‘z’

2(hy=.12
,u
0%Ex _ iaZEX
otz ue 072
0%Ex ) 90°Ey
ot? az2

/)



Attenuation constant (a):

When any wave propagates in the medium, it gets attenuated. The

amplitude of the signal reduces. It is represented by an attenuation constant
()
a 1s measured in neper per meter (Np/m)

1 Np = 8.686 Db

Phase constant(f):

When any wave propagates in the medium, phase change also takes place.

Such a phase change is expressed by a phase constant(f)

f is measured in radians per meter (rad/m)



Propagation constant(y):

Attenuation constant (a) and phase constant(f) together constitutes a
propagation constant (y)
y=a+jp

Intrinsic Impedance(n):

The ratio of amplitudes of E to H of the waves in either direction is called

Intrinsic impedance of the material in which wave is travelling.

E Epm- _ w
——mt —_Zm- - ”:Vﬂ: E
Hp Hp - B 3




WAVE EQUATIONS IN PHASOR FORM:

From the faraday’s law,

- 9B __ %8 .
VXE=-5r T 1y (1)

Using vector identity,
V(V.)E-V?E = - pf5- (VxH)] - (3)
PxH=J+2

ot

V(V.E)-V2E = - p[5- () + 2] ------(4)



-V2E = - u[% (J+ aa—f)] (since V.E=0) or

V2E= g+ 5] e )

When any field varies with respect to time, its partial derivative taken with

respect to time can be replaced by jw

V2E = p[jw(J +jwD)]
V2E = [jop(o +jwe)]E ------- (6)
V2H = [jop(o +jwe)]H --------- (7)



VZE_ 2
=y?E &V*H=
H=7y%H,

y=a+)f=yj
B = Jjwu(o +Hwe)




UNIFORM PLANE WAVE IN LOSSY DIELECTRICS:

* Alossy dielectric is a medium in which an EM wave loses power as it
propagates
due to poor conduction.

« Alossy dielectric is a partially conducting medium ( imperfect dielectric

or imperfect conductor) with o #0

y=a+jf=+/jop(o tjwe) ------- (1)

By rearranging the terms,
y=a+jB=joyE [1-j— - (2)

n= |22 — |5 <6,0 or -—(3)

o Tjwe




=-[-tan™' (=) rad - (5), 0<fp<;

This angle depends on the properties of the lossy dielectric medium as well

as the frequency of a signal.

. T
For low frequency signal, w becomes very small, 6,, = "

For every high frequency signal, 8,, =0



For a perfect dielectric, o = 0,But for practical dielectric, ¢ #0 (i.e. 0 Kwe)

y=a+jf =jwyuEe |[1+—

jwe

Consider the radical term, Mathematically using binomial theorem,

(1 +x)"= 1+nx+”(’; Dz 4 20 13),(’1 PV S — . where |x|<1,

If [x|<1and n=2%, then neglecting the higher order terms,

(1+-2y=1+12

JWE 2 jwe

y=a+jB=joyEe[1+——]

2jwe



= e _ | Jou
1 o Hwe jwe(1+j(%8)

- a7

Using binomial theorem,

(1+x) n_ 1 nX_l_n(n ) 2 n(n 1)(n 2) 3 +
2! 3!




As x= ﬁ Is very small as compared to 1, neglecting the higher order terms,

(1+x) "= 1-nx

n=\/§[1—2j(;8] or \/§[1+j2%8]ﬂ

Maxwell’s equation,

rxH=J+2
ot
CoE 4+
—aE+eat
= oE + jwe E=E(0 + jwe)
VXH:]C‘l']D

Jo oE o
Jp JweE jwe




Figure 10.6 Loss angle of a lossy medium.

|

Loss angle , 0 =tan ! —

Loss tangent of dielectric, tan@ = ﬁ

If o< we, the loss tangent is small, and medium is said to be good dielectric.

If 0 > we, the loss tangent is high, and medium is said to be good conductor.



