## INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad- 500043

## MECHANICAL ENGINEERING

COURSE DESCRIPTION FORM

| Course Title | UNCONVENTIONAL MACHINING PROCESSES |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Code | A70359 |  |  |  |
| Regulation | R15-JNTUH |  |  |  |
| Course Structure | Lecture | Tutorial | Practical | Credit |
|  | 4 | 0 | - | 4 |
| Course Coordinator | Mr. S. Srikrishnan, Assistant Professor ME |  |  |  |
| Team of Instructors | Mr. S. Srikrishnan, Assistant Professor ME |  |  |  |

## I. COURSE OVERVIEW

The objective of this course is to impart knowledge on the various unconventional machining processes, the process parameters associated with them. Selection of an appropriate machining process for a particular application, properties of the work material and shape to be machined, process capability and economic considerations of these processes.
II. PREREQUISITE(S)

| Level | Credits | Periods | Prerequisite |  |
| :---: | :---: | :---: | :--- | :---: |
| UG | 4 | 4 | Metallurgy and material science, Mechanics of solids, Engineering <br> Chemistry, Engineering physics, Mathematics. |  |

## III. MARKSDISTRIBUTION

| Sessional Marks | University End <br> Exam Marks | Total <br> Marks |
| :--- | :---: | :---: |
| There shall be 2 midterm examinations. Each midterm examination consists of <br> subjective type and Objective type tests. The subjective test is for 10 marks, <br> with duration of 1 hour. Subjective test of each midterm exam shall contain 4 <br> questions. The student has to answer 2 questions, each carrying 5 marks. The |  |  |
| objective type test is for 10 marks with duration of 20minutes. It |  |  |
| consistsof10Multiplechoiceand10objectivetypequestions.Thestudent has to |  |  |
| answer all the questions and each carries half mark. |  |  |
| First midterm examination shall be conducted for the first 2 $1 / 2$ units of syllabus <br> and second midterm examination shall be conducted for the remaining $21 / 2$ <br> units. | 75 | 100 |
| Five marks are earmarked for assignments. There shall be two assignments in <br> every theory course. Marks shall be awarded considering the average of two <br> assignments. |  |  |

## IV. EVALUATIONSCHEME

| S.NO | Component | Duration | Marks |
| :---: | :--- | :---: | :---: |
| 1 | I Mid examination | 80 minutes | 20 |
| 2 | I Assignment | -- | 05 |
| 3 | II Mid examination | 80 minutes | 20 |
| 4 | II Assignment | -- | 05 |
| 5 | External examination | 3 hours | 75 |

## V. COURSEOBJECTIVES

I. Understand the need and importance of non-traditional machining methods.
II. Apply basic principle, equipment, process variables and mechanics of metal removal in abrasive jet machining and water jet machining.
III. Knowledge of fundamentals of tool design, surface finishing and metal removal rate of electro chemical grinding, electro chemical machining and electro chemical honing.
IV. Understand principles of operations, types of electrodes and process parameters and machine tool selection in EDM and Electric discharge grinding and wire cut process.
V. Comprehend basics of Electron Beam Machining and comparison of thermal and non-thermal processes.
VI. Understand metal removal mechanism, process parameters of plasma arc machining.

