Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTION

Course Title	:	PROBABILITY	PROBABILITY AND STATISTICS							
Course Code	:	A30008								
G Gt t	:	Lectures	Lectures Tutorials Practicals							
Course Structure	:	4	1	-	4					
Course Coordinator	:	Mrs. L. Indira, Ass	sociate Professor							
Team of Instructors	:	Mrs. L. Indira, Associate Professor Mr. Ganesh Kumar, Assistant Professor.								

I. COURSE OVERVIEW

The course matter is divided into five chapters covering duly-recognized areas of theory and study. This course develops abstract and critical reasoning by studying logical proofs and the axiomatic method as applied to basic probability and to make connections between probability and other branches of mathematics. The topics covered include probability, random variables and distributions, correlation and regression, sampling distribution, testing of hypothesis for large samples and small samples, queuing theory and stochastic process. The course helps students gain an appreciation for the diverse applications of statistics and its relevance to their lives and fields of study.

II. PREREQUISITE(S)

Level	Credits	Periods	Prerequisite
UG	4	5	Basic Statistics and Algebra

III. MARKS DISTRIBUTION

Sessional Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of subjective test. The subjective test is for 20 marks, with duration of 2 hours. Subjective test of each semester shall contain 5 one mark compulsory questions in part-A and part-B contains 5 questions, the student has to answer 3 questions, each carrying 5 marks.		
First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.	75	100
Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.		

IV. EVALUATION SCHEME

S.No	Component	Duration	Marks
1	I Mid examination	90 minutes	20
2	I Assignment		05
3	II Mid examination	90 minutes	20
4	II Assignment		05
5	External examination	3 hours	75

V. COURSE OBJECTIVES

- I. Expose students to the elements of probability, probability distributions and statistical inference.
- II. Provide an introduction to probability and statistics with applications.
- III. Develop an understanding about the role of statistics in engineering.
- IV. Develop an understanding about the application of statistical analysis to solve real-life problems.

VI. COURSE OUTCOMES

After completing this course the student must demonstrate the knowledge and ability to:

- 1. **Recall** the basics of permutation and combination.
- 2. **Demonstrate** an understanding of the basic concepts of probability and random variables.
- 3. **Classify** the types of random variables and calculate mean and variance.
- 4. **Recognize** where the Binomial Distribution and Poisson distribution could be appropriate model and find mean & variance of the distributions.
- 5. **Apply** the inferential methods relating to the means of Normal Distributions.
- 6. **Explain** multiple random variables and covariance of two random variables.
- 7. Calculate the correlation and regression to the given data.
- 8. **Understand** the concept of sampling distribution of statistics and in particular describe the behavior of the sample mean.
- 9. **Understand** the foundation for classical inference involving confidence interval and hypothesis testing.
- 10. **Apply** testing of hypothesis for large samples and small samples.
- 11. **Describe** the queuing system, mean arrival and service rates.
- 12. Calculate expected queue length and waiting lines
- 13. **Define** random process, Markov chain and stochastic matrix and limiting probabilities.
- 14. Calculate the gambler ruin for the given data.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an Engineering. specialization to the solution of complex engineering problems.	Н	Assignments, Tutorials
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Н	Assignments
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	S	Assignments
PO4	Conduct investigations of complex problems: Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	S	Assignments

PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	N	-
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	N	-
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	N	-
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	N	-
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	N	-
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	N	,
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	N	-
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	N	-

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency Assessed by
PSO 1	Professional Skills: The ability to research, understand and implement	S	Lectures,
	computer programs in the areas related to algorithms, system software,		Assignments
	multimedia, web design, big data analytics, and networking for efficient		
	analysis and design of computer-based systems of varying complexity.		
PSO 2	Problem-Solving Skills: The ability to apply standard practices and strategies	S	Assignments
	in software project development using open-ended programming		
	environments to deliver a quality product for business success.		
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern	S	Guest
	computer languages, environments, and platforms in creating innovative career		Lectures
	paths, to be an entrepreneur, and a zest for higher studies.		

N - None S - Supportive H – Highly Related

IX. SYLLABUS

UNIT-I

Single Random variable and probability distribution: Random Variable-Discrete and continuous. probability distributions, mass function/density function of a probability distribution. mathematical expectation, moments about origin, central moments. Moment generating function of probability distribution. Binomial, passion & normal distributions and their properties. Moment generating functions of the above three distributions and hence find the mean and variance

UNIT-II

Multiple Random variables, Correlation & Regression: Joint probability distribution-joint probability mass/density function, marginal probability mass/density function, covariance of two random variables, correlation-coefficient of correlation, the rank correlation Regression-Regression coefficient. The lines of regression and multiple correlation & regression.