UNIFORM PLANE WAVES IN GOOD CONDUCTORS:

A perfect, or good conductor,

0=, &= &y U= HoHr

y=atjp=jou(o Hjwe) ------

Y = Jjwpo = J@po,/j
butj=1290

Y =/ ouov1490 = /opnos45

Y = /opo (cos45 + | sin45)

y = /2nfio [(1+))]

or

0> WE,



y=a+jp=ynfuo +jnfuoc ------ (2),
=Jnfuoc Np/m, B =,/mfuc rad/m

For a good conductor, « and 8 are equal and both are directly proportional to

the square root of frequency and conductivity(o )

1= 3)

o Hwe

\/JT \/7\/_ (since o> we)

R LA G ) p— (4) , The angle of intrinsic impedance is 45°



Figure 10.8 THustration of skin depth.

The component of the electric field E,. is travelling in positive z- direction.
E,=E,+e % =E, +e/k?
e At z =0, amplitude of the component E, is E,,

« At z=¢,amplitude is Eje~%%.



—ad

In distance z = §, the amplitude is gets reduced by a factor e
If we select § = 1/a , then the factor becomes e~1=0.368
The skin depth is a measure of the depth to which an EM wave can
penetrate the medium.
E (or H) wave travels in a conducting medium, its amplitude is attenuated by

the factor e~%#. The distance &, through which the wave amplitude decreases
by a factor e~ (about 37%) is called skin depth or penetration depth of the

medium.




UNIFORM PLANE WAVES IN LOSSLESS DIELECTRICS:

In a lossless dielectric, o <K we,

0=0,&=gp& , L = Uoly

a =0, f=w.pe
Y = w\HE
1
V=wl/lf =—,
b=
_2m _ M
/1_3’ = 200

E and H are in time phase with each other.



UNIFORM PLANE WAVES IN FREE SPACE:

In a free space medium,0=0,e =€, , U = Yy

a =0, B=w/uey = wlc

1
vV Ho€o

/1:%” where ¢ =3 X 108 m/s

V = =C,

No= \/? =120 =377Q is called the intrinsic impedance of free space



EM WAVE
CHARACTERISTICS-II



OBJECTIVES

REFLECTION AND REFRACTION OF PLANE WAVES
NORMAL AND OBLIQUE INCIDENCES
BREWSTER ANGLE
CRITICAL ANGLE AND TOTAL INTERNAL REFLECTION
SURFACE IMPEDANCE

POTNTING VECTOR AND POYNTING THEOREM-
APPLICATIONS

POWER LOSS IN APLANE CONDUCTOR



Retrlection and refraction:

When a light wave strikes a smooth interface of two transparent media
(such as air, glass, water etc.), the wave is in general partly reflected and

partly refracted (transmitted).

Reflected rays Incident rays
6. b,
-
a a
b b
eb

Refracted rays



If a transmission line having a characteristic impedance 'Z," and that line

is terminated in load impedance 'Z;’.

If Z;, + Z,, then there is no mismatch between two impedances and the

line is not properly terminated, at this case reflection occurs.

If Z;, = Z,, the line is properly terminated



Types of Incidences:

1. Normal Incidence:

When a uniform plane wave is incidences normally to the

boundary between the media then it is known as normal incidence.

1. Oblique incidence:

When a uniform plane wave is incidences normally to the

boundary between the media then it is known as normal incidence.



« Auniform plane wave striking the interface between the two dielectrics at right

angles.

« Auniform plane wave travels along +z- direction and incidence at right angles

at z=0.

Medium 2

&, Mo, T

.'ﬁ"'-..-"

[



Selow z = U, let the properties o medium

the properties of medium 2 be &,,u,, 0, ,1n,.
« Let E;,H; be the field strengths of the incident wave striking the boundary.
« Let E; H; be the field strengths of the transmitted wave in the medium 2.

« Let E, H, be the field strengths of the reflected wave in the medium

1returning back from the interface.
For medium 1,

E, = E;+ E.&H, = H;+ H,

For medium 2,

E, = E{&H, = H;

According to the boundary conditions, the tangential components of E and H

must be continuous at the interface, z = 0.

DE 4,11, 07,11 and above z=0,



tangential to the interface.