## VI. COURSEOUTCOMES

## After completing this course the student must demonstrate the knowledge and ability to:

1. Knowledge about the modern manufacturing processes and their applications in various industry
2. Understand the need for unconventional machining processes in comparison with conventional manufacturing processes
3. Knowledge about abrasive jet machining and understanding the various limiting factors in using abrasive jet machining process
4. Understand the advantages of water jet machining and explore the various possibilities of utility in modern tool utility
5. Application of ultrasonic machining for modern manufacturing process concurring with advanced practices of aerospace industry
6. Understand the working of electric discharge machining effecting the surface finish of work pieces in medical and engineering fields
7. Knowledge of electric equipment required for effective running of EDM with the complexity of power losses and economy
8. Understand the difference between EDM and wire cut EDM with in depth understanding of the better technology between both
9. Understand the application of CHM in high precision machining used in aerospace industries and other mechanical industries requiring lower tolerances
10. Understand the utility of Maskants and etchants in electro chemical machining
11. Knowledge of working of laser for application in laser beam machining with acute understanding of the various types and power requirement of lasers
12. Understand the principle of plasma arc machining with basic understanding of the methods used for evolving the plasma state using inert gases
13. Knowledge of electrons and bombardment in electron beam machining with current understanding of the speed of electrons and the safety requirements
14. Knowledge of beam control techniques with vector control measures used for electron beam machining for effective utility
15. Understand the need for utility manufacturing and application in modern industries and comparative study with reference to the conventional machining processes

## VII. HOW PROGRAM OUTCOMES AREASSESSED

| Program outcomes | Level | Proficiency <br> Assessed <br> by |  |
| :--- | :--- | :---: | :---: |
| PO1 | Engineering knowledge: Capability to apply the knowledge of <br> Mathematics, science and Engineering in the field of Mechanical <br> Engineering | S | Assignments and <br> Tutorials |
| PO2 | Problem Analysis: An Ability to analyze complex engineering problems <br> to arrive at relevant conclusions using knowledge of Mathematics, <br> Science and Engineering. | S | Tutorials |
| PO3 | Design/ Development of Solutions: Competence to design a system, <br> component or process to meet societal needs within realistic constraints. | S | Exams |
| PO4 | Conduct investigations of complex problems: To design and conduct <br> research oriented experiments as well as to analyze and implement data <br> using research methodologies. | S | Mini Projects |
| PO5 | Modern tool usage: An ability to formulate solve complex engineering <br> problem using modern engineering and Information technology tools. | H | Assignments |
| PO6 | The Engineer and society: To utilize the engineering practices, <br> techniques, skills to meet needs of the health, safety, legal, cultural and <br> societal issues. | H | Mini Projects |
| PO7 | Environment and society: To understand impact of engineering <br> solutions in the societal context and demonstrate the knowledge for <br> sustainable development. | N |  |
| PO8 | Ethics: An understanding responsibilities and implementation of <br> professional and Ethical | N | ---- |
| PO9 | Individual and Team work: To function as an effective individual and <br> as a member or leader in Multi- disciplinary environment and adopt in <br> diverse teams. | N | ---- |
| PO10 | Communication: An ability to assimilate, comprehends, communicate, <br> give and receive instructions to present effectively with engineering <br> community and society. | N | ---- |
| PO11 | Project management and finance: An ability to provide leadership in <br> managing complex engineering projects at multi-disciplinary <br> environment and to become a professional engineer. | H | Mini Projects |
| PO12 | Life-Long learning: Recognition of the need and an ability to engage in <br> lifelong learning to keep abreast with technological changes. | S | Tutorials |

## VIII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED

| Program Specific Outcomes | Level | Proficiency <br> Assessed by |  |
| :---: | :--- | :---: | :---: |
| PSO 1 | Professional Skills: To produce engineering professional capable <br> of synthesizing and analyzing mechanical systems including allied <br> engineering streams. | H | Lectures, <br> Assignments |
| PSO 2 | Design/Analysis:An ability to adopt and integrate current <br> technologies in the design and manufacturing domain to enhance <br> the employability. | S | Projects |
| PSO 3 | Successful and Entrepreneurship: To build the nation, by <br> imparting technological inputs and managerial skills to become <br> Technocrats. | H | Guest Lectures |

## IX. SYLLABUS

## UNIT-I

Introduction: Need for non-traditional machining methods-Classification of modern machining processes- considerations in process selection. Materials, applications.

Ultrasonic machining - elements of the process, mechanics of metal removal process parameters, economic considerations, applications and limitations, recent development.

