

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY COURSE DESCRIPTION FORM

Course Title	OPERATING SYS'	OPERATING SYSTEMS									
Course Code	A50510	A50510									
Regulation	R15 – JNTUH	R15 – JNTUH									
Academic Year	2017-18	2017-18									
Course Structure	Lectures Tutorials Practicals Credits										
Academic Year 20 Course Structure	4	-	-	4							
Course Coordinator	Mrs.B.Dhanalaxmi, A	Associate Professor,	IT								

I. COURSE OVERVIEW:

This course provides a comprehensive introduction to operating system design concepts, data structures and algorithms. The course is designed to provide in-depth critique on the problems of resource management and scheduling, concurrency and synchronization, memory management, file management, peripheral management, protection and security. This course is intended to discuss the topics in a general setting not tied to any one particular operating system. Throughout the course, the study of practical aspects that pertain to the most popular operating systems such as Unix/Linux and Windows are considered as case studies.

II. PREREQUISITE(S):

Level	Credits	Periods/ Week	Prerequisites
UG	1	5	Data Structure and Algorithms,
00	4	5	Computer Architecture

III.

M MARKS DISTRIBUTION:

Sessional Marks	University End Exam marks	Total marks
Midterm Test		
There shall be two midterm examinations. Each midterm examination consists of essay paper, objective paper and assignment.		
The essay paper is for 10 marks of 60 minutes duration and shall contain 4 questions.		
The objective paper is for 10 marks of 20 minutes duration. It consists of 10 multiple choice and 10 fill-in-the blank questions, the student has to answer all the questions and each carries half mark.	75	100
First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.		
Five marks are earmarked for assignments. There shall be two assignments in every theory course. Assignments are usually issued at the time of commencement of the semester. These are of problem solving in nature with critical thinking.		

Sessional Marks	University End Exam marks	Total marks
Marks shall be awarded considering the average of two midterm tests in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1.	I Mid Examination	80 minutes	20
2.	I Assignment	-	5
3.	II Mid Examination	80 minutes	20
4.	II Assignment	-	5
5.	External Examination	3 hours	75

V. COURSE OBJECTIVES:

- 1 Understand basic concepts of Operating Systems and its objectives.
- 2 Master the concepts of processes, inter-process communication, synchronization and scheduling.
- 3 Analyze the performance of memory management techniques in various real-time scenarios.
- 4 Master the concepts of data input/output, storage and file management
- 5 **Distinguish** the techniques for deadlock detection, prevention and recovery.

VI. COURSE OUTCOMES:

At the end of the course the students are able to:

- 1 **Understand** the difference between process & thread, issues of scheduling of user-level processes/ threads and their issues
- 2 Use modern operating system calls and synchronization libraries in software or hardware interfaces.
- 3 Infer the performance of page replacement algorithms in various scenarios.
- 4 **Recognize** the issues related to file system interface and implementation, disk management.
- 5 **Understand** the concepts of deadlock in operating systems and how they can be managed / avoided and implement them in multiprogramming system.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignments, Tutorials
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Н	Assignments
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	S	Mini Projects
PO4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	S	Projects
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	S	Projects
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	N	
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	N	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	Ν	
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	N	
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	N	
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	N	
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	S	Lectures, Projects

N - None

S - Supportive

H - Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.	Н	Lectures, Assignments
PSO2	Software Engineering Practices: The ability to apply standard practices and strategies in software service management using open- ended programming environments with agility to deliver a quality service for business success.	Н	Projects
PSO3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	S	Guest Lectures

N - None S - Supportive H - Highly Related

IX. SYLLABUS:

UNIT - I

Operating System Introduction: Operating Systems objectives and functions, Computer System Architecture, OS Structure, OS Operations, Evolution of Operating Systems - Simple Batch, Multi programmed, time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time systems, Special-Purpose Systems, Operating System services, User OS interface, System Calls, Types of System Calls, System Programs, Operating System Design and Implementation, OS Structure, Virtual Machines.

UNIT – II

Process and CPU Scheduling - Process Concepts-The Process, Process State, Process Control Block, Threads, Process Scheduling-Scheduling Queues, Schedulers, Context Switch, Preemptive Scheduling, Dispatcher, Scheduling Criteria, Scheduling algorithms, Multiple-Processor Scheduling, Real-Time Scheduling, Thread Scheduling, Case Studies: Linux, Windows.

Process Coordination-Process Synchronization, The Critical Section Problem, Peterson's solution, Synchronization Hardware, Semaphores, and Classic Problems of Synchronization, Monitors, Case Studies: Linux, Windows.

UNIT – III

Memory Management and Virtual Memory – Logical & Physical Address Space, Swapping, Contiguous Allocation, Paging, Structure of Page Table, Segmentation, Segmentation with Paging, Virtual Memory, Demand Paging, Performance of Demanding Paging, Page Replacement, Page Replacement Algorithms, Allocation of Frames, Thrashing.

$\mathbf{