Eltan - EZtan&Hltan - HZtan

At the interface,z=0
E; =n.Hj, Er=-n H.&E; =n,H;




Ei+ E, +E; ~E, —Et/nlEt

2
2E; = (1+2—;)Et = E = —2_E; ------- (4)

N1+M2
The transmission coefficient (1),
E 2
T = L — 2 . (5)
E;i m1tn2

Eliminating the E; from eq(1) &(3),
Ei+ Er = %(Ei —E)  =m(E+ Er) =nz(E; — E)

E —_N2— TI1E __________ 6
T N2+tN1 ()

The reflection coefficient (T'),
—N2—MN1




a) 1+I'=1 b)0< | <1
c) Both the coefficients, T', T are dimensionless and may be complex in nature.

According to the poynting theorem,

_1Ey” 2

Pavg - ET W/ m

The average power incident in medium1 ,
_1E 2

Pigyg = . W/ m

The average power reflected in medium1 ,
— 1 Erz 2

The average power transmitted in medium2 ,
_1E/ 2



Piavg _  4m1m2

Pravg ("2‘"1)

N e 9) (since,% =l— 1

Pigvg (m1+12)*
Add eq(8) &(9),

2
Ptavg + Progvg_  4Mm11M; + (772_771)
Piavg Piavg (n1+12)? (M1+12)?
Ptavg + Pravg = Pravg """" (10)

——————— (8) (since%: 21

i MNi1tn:

i MNz2tN1

)

)



Normal Incidence at Plane Conducting Boundary:

Medium 1
(perfect dielectric) Medium 2
o=0 (perfect conductor)
~ o=0 1, =0

Incident wave

\

- ~

Reflected wave

7 = \ —>
Fig: Normal incident at plane conducting boundary

« Auniform plane wave striking the interface between the two media.

* Where mediuml is perfect dielectric (o = 0, lossless) and medium2 is
perfect conductor (o = )

For medium2 ,n, =0, being a perfect conductor.



« Standing waves are nothing but it consists of two travelling waves, one is

incident and the other is reflected and are does not travel.

« Both the waves have same amplitudes but the directions in which they

propagate are different.
Let the standing wave in medium be denoted by E,

Els: Ei+ Er = (Eie_hz T Ereylz)ax """ (l)

But F:ﬂ:-l

l

For medium 1, o = 0,
vi=a+]B; wherea=0foro=0,

Y1 =1B1



ej B1z — e_j 312)

=-2) E; 2 a,

=-2j E;sinpiza, ---------—--- (2)

The field in the medium1,
E; = Re (Eysel®t)

E; =2E;sinfzsinwt a,, ------—----- (3)
2E;
H.= TI_COS B1z coswta,, ----------- (4)
1
If B1z=nm, n=0+14+2 ----------
_nIn _ 2n
=50 but S, L

nm A4
z—2n=>2—n—
1



Figure 10.12 Standing waves FE = 2E, sin8,zsinwra,; curves
0.1.2,3.4,. . .are, respectively, at times ¢+ = 0, T/8, /4, 37/8, T/2, . . ..
A= 2*’81-

The magnitude of the magnetic field is maximum at the positions where the

electric field is zero.



Figure 1L13 Standing waves due to reflection at an interface between two
lossless media; A = 2#/8,.

A uniform plane wave travelling in a lossless medium , it gets reflected back by
the perfect conductor, results in which a standing wave Is generated.



ElS: Ei+ Er - (El-e_ylz + Ereylz) ------------ (1)
The reflection coefficient,
=— or E,=TE;

Eis= Eie ) P + TEjel P17 e 2)

The reflection coefficient in phasor form,

I'=|T|el®

Eys= (e7) At M) (Fizt) )y oo 3)

Elsmax :(1 +|F|)Ei """""" (4)

E1smin :(1 o |F|)Ei """""" (5)

=Standing wave ratio is defined as the ratio of maximum to minimum
amplitudes of voltage.

S = Elsmax — 1 +|r|(0l’)
Elsmin 1 - |F|

IT'| =

S—
S+1



& sin 9,
Bl sin 8,

k'-.. - ﬁ‘ COs 8‘; ‘,: » 6‘1 LOS 8_,
thi

Figure 10.15 Oblique incidence of a plane wave: (a) illustration of 8,. 8,. and 8
(b) illustration of the normal and tangential components of k.



The incident and reflected waves travel in medium1, while transmitted
wave in medium?2.

