

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

Department of Electrical and Electronics Engineering

COURSE DESCRIPTION FORMS

Course Title	POWESYSTE	POWESYSTEM OPERATION AND CONTROL									
Course Code	A70230	A70230									
Regulation	R13	R13									
a a i	Lectures	Tutorials	Practical's	Credits							
Course Structure	4	4 1 - 4									
Course Coordinator	Mr. A Sathish	Kumar, Assistant H	Professor, EEE								
Team of Instructors	Mr. A Sathish	Kumar, Assistant I	Professor, EEE								

I. COURSE OVERVIEW:

This electrical distribution course introduces the components of the distribution system and the way in which the system delivers power to end-use customers. Included in the course are descriptions of key system components including single and three phase lines as well as we and delta lines. The course also addresses the ways in which distribution systems are designed to serve various types of customer loads

II. PREREQUISITES:

Level	Credits	Periods	Prerequisite
UG	4	4	Power System-I, Computer Methods in Power Systems.

III. COURSE ASSESSMENT METHODS:

a) Marks distribution:

Session Marks	University End Exam Marks	Total Marks
There shall be two mid tem examinations. Each id term exam consists of subjective type and objective type test.		
The subjective test is for 10 marks, with duration of 1 hour. Subjective test of each semester shall contain four questions; the student has to answer two out of them. Each carrying 5 marks		
The objective test paper Is prepared by JNTUH, which consists of 20 questions each carrying 0.5 marks and total of 10 marks.	75	100
The student is assessed by giving two assignments, one, after completion of 1 to 4 units and the second, after the completion of 4 to 8 units each carrying 5 marks. On the total the internal marks are 25.		
The average of two internal tests is the final internal marks.		
The external question paper is set by JNTUH consisting of 8 questions each carrying 15 marks out of which 5 questions are to be answered their by external examination is of total 75 mark		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks		
1	I Mid Examination	90 minutes	20		
2	I Assignment		05		
3	II Mid Examination	90 minutes	20		
4	II Assignment		05		
5	External Examination	3 hours	75		

V. COURSE OBJECTIVE:

The course should enable the students to:

- i. Illustrate the Economic operation of power systems and optimal loading.
- ii. Demonstrate the modeling of turbines and automatic controllers.
- iii. Understand the single area and two area load frequency control.
- iv. Understand the reactive power control and compensating equipments.

VI. COURSE OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

- 1. Design an optimal operation setup of power system which minimizes operation costs and meet desired needs
- 2. Compute energy generation, power system behavior and economics of generating costs.
- 3. Understand optimal operation setup design problem and constraints that include most of the following: economic, environmental, operability and security
- 4. Understand thermal and hydro generator characteristics and their economic operation.
- 5. Understand the optimum operation and scheduling of thermal and hydel plants
- 6. Solve the unit Commitment problem with various constraints using conventional optimization techniques.
- 7. Develop the modeling of speed-governor systems for steam and hydraulic turbines
- 8. Design the single area and two area thermal power system.
- 9. Solve economic dispatch, unit commitment, load frequency control and automatic voltage generation using conventional method
- 10. Understand the significance of reactive power control in power systems to maintain quality of power
- 11. Design appropriate control scheme to compensate reactive power
- 12. Understand the concept of power systems and operation and control to solve real time world applications
- 13. Explore the knowledge and skills of employability to succeed in national and international level competitive examinations

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program outcomes	Level	Proficiency Assessed By
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Exercise and Discussion
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	S	Exercise and Discussion
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	S	Discussion and Seminar
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis	Ν	

	and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	N	
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	N	
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	N	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	N	
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Ν	
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	N	
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	N	
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Ν	

N= None

S=Supportive

H=highly related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency Assessed By
PSO1	Professional Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.	Н	Lectures, Assignments
PSO2	Problem-Solving Skills: Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.	N	
PSO3	Successful Career and Entrepreneurship: The understanding of technologies like PLC, PMC, process controllers, transducers and HMI one can analyze, design electrical and electronics principles to install, test, maintain power system and applications.	N	

N - None

IX. SYLLABUS:

UNIT I:

Economic Operation of Power Systems: Optimal operation of Generators in Thermal Power Stations, heat rate Curve ,Cost Curve, Incremental fuel and Production costs, input-output characteristics, Optimum generation allocation with line losses neglected. Optimum generation allocation including the effect of transmission line losses – Loss Coefficients, General transmission line loss formula.

UNIT II:

Hydrothermal Scheduling: Optimal scheduling of Hydrothermal System: Hydroelectric power plant models, scheduling problems- Short term hydrothermal scheduling problem.

UNIT III:

Modeling of Turbine, Generator and Automatic Controllers Modeling of Turbine: First order Turbine model, Block Diagram representation of Steam Turbines and Approximate Linear Models.

Modeling of Generator (Steady State and Transient Models):Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation) and State-Space II-Order Mathematical Model of Synchronous Machine.

Modeling of Governor: Mathematical Modeling of Speed Governing System – Derivation of small signal transfer function.

Modeling of Excitation System: Fundamental Characteristics of an Excitation system, Transfer function, Block Diagram Representation of IEEE Type-1 Model.

UNIT IV:

Single Area & Two-area Load Frequency Control: Necessity of keeping frequency constant. Definitions of Control area – Single area control – Block diagram representation of an isolated power system – Steady state analysis – Dynamic response – Uncontrolled case.

Load Frequency Control Load frequency control of 2-area system: uncontrolled case and controlled case, tie-line bias control.

Load Frequency Controllers: Proportional plus Integral control of single area and its block diagram representation, steady state response – Load Frequency Control and Economic dispatch control.