## UNIT-II

Abrasive jet machining, water jet machining and abrasive water jet machine: Basic principles, equipment, process variables, mechanics of metal removal, MRR, application and limitations.

Electro-Chemical Processes: Fundamentals of electro-chemical machining, electro-chemical grinding, electro chemical honing and deburring process, metal removal rate in ECM, Tool design, Surface finish and accuracy economic aspects of ECM-Simple problems for estimation of metal removal rate.

## UNIT-III

Thermal Metal Removal Processes: General Principle and applications of Electric Discharge Machining, Electric Discharge Grinding and electric discharge wire cutting processes-Power circuits for EDM, Mechanics of metal removal in EDM, Process parameters, selection of tool electrode and dielectric fluids, surface finish and machining accuracy, characteristics of spark eroded surface and machine tool selection. Wire EDM-principle and applications.

## UNIT-IV

Generation and control of electron beam for machining, theory of electron beam machining, comparison of thermal and non-thermal processes- General Principle and application of laser beam machiningthermal features, cutting speed and accuracy of cut.

## UNIT-V

Application of plasma for machining, metal removal mechanism, process parameters, accuracy and surface finish and other applications of plasma in manufacturing industries. Chemical machining-principle- maskants-etchants-applications.

## TEXT BOOKS:

T1. Advanced machining processes-VK Jain, Allied Publishers.

## REFERENCE BOOKS:

R1.Modern Machining Process- Pandey P.C. and Shah H.S., TMH
R2.New Technology - Bhattacharya A, The Institution of Engineers, India 1984.
R3.Unconventional Machining Processes- C. Elanchezhian., B. Vijaya Ramnath and M Vijayan, Anuradha Publications, 2005.
R4. Unconventional Machining Processes - M.K Singh, New Age International Publisher.

## X. COURSEPLAN:

The course plan is meant as a guideline. There may probably be changes.

| Lecture <br> No. | Course Learning Outcomes | Topics to be covered | Reference |
| :---: | :--- | :--- | :---: |
| 1 | Explain Non-traditional machining <br> methods | UNIT-I <br> Introduction: Need for non-traditional <br> machining methods | T1 1.1 |
| 2 | Explain Non-traditional machining <br> methods | Introduction: Need for non-traditional <br> machining methods | T1 1.1 |
| 3 | Categorize \& Describe Modern <br> machining processes | Classification of modern machiningprocesses | T1 1.2 |
| 4 | Categorize \& Describe Modern <br> machining processes | Classification of modern machiningprocesses | T1 1.2 |
| 5 | Illustrate process, selection and <br> materials | Considerations in process selection, Materials, <br> applications.\& Overview of the unit | T1 1.3 |