« The velocity for the waves in medium 1 is same and the distances travel by
the waves are same.

Snell’s law of reflection:
The angle of incidence and angle of reflection waves are equal.

= L= (2) (~ v=wl/B)

-1 (3) (~n=ch)

which is snell's law of refraction



sin@; nq
sinf; _vy _f1_N1_M2_ |&1
sin@; vy f2 np mMm £2

reflected rays Incident rays
6. | Y.
-
a
b
eb

refracted rays



Mediuml * Medium 2
a,, reflect ave At

transmitted wave

=n/2

incident wave
z=0
Fig: total reflection at 6, = /2

* The mediuml is denser than the medium2 i.e. g;>¢,
« The angle of transmission 8, becomes greater than the angle of incidence.



The angle of incidence at which the total reflection takes place is known
as critical angle.

At6,=ml2, 6;,=8,,

sinf; _ [gq
sin 0; €5
= SinE _ i
sin O, €5
: €
sin@, = |2
€1
- £
0. =sin" 1 |2 (or)
€1
T
0, =sin"12



» Horizontal or perpendicular polarization.

« Vertical or parallel polarization.

HORIZONTAL OR PERPENDICULAR POLARIZATION:

b PR
mediem | r=() medium 2
(2,20 iy, &)

Figure 10.17 Oblique incidence with E per-
pendicular to the plane of incidence.



The incident electric field intensity vector in mediuml,
Ei — Eie_j'Bl(x sin 8;+z cos Oi)ay ______ (1)

The incident magnetic field intensity vector in medium1,

? (-cos B;ay + sin 6; ay) e JFr(xsinbi+zcos O ______ ()
1

i_

The reflected electric and magnetic fields,

Er — Ere—jﬁl(x sin 6,- — z cos Gr)ay ______ (3)
H, :% (cos B,ay + sin B, ay) e /Pr(¥sinbr=zcosbr) . (4)

The transmitted electric and magnetic fields,

Et — Ete—jﬁz (x sin B¢+ z cos 6;) ay ______ (5)

2t (-cos B.ay + sin B, ay) e IPa(xsinbc+zcosbr) (6)

H, =
t772



rom tne poundary conaitions, tne tangential components o

continuous at the interface, z=0. 1i.e
E, = E, = E;+E; =E;

Eie—jB1(X sin B;) 4 Ere—jB1(X sin 0r) — Ete_jBZ(X sin®y) _______

H1=H2$Hi+Hr=Ht

ni(- E;cos0; e JP1(xsin0) + F cos @, e /P1(x¥sinb))
1

— _iEt(COS Ht e_jﬁZ(xSin gt)
N2

Bixsinf; = fyxsinb, = fr,xsinfy ---------- (9)
We know that, Snell’s law of reflection (6; = 6,)

Snell’s law of reflection (:?1 zt = %
i 2




The polarization of a plane wave can be defined as the orientation of

the electric field vector as a function of time at a fixed point in space.

For an electromagnetic wave, the specification of the orientation of the
electric field is sufficient as the magnetic field components are related to

electric field vector by the Maxwell's equations.

Types:
1. Linear polarization
2. Elliptical polarization

3. Circular polarization



LINEAR POLARIZATION

The electric field E has only x component and y component of E is 0. Then the
wave is said to be linearly polarized in x- direction.

(or) ¥, ,

The resultant vector E is oriented in a
direction which is constant with time,
and the wave is said to be linearly polarized.

Ex and Ey components are in phase with either equal or unequal amplitudes ,
for a uniform plane wave travelling in z- direction, the polarization is linear.



ELLIPTICAL POLARIZATION

The electric field E has both the components which are not having same
amplitudes and are not in phase.

i
The amplitudes of Ex and Ey are
different and the phase difference / >

between the two is other than 90,
then the axis of the ellipse are
Inclined at an angle 6 with the
coordinate axis.

The components Ex and Ey of unequal amplitudes have a constant ,non zero
phase difference between two, for a uniform plane wave travelling in z-
direction, the polarization is elliptical.



CIRCULAR POLARIZATION

The amplitudes of Ex and Ey are
same and the phase difference

between the two is exactly 90.