UNIT V:

Reactive Power control: Overview of Reactive Power Control - Reactive Power compensation in transmission systems – advantages and disadvantages of different types of compensating equipment for transmission systems; load compensation – Specifications of load compensator, Uncompensated and compensated transmission lines: shunt and Series Compensation (Quantitative treatment)

X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture No.	Learning Objectives	Topic To Be Covered	Reference
1	To understand optimal System	Introduction to optimal system operation	T ₁ :5
2	To understand economy of operation	Economic operation and economic dispatch	T ₁ :6-7
3	To derive optimum allocations	Optimum generation allocations without line losses	T ₁ :8-9
4	Exercise	Solving problems	T_1, T_3
5	To understand the constraints in the operation of thermal power plant	Constraints in the operation of thermal power plant	T ₁ :25-26
6	To understand the optimal scheduling	Optimal scheduling of thermal generators,	T ₁ :26-28

7	To understand the optimum generation	input/output and incremental fuel cost curves Optimum generation allocation including the	T ₁ :26-28
7	allocation	effect of transmission line losses	
8-9	Exercise	Solving problems	T_1
10	To derive line loss formula	General transmission line loss formula	T ₁ :12
11-12	Exercise	Solving Problems	$T_{1,}T_{3}$
13	To design the modeling of turbine	Modeling of turbine	T ₃ :285-286
14	To remember turbine models	Automatic controllers modeling of turbine	T ₃ :285-287
15	To remember turbine models	First order turbine model,	T ₃ :286
16	To understand the steam turbines	Block diagram representation of steam turbines	T ₃ :289
17	To understand linear model	Approximate linear models	T ₃ :292
18	To remember generator modeling	Modeling of generator	T ₃ :272
19	To understand the model of synchronous machine	Description of simplified network model of a synchronous machine	T ₃ :285
20-21	Exercise	Solving Problems	$T_{1,} T_{3}$
22	To derive the swing expression	Description of swing equation	T ₃ :312
23	To understand the mathematical model	State space second order mathematical model of synchronous machine	T ₃ :318
24	To understand the speed governing system	Mathematical modeling of speed governing system	T ₃ :322-326
25	To derive signal transfer function	Derivation of small signal transfer function	T ₃ :327
26	To understand the modeling of excitation system	Modeling of excitation system	T ₃ :412
27-28	Exercise	Solving Problems	T _{1,} T ₃
29	To understand the excitation systems	Fundamental characteristics of an excitation system	T ₃ :319
30	To remember transfer function	Transfer function, block diagram	T ₃ :320
31	To remember IEEE Model	Representation of IEEE Type-1 Model	T ₁ :85
32	Exercise	Solving Problems	T_1
33	To understand Hydrothermal Scheduling	Hydrothermal scheduling	T ₁ :29-32
34	To understand the single control area and two control area	Control area, mechanism of individual generators	T ₁ :31-33
35	To understand speed variations	Speed regulations	T ₁ :31-38
36	To remember the generator loading	Single and two generators systems	T ₁ :56-58
37	To understand the control strategies	Generator controllers	T ₁ :59
38	To understand how to control the output of generator	Load frequency control of single area	T ₁ :65
39	To understand load frequency control	Study state analysis of load frequency control system	T ₁ :67-68
40	To remember PI control	Dynamic response and PI Controller	T ₁ :69
41-42	Exercise	Solving Problems	T_1
43	To understand two control area	Two control area	T ₁ :285
44	To remember dynamic response	CI control and dynamic response	T ₁ :290
45	To understand two control area	Load frequency control of two area system	T ₁ :286
46-47	Exercise	Solving problems	T ₁
48	To understand controlled devices	Uncontrolled case and controlled case	T ₁ :291-94

49	To understand control reactive power	Overview of reactive power control	T ₁ :295
50	To remember compensation in transmission system	Reactive power compensation in transmission systems	T ₁ :296
51	To understand compressions	Advantages and disadvantages of different types of compensating methods	T ₁ :297-298
52	To remember compensate reactive power at load side	Load compensation	T ₁ :312-313
53	To remember specifications load compensator	Specifications of load compensator	T ₁ :315
54	To understand performance of uncompensated system	Uncompensated transmission lines	T ₁ :316-318
55	To remember performance of compensated system	Compensated transmission	T ₃ :318-321
56	To understand different compensation methods	Shunt and series compensation	T ₁ :330-345
57,58	Exercise	Solving Problems	$T_{1,} T_{3}$

XI. TEXT BOOKS:

- 1. S Sivanagarju "Power system operation and control " Pearson Education India, 2009
- 2. C.L.Wadhwa "Electrical power systems " New age international publishers,6th edition
- 3. I.J. Nagarath and D.P Kothari "Modern Power Systems Analysis" Tata Mc grawhill publication,4th edition

XII. REFERENCES:

- 1. Power system Analysis and Design by Duncan Glover and M.S Sarma
- 2. Electrical Energy systems Theory by O.I. Elgerd

XIII. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Objectives		Program Outcomes												Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
Ι		S	S										Н			
II	Н	0	Н	S									Н			
III	S	U		Н												
IV		Н		S									Н			

S – Supportive

H - Highly Related

XIV. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOME

Course Outcomes		Program Outcomes												Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	S		S										Н			
2	S	S	S	0	0		0									
3			S										S			
4	S	Н											Н			
5	Н	Н											Н			

6			Η					S	
7	S		S						
8	Н	Н							
9		Н						Н	
10			Н					Н	
11	S		S						
12		Н	S					S	
13	Н		S					Н	

S – Supportive

H - Highly Related

Prepared by: Mr. A Sathish Kumar, Assistant Professor, EEE

ELECTRICAL AND ELECTRONICS ENGINEERING