UNIT-III

Sampling Distribution and Testing of Hypothesis:

Sampling: Definition of population, sampling, statistic, parameter. Types of sampling, expected values of sample mean and variance, sampling distribution, standard error, sampling distribution of means and sampling distribution of variance.

Parameter estimation-likelihood estimation, interval estimation.

Testing of Hypothesis: Null hypothesis, alternative hypothesis, type-I &type II errors-critical region, confidence interval, level of significance, one sided test, two sided test.

Large sample tests:

- i) Test of equality of means of two samples equality of sample mean and population mean(cases of known variance & unknown variance, equal and unequal variances)
- ii) Tests of significance difference between sample S.D and population S.D
- iii) Tests of significance difference between sample proportion and population proportion & difference between two samples proportions.

Small sample tests:

Student t-distribution, its properties; test of significance difference between sample mean and population mean; difference between means of two small samples. Snedecor's F-distribution and its properties. Test equality of two population variances, Chi-square distribution and its properties, Chi-square test of goodness of fit

UNIT-IV

Queuing Theory: Structure of a queuing system, operating characteristics of queuing system. Transient and steady states, terminology of queuing system, arrival and service processes-pure birth-death process-deterministic queuing models-M/M/1 model of infinite queue, M/M/1 model finite queue.

UNIT-V

Stochastic processes: Introduction to stochastic process-classification of random processes,methods of description of random processes,stationary and non-stationary random process,average values of single random process and two or more random process.Markov process,Markov chain,classification of states-examples of Markov chains,Stochastic matrix.

Textbooks:

- 1. Dr. B. S. Grewal, "Higher Engineering Mathematics", Khanna publishers.
- 2. Sheldon M Ross, "Probability and Statistics for Engineering and Scientists", Academic press.
- 3. S. D. Sarma, "Operation Research".

Referencebooks:

- 1. K. B. Datta and M.A.S.Srinivas, "Mathematics for Engineering", Cengage Publications.
- 2. T. K. V. Iyengar, B. Krishna, "Probability and Statistics", Gandhi Et.
- 3. S. C. Gupta and V. K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons.
- 4. Jay I Devore, "Probability and Statistics for Engineers and Scientists", California, 2004.

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Course Learning Outcomes	Topics to be covered	Reference
1	Demonstrate an understanding of	Single random variables and	T1,R2
	the basic concept of probability	probability distributions:	
	and random variables	Introduction to probability	

	D 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T C	TI D2
2	Describe the concept of random variables	Definition of random variable	T1,R2
3	Contrast discrete random variables and calculate the mean and variance of discrete random variables	Discrete probability distributions	T1,R2
4	Contrast continuous Random variables and calculate the mean and variance of continuous Random variables	Continuous probability Distributions	T1,R2
5	Recall the continuous probability function	Density function of a probability Distribution	T1,R2
6	Identify mathematical mean and find moment about origin	Mathematical expectation, moment about origin	T1,R2
7	Generalize central moments and moment generating functions of a probability distribution	Central moments, moment generating function of a probability distribution	T1,R2
8-9	Recall characteristics of the Binomial Distribution and find mean, variance	Binomial distribution	T1,R2
10-11	Recognize cases where Poisson Distribution could be appropriate model to find mean and variance	Poisson distribution	T1,R2
12-14	Apply Normal Distributions find the probability over a set of values, mean and variance	Normal distribution and their properties	T1,R2
15	Apply probability distribution to find moment generating functions	Moment generating functions of three distributions	T1,R2
16	Recall the properties of sample correlation and identify which variable in Regression Analysis	Multiple random variables, correlation and regression: Introduction joint probability Distribution	T1,R2
17	Apply probability distribution	Joint probability mass or density function	T1,R2
18-19	Apply marginal probability density function	Marginal probability mass or density function	T1,R2
20	Identify the covariance of two random variables	Covariance of two random Variables	T1,R2
21	Recognize the limitation of correlation as a summary of bivariate data.	Coefficient of correlation	T1,R2
22	Interpret the correlation between the bivariate data by allotting ranks.	Rank correlation	T1,R2
23-24	Define the concept of least squares estimation in linear regression	Regression coefficient	T1,R2
25-26	Estimate the linear model to a bivariate data	The lines of regression	T1,R2
27-28	Recognize the multiple correlation of bivariate data	Multiple correlation and regression	T1,R2
29	Recall the sampling distribution of the sample mean in general situation	Sampling distribution and testing of hypothesis: definitions of sampling distributions	T1,R2