In one wavelength span, the
resultant vector E completes one
cycle of rotation such a wave is said

to be circularly polarized.

circular polarization



SURFACE IMPEDANCE

DEFINITION:

The ratio of the tangential component of the electric field to the surface current
density at the conductor surface.

7. = E;Z" -------- 1) z
/ Joe™V*
\—/ Flat
plate conducto
- z=0

Fig: Current distribution in flat plate conductor



With the surface at z=0, plane, then the current distribution in z-direction is

given by,
J=Joe ™V e (2)

Linear current density is given by,
Js = [, JoeY4dz

_J
Jo =2
But we know that, J, = 0E;4,

] — OEtan
> %

4



The propagation constant ‘ y’ is given by,

y = jou(o + jwe)
For conducting medium, o>>we

Yy =+ jwuo
7 =w/ja)/.w
S o
= [Jwn _ 2]
Zs= |=—/ =1 "n=]=)

For a good conductor, The surface impedance of a plane conductor with
thickness greater than the skin depth of a conductor is equal to the

characteristic impedance of the conductor.

Z;=1



POYNTING VECTOR & POYNTING THEOREM:

The energy stored in an electric field and magnetic field is transmitted at a
certain rate of energy flow which can be calculated with the help of poynting

theorem.
The power density is given by,
P=ExH

Where P is called poynting vector.

* Poynting theorem is based on law of conservation of energy in

electromagnetism.

« The direction of P indicates instantaneous power flow at that point.



“The net power flowing out of a given volume v’is equal to the time

rate of decrease in the energy storved within volume v’ minus the ohmic power

dissipated”.
E=Eyay&H=H;a,

Then  P=(Exayx) x (Hyay )

P=E Hyd, (v X3 =a,)

P=Pza,

Where P, E,H are mutually perpenicular to each other.



E=E,, cos(wt — fz)ay
In the medium , the ratio of magnitudes of E and H depends on its intrinsic

Impedance (n),
H =H,, cos(wt — Bz)a,
= _ E_m . -
or H= e cos(wt — fz)ay
According to the poynting theorem, P=E xH
P = (E,, cos(wt — Bz)(ay) X (i—m cos(wt — fBz)ay )
0

Em *
No
The power passing particular area is given by,

P = cos?(wt — fz)a, Wim?

power = power density X area



To find the average power density , let us integrate power density in z-

direction over one cycle and divide by the period T of one cycle.

1 (T Ep?
Pavg = = J, . cos?(wt — fz) dt

2 —_—
=Em fT1+c052(a)t pz) dt

nT “0 2
2 : T
_Em [E n sin2(wt —fz)
nT 12 4w

E,%[T sinQQwT —pz) sin(2B2)
2 4w 4w

Py = ~+ +
avg nT



E,* [T sin(4m — Bz) sin(2Bz)

Poo = |-
wI 9T |2 * 4w L
» ;}(’ T )H(Z,Bz)_l_sin(Zﬁz)
WI T 9T |2 4w 4w
/ 4 b Em? [T
avg — n T E
1Ep? )
Puyyg =5——Wim



TRANSMISSION LINES-I



OBJECTIVES

TRANSMISSION LINES TYPES
TRANSMISSION LINE EQUATIONS
CHARACTERISTIC IMPEDANCE
PROPAGATION CONSTANT
LOSSLESS TRANSMISSION LINE
DISTORTIONLESS TRANSMISSION LINE
LOADING- TYPES



DEFINITION:
The transmission line is a structure which can transport electrical energy

from one point to another.

(a) Co-axial cable (b) Parallel wire
Transmission line

(d) Unbalanced line



separated by a distance.

*When an electrical source is applied between the two conductors, the line
gets energized and the electrical energy flows along the length of the conductors.

Co-axial cable:

Consists of a solid conducting rod surrounded by the two conductors. This line has
good isolation of the electrical energy and has low Electromagnetic Interference
(EMI).

Parallel wire transmission line:

« Consists of two parallel conducting rods. In this case the electrical energy
Is distributed between and around the rods.

« Theoretically the electric and magnetic fields extend over infinite distance
though their strength reduces as the distance from the line. Obviously this line has
higher EMI.



Consists of a dielectric substrate having ground plane on one side and a thin metallic

strip on the other side.