| 6 | Describe Ultrasonic machining process | Ultrasonic machining - elements of the process | T1 1.4,R1 |
| :---: | :---: | :---: | :---: |
| 7 | Illustrate metal removal process | The process and mechanics of metal removal process parameters, economic considerations | T1 1.5,R1 |
| 8 | Illustrate metal removal process | Mechanics of metal removal process parameters, economic considerations | T1 1.6,R1 |
| 9 | Discuss applications and limitations of Ultrasonic machining process | Applications and limitations, recent development. | T1 1.6,R1 |
| 10 | Evaluate the unit content | Overview of the unit | T1,R1 |
| 11 | Describe Abrasive jet machining | UNIT-II <br> Abrasive jet machining | T1 2.1 |
| 12 | Describe Abrasive jet machining | Abrasive jet machining | T1 2.1 |
| 13 | Describe water jet machining | water jet machining | T1 2.2,R1 |
| 14 | Describe Abrasive water jet machining | Abrasive water jet machining | T1 2.3,R1 |
| 15 | Define principles of jet machining process | Basic principles, equipment, process Variables | T1 2.3,R1 |
| 16 | Illustrate metal removal process | Mechanics of metal removal | T1 2.4,R1 |
| 17 | Discuss applications and limitations | MRR, application and limitations \& Overview of the unit | T1 2.5,R1 |
| 18 | Evaluate the unit content | Electro - Chemical Processes: Fundamentals of electro-chemical | T1 2.6,R1 |
| 19 | Describe Electro-Chemical processes | Electro -Chemical Grinding | T1 2.7,R1 |
| 20 | Describe Electro chemical honing process | Electro-Chemical honing and deburring process | T1 2.8,R1 |
| 21 | Describe Electro chemical honing process | Electro-Chemical honing and deburring process | T1 2.8,R1 |
| 22 | Illustrate metal removal process | Metal removal rate in ECM,Tool design, surface finish and accuracy | T1 2.9,R1 |
| 23 | Illustrate metal removal process | Metal removal rate in ECM,Tool design, surface finish and accuracy | T1 2.9,R1 |
| 24 | Analyze Economic aspects of ECM and MRR | Economic aspects of ECM- Simple problems for estimation of metal removal rate. | T1 2.9,R1 |
| 25 | Analyze Economic aspects of ECM and MRR | Economic aspects of ECM- Simple problems for estimation of metal removal rate. | T1 2.9,R1 |
| 26 | Describe Fundamentals of chemical in ECM | Fundamentals of chemical, machining | T1 2.10,R1 |
| 27 | Discuss advantages and applications. | Advantages and applications. | T1 2.10,R1 |
| 28 | Evaluate the unit content | Overview of the unit | T1,R1 |
| 29 | Illustrate Thermal metal removal processes | UNIT-III <br> Thermal metal removal processes | T1 3.1,R1 |
| 30 | Discuss applications of Electric Discharge Machining | General Principle and applications ofElectric Discharge Machining | T1 3.1,R1 |
| 31 | Describe Electric Discharge Grinding | Electric Discharge Grinding | T1 3.2,R1 |
| 32 | Explain Electric Discharge wire cutting processes | Electric Discharge wire cuttingprocesses | T1 3.3,R1 |
| 33 | Illustrate Power circuits and metal removal process for EDM | Power circuits for EDM, Mechanicsof metal removal in EDM | T1 3.3,R1 |
| 34 | Evaluate process parameters of EDM | Process parameters, selection of toolelectrode and dielectric fluids, surfacefinish and machining accuracy | T1 3.4,R1 |


| 35 | Evaluate process parameters of EDM | Process parameters, selection of tool electrode and dielectric fluids, surface finish and machining accuracy | T1 3.4,R1 |
| :---: | :---: | :---: | :---: |
| 36 | Illustrate machine tool selection | Characteristics of spark eroded surface and machine tool selection | T1 3.4,R1 |
| 37 | Illustrate machine tool selection | Characteristics of spark eroded surface and machine tool selection | T1 3.4,R1 |
| 38 | Define wire EDM-principle | Wire EDM- principle and applications. | T1 3.5,R1 |
| 39 | Evaluate the unit content | Overview of the unit | T1,R1 |
| 40 | Evaluate the unit content | Overview of the unit | T1,R1 |
| 41 | Explain control of electron beam for machining | UNIT-IV <br> Generation and control of electron beam for machining | T1 4.1,R1 |
| 42 | Describe electron beam machining | Theory of electron beam machining | T1 4.2,R1 |
| 43 | Compare thermal and non-thermal processes | Comparison of thermal and non-thermal processes | T1 4.2,R1 |
| 44 | Compare thermal and non-thermal processes | Comparison of thermal and non-thermal Processes | T1 4.2,R1 |
| 45 | Discuss applications of laser beam machining | General principles and applications oflaser beam machining | T1 4.3,R1 |
| 46 | Discuss applications of laser beam | General principles and applications oflaser | T1 4.4,R1 |
| 47 | Explain Thermal features, cutting speed of LBM. | Thermal features, cutting speed and accuracy of cut. | T1 4.5,R1 |
| 48 | Explain Thermal features, cutting speed of LBM. | Thermal features, cutting speed and accuracy of cut. | T1 4.5,R1 |
| 49 | Evaluate the unit content | Overview of the unit | T1,R1 |
| 50 | Discuss applications of plasma for machining | UNIT-V <br> Application of plasma for machining | T1 5.1,R1 |
| 51 | Discuss applications of plasma for machining | Application of plasma for machining | T1 5.1,R1 |
| 52 | Illustrate metal removal | Metal removal mechanism, process parameters, accuracy and surface finish | T1 5.2,R1 |
| 53 | Illustrate metal removal | Metal removal mechanism, process parameters, accuracy and surface finish | T1 5.2,R1 |
| 54 | Discuss applications of plasma in manufacturing industries | Applications of plasma in manufacturing industries | T1 5.3,R1 |
| 55 | Discuss applications of plasma in manufacturing industries | Applications of plasma in manufacturing industries | T1 5.3,R1 |
| 56 | Define Chemical machining principle | Chemical machining principle | T1 5.4,R1 |
| 57 | Discuss applications | Maskants - etchants - applications | T1 5.5,R1 |
| 58 | Evaluate the unit content | Overview of the unit. | T1,R1 |
| 59 | Evaluate the unit content | Overview of the unit. | T1,R1 |