20.21	Distinguish hater the last	T	T1 D2
30-31	Distinguish between a population	Types of sampling, expected	T1,R2
	and a sample and between	values of sample mean and	
	parameters & statistics	Variance	
32-33	Recall the sampling distribution	Sampling distributions of	T1,R2
	of the sample mean in general	means and variance	
	situation		
34-35	Interpret the confidence interval	Estimations	T1,R2
	and confidence level		
36	Understand the foundation for	Testing of hypothesis	T1,R2
	classical inference involving		
	hypothesis testing		
37	Explain the procedure and two	Procedure for testing of	T1,R2
	types of errors possible	hypothesis	
38	Identify the confidence interval	Testing of hypothesis with	T1,R2
	with single mean	single mean	,
		single mean	
39-40	Identify the confidence interval	Testing of hypothesis with	T1,R2
37-40	with difference between the mean	difference of means	11,112
			m1 22
41-42	Identify the confidence interval	Testing of hypothesis with	T1,R2
	with difference between the	single Proportion	
12.11	proportions		T1 D2
43-44	Identify the confidence interval	Testing of hypothesis with	T1,R2
	with difference between the	difference of proportions	
15.16	proportions		T1 D2
45-46	Recall the definition of a t-	Student's t-tests and its	T1,R2
	statistics in terms of statistics of	properties	
15.10	sample from a normal distribution	7	T1 D2
47-48	State and apply the definition of	F-test	T1,R2
40.50	F-distribution	E	T1 D2
49-50	State and apply the definition of	F-test	T1,R2
51	distribution	Oin th	T2 D2
31	Apply Poisson process in finding	Queuing theory:	T3,R2
	arrival and departure rates.	Introduction to queuing	
		theory	
52	Define and explain basic concepts	Structure of queuing system	T3,R2
	in the theory Markov processes,		
	M/M/1 queuing systems		
53	Derive and apply main formulas	Characteristics of queuing	T3,R2
1	for some properties (such as	system	,
1	stationary probabilities, average		
	waiting and system time,		
	expected number of customers in		
1	the queue, etc.) of M/M/1		
	queuing systems.		
54	Analyseand solve problems	Transient and steady state	T3,R2
55	Calculate the traffic intensity,	Pure birth and death process	T3,R2
	blocked traffic and the utilization	2 2.70 off at and death process	10,112
	of some queuing systems		
56	Define and explain basic concepts	M/M/1-model -1	T3,R2
	in the theory Markov processes,		10,112
1	M/M/1 queuing systems		
57	Define and explain basic concepts	M/M/1-model -2	T3,R2
3,	in the theory Markov processes,	112/11/11/11/11/04/11	13,112
1	M/M/1 queuing systems		
58	Understand the theory of	Stochastic process:	T3,R2
	multivariate data	introduction to stochastic	10,112
		miroduction to stochastic	

		processes	
59	Classify different types of randomprocesses	Classification of random processes	T3,R2
60	Define and explain basic concepts in the theory Markov processes	Markov process	T3,R2
61	Classify different states of Markov process	Classification of state	T3,R2
62	Understand the concept of Markov chain	Markov chains	T3,R2
63	Define stochastic matrix and apply the process to practical problems	Stochastic matrix	T3,R2

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES:

Course							Program Specific Outcomes								
Objectives	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
I	Н	Н											S	S	
II	S	Н											S	S	
III	Н												S		
IV		S												S	

N = None S = Supportive H = Highly related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF TSHE PROGRAM OUTCOMES:

Course Outcomes	Program Outcomes												Program Specific Outcomes		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1	Н	Н											S	S	
2	Н	S											S		
3	S	S		S										S	
4	Н												S		
5	S												S		
6	Н													S	
7		Н											S		
8	Н													S	
9		S											S		
10		S											S		
11	S													S	
12	Н		S										S		
13	S	S												S	S
14	Н												S		

N = None S = Supportive H = Highly related

Prepared by:

Mrs. L. Indira, Associate Professor