The majority of the fields are confined in the dielectric substrate between the strip and
the ground plane.

Some fringing field exist above the substrate which decay rapidly as a function of
height.

This line is usually found in printed circuit boards at high frequencies.

Balanced and Un-balanced line:

If the two conductors are symmetric around the ground, then the line is called the

balanced line, otherwise the line is an un-balanced line.

Transmission lines (a), (c) and (d) are un-balanced line, whereas the line (b) is a

balanced line.



*No Signal can travel with infinite velocity. That is to say that if a voltage or
current changes at some location, its effect cannot be felt instantaneously at some
other location.

*There is a finite delay between the 'cause' and the effect. This is called the
' Transit Time' effect.
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A conductor carrying a current has magnetic field and consequently has flux

linkage. The conductor therefore has inductance.



be assumed to be located at a particular point in space.

« The inductance and capacitance are distributed throughout the length of
the line. These are therefore called the ' Distributed Parameters' of the line.



The propagation constant in general is complex.

The wave amplitude varies as e"**.That is 'a’ denotes the exponential decay of the
wave along its direction of propagation. Therefore is called the 'Attenuation
Constant' of the line.



The wave phase has two components:
 Time phase wt

e Space phase +fx

The parameter [ gives the phase change per unit length and hence called the

'Phase Constant' of the line. Its units are Radian/m.
For a wave the distance over which the phase changes by 2 is called the

wavelength (1).



vt _R+JwL _ |R+JwlL

It 14 G+JwC
V- _ R+JwL _ R+JwL
I~ 14 G+JwC

_ |R+JwlL
Zo= \/G+]a)C

The ratio of Forward Voltage and Current waves is always Z,,and the ratio of the

Backward Voltage and Current waves is always -Z,,



In any electrical circuit the power loss is due to ohmic elements. A loss less

transmission line therefore implies R=0, G = 0.
For a loss less transmission line,Propagation constant is,
¥ = |JoLJwC = jwVLC  (purely imaginary)

a=0, B = wVLC

The characteristic impedance is,

Zy= /%:\E(purely real)

The reflection coefficient at any point on the line is,

— T, oJ2Bl = 21720 , j281
I'(l)=T.e 2,72,



A line in which there is no phase or frequency distortion and also it is

correctly terminated , is known as distortion less line.

To derive the condition for distortion less line,

=+ R +JwL)(G + JwC)
v*= (R + JoL)(G + JwC)
v?= (RG — w*LC) + jwC(RC + LG)
We know that for minimum attenuation L= CR/G or LG =CR
v?= (RG — w?LC) + j2wRC
but, RC=LG=+vRCLG

v?=RG — w?LC + 2jwVRCLG



Y*=VRG + jwVLC
But y = a+jp

Then, a=+vRG&B=wVLC

a does not vary with frequency which eliminates the frequency distortion.

_0_ 0
B VJIC

For the condition RC = LG , the velocity becomes independent of frequency.

\Y

This eliminates the phase distortion.

All the distortions are eliminated for a condition,

RC=LG 1.e.

Q=

L
C



Introduction of inductance in series with the line is called loading and

such lines are called loaded lines.

EFFECT OF LOADING:

aindB

Unloaded cable

Loaded cable

fin KHz

oy
-

Fig: Effect of loading on the cable



TYPES:

1.CONTINUOUS LOADING:

Here loading is done by winding a type of iron around the conductor.
This increases inductance but it is expensive.

2.PATCH LOADING:

This type of loading uses sections of continuously loaded cable separated by

sections of unloaded cable. Hence cost is reduced.
3.LUMPED LOADING:

Here loading is introduced at uniform intervals. It may be noted that hysteresis
and eddy current losses are introduced by loading and hence, design should be

optimal.



TRANSMISSION LINES-II



OBJECTIVES

INPUT IMPEDANCE RELATIONS
REFLECTION COEFFICIENT
VSWR
IMPEDANCE TRANSFORMATIONS
SMITH CHART AND APPLICATIONS,
SINGLE AND DOUBLE STUB MATCHING



The maximum and minimum peak voltages measured on the line are,
|V|max |V+|(1+|FL|)
|V|mm |V+|(1 |FL|)

— VImax
|V|min
= i)
v+ [(1-]T.[)
1+|rL

P=1 (Or)|FL|—p

1
+1

Higher the value of VSWR, higheris |I;| I.e., higher is the reflection and is

lesser the power transfer to the load.
0<|I}|] <1 and 1<p<o






The ratio of the amplitudes of the reflected and incident voltage waves at the

receiving end of the line is called the reflection coefficient.