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| Course | Program Outcomes |  |  |  |  |  |  |  |  |  |  |  | Program Specific Outcomes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 | PSO 1 | PSO 2 | PSO 3 |
| I. | H |  |  |  | S |  |  | H |  |  |  |  | S |  |  |
| II. |  |  |  |  | S |  |  |  |  |  | H |  |  |  | S |
| III. | H |  | S |  |  |  | S |  |  |  |  | H |  | H |  |
| IV. |  | S |  |  |  |  |  |  |  |  | H |  |  |  | S |
| V. |  |  |  |  |  | S |  |  | H |  |  |  | H |  |  |
| VI. |  |  |  | H |  |  |  | S |  |  | S |  |  | H | S |

$\mathbf{N}=$ None
S=Supportive
H = Highly Related
XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course | Program Outcomes |  |  |  |  |  |  |  |  |  |  |  | Program Specific Outcomes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 | PSO 1 | PSO 2 | PSO 3 |
| 1 | H |  | S | S | H |  |  |  |  |  |  |  | S | H |  |
| 2 | H |  | S |  |  |  |  |  |  |  | S |  |  |  | S |
| 3 |  |  | S |  |  |  |  |  |  |  |  |  | S |  | H |
| 4 | H |  |  | S | H |  |  |  |  |  | H |  |  | H |  |
| 5 |  | H | S |  |  |  |  |  |  |  | H |  |  |  |  |
| 6 |  |  |  | S | H |  |  |  |  |  |  |  | S | H |  |
| 7 | H | H |  |  |  |  |  |  |  |  |  |  |  |  | S |
| 8 |  |  |  |  |  |  | S |  |  |  |  |  | S |  | H |
| 9 | H |  |  | S |  |  | S |  |  |  | H |  |  | H |  |
| 10 |  |  | S |  |  | S |  |  |  |  |  |  | S | S |  |
| 11 | H |  |  | S |  |  |  |  |  |  | S |  | S |  |  |
| 12 |  | H |  |  |  |  |  |  |  |  |  |  |  | H | S |
| 13 | H |  |  |  | H |  | H |  |  |  |  |  | S |  | H |
| 14 |  |  | S | S |  |  | S |  |  |  |  |  |  | H |  |
| 15 | H | H | S |  | H |  |  |  |  |  | S |  | S | S |  |
| N=None |  |  |  | S=Supportive |  |  |  | H = Highly Related |  |  |  |  |  |  |  |

## Prepared by:

Mr. S, Srikrishnan, Assistant Professor
HOD, MECHANICAL ENGINEERING