__reflected voltage at the load

incident voltage at the load

The reflected voltage at load is component E, at the receiving end with s=0.

Er(z; -2,

E2|5=O: 27,

The incident voltage at load is component E; at the receiving end with s=0.

Er(z;+2zy)

E1|5=0: 27,



Observations:

1.When Z, = Z,I' =0, there is no reflection.
2.When Z; =0, i.e. The line is short circuited.
=-1=12+180° The reflection is maximum.
3. When Z; = oo, i.e. The line is open circuited.
'=1=120° The reflection is minimum.

4.Where K ranges from 0 to 1, and its phase angle ranges from 0 to 180.



Input impedance of a resonant lossless line is either 0 or oo,

In practice, the lines have finite loss. This loss has to be included in
the calculations while analyzing the resonant lines.

« The complex propagation constant has to be used in impedance

calculations of a resonant line.

 The input impedance of a short or open circuited line having propagation

constant y can be written as,

Zs. = Zytanhyl for short circuit load
Z,. = Zgcot hyl for open circuit load

tan hal+tan h(jf)l
1+tan hal tan h(jB)l1

ZSC=Zotanh(a +_],8)l =Zo[ ]



For a low-loss line, taking al < 1 and,
tan hal=al tan h(jf)!l = jtan Sl

al + jtan Gl
' + jaltan Bl

Zscz

Similarly for an open circuited line we get

]

1+jal tan Bl
al+j tan BI

Zoc = Zy|

If we take | even multiples of %, tan 51 =0,

L~ Zyal
Zo

/=~
ocC Cll



Smith chart is polar plot of the reflection coefficient in terms of normalized
Impedance, r+jx.

(or)
It is a graphical plot of normalized resistance and reactance in the reflection
coefficient plane.

CONSTRUCTION:p; 1
It is constructed within a circle of unit
radius p <1 p=1
p =0

Fig: Construction of smith chart on unit circle



p =|pl£6, = pr+j p;

Zn—1 ( zZ,

== = 4]
Znt+1 “n Zo ' JX)

p= ptp;=

_ (+pr)H pi
" (1-pr)—] pi

_ 1-p%-pi? __ 2pi
(1-pr)2+p;? (1-pr)2+p;?
r 1
[p; - H—1]2+,0i2 =[P @
1 1
(pi-1)? + [pi —=Z]* =[] @

Eq(1) is known as r- circles and eq(2) is known as x- circles.



The constant resistance circles have their centers at (ﬁ , 0) and radii (:11).

Figure below shows the constant resistance circles for different values
of ranging between O and oo .

jv i




The constant reactance circles have their centers at (1, 1/x) and radii (1/x).
The centers for these circles lie on a vertical line passing through point (1,0) in

the -plane.




mith chart IS a graphical Tigure whic ained Dy superposing the
constant resistance and the constant reactance circles within the unity circle in
the complex I' -plane. Since we have mapped here the impedances to the -

I' plane, let us call this Smith chart the Impedance Smith chart.

M impedance Smith Chart




a) The left most point A on the smith chart correspondstoy = 0,x = 0 and
therefore represents ideal short-circuit load.

b) The right most point B on the Smith chart corresponds to

y = oo,x = oo and therefore represents ideal open circuit load.

c) The center of the Smith chart M, correspondstoy = 1,x = 0 and

hence represents the matched load.

d) Line AB represents pure resistive loads and the outermost circle
passing through A and B represents pure reactive loads.

e) The upper most point C represents a pure inductive load of unity
reactance and the lower most point D represents a pure capacitive load
of unity reactance.

f) In general the upper half of the Impedance Smith Chart represents

the complex inductive loads and the lower half represents the
complex capacitive loads.



A stub is a short-circuited section of a transmission line connected in parallel

to the main transmission line.

A stub of appropriate length is placed at some distance from the load such
that the impedance seen beyond the stub is equal to the characteristic

Impedance.

Suppose we have a load impedance Z; connected to a transmission line
with characteristic impedance Z,.The objective here is that no reflection

should be seen by the generator.

In other words, even if there are standing wavesin the vicinity of the load Z;

, the standing waves must vanish beyond certain distance from the load.



Conceptually this can be achieved by adding a stub to the main line such that
the reflected wave from the short-circuit end of the stub and the reflected wave
from the load on the main line completely cancel each other at point B to give

no net reflected wave beyond point B towards the generator.




We have a parallel connection of transmission lines, it is more convenient
to solve the problem using admittances rather than impedances.

To convert the impedance into admittance also we make use of the Smith
chart and avoid any analytical calculation.

Now onwards treat the Smith chart as the admittance chart.

A
,/ P+ X
5

away from the generator




Matching procedure:

First mark the load admittance on the admittance smith chart (A).

Plot the constant |I"| circle on the smith chart .Move on the

constant |I"| circle till you intersect the constant g=1 circle this point of
intersection corresponds to point 1+jb’ (B). The distance traversed on the
constant |I"| circleis l; . This is the location of placing the stub on the

transmission line from the load end .

Find constant susceptance jb’ circle.

Find mirror image of the circle to get —jb’ circle.
Mark 0-jb’ on the outer most circle (D).

From (D) move circular clockwise uptos.c point (E) to get the stub

length L.



Advantages:

« The single-stub matching technique is superior to the quarter wavelength
transformer as it makes use of only one type of transmission line for the

main line as well as the stub.

» This technique also in principle is capable of matching any complex load to

the characteristic impedance/admittance.

» The single stub matching technique is quite popular in matching fixed

Impedances at microwave frequencies.



Drawback:

« The single stub matching technique although has overcome the drawback
of the quarter wavelength transformer technique, it still is not suitable for

matching variable impedances.

« Achange in load impedance results in a change in the length as well as the

location of the stub.

« Even if changing length of a stub is a simpler task, changing the location of

a stub may not be easy in certain transmission line configurations.

» For example, if the transmission line is a co-axial cable, the connection of a

stub would need drilling of a hole in the outer conductor.



The technique uses two stubs with fixed locations. As the load changes only

the lengths of the stubs are adjusted to achieve matching.

1+jo——> 1—32 g1.'.1)1 9+ g+jb

o
w
>




double stub matching technique.

The first stub is located at a convenient distance from the load say [, . The
second stub is located at a distance of 341/8 from the first stub.

constant g, circle

rotated g =1 circle




Mark the admittance g+jb on the Smith chart (Point A).

Move on constant VSWR circle passing through A by a distance [; to reach B~.

Move along the constant-conductance (constant- g ) circle to reach B* ( a point
on the rotated g=1 circle). Note that a stub at B will change only the reactive
part and therefore we move on a circle which keeps the real part of g, +jb’

same while going from B~ to B* .

Transform admittance g,+j b, at B* to C~ by moving a distance of 31/
8 on aconstant VSWR circle passing through B* . The point €~ must be

lying to the g=1 circle. Let the transformed admittance at point C~ be 1+j b,

Add a stub to give susceptance -jb, at location C so as to move the

point C~to C* which is the matched point



To calculate the length of the first stub [;; we note that this stub must

provide a susceptance which is the difference between the susceptances

at BY and B~ . That is, the stub susceptance b.; isequalto b, — b’ . Mark
the susceptance j(b-b’) on the chart to get point S; .Distance

from S; to S inthe anticlockwise direction gives the length [, of the first
stub.

The second stub should have a susceptance of -jb, . To get the length [, of
the second stub the procedure is same as that used in the single stub
matching. That is, mark -jb, on the Smith chart to get point S, . Measure

distance S,S in anti-clockwise direction to give Is, .



Limitation:

The whole matching process relies on the fact that by moving along a
constant conductance circle one can go from point B~ to B* . (B* lies on
the g = 1 rotated circle). If this step is not realizable then the whole

matching process is unrealizable.

If point B~ lies in the hatched region, moving along constant-g circle can
never bring a point on rotated g=1 circle. Hence that admittance cannot be

matched by the Double Stub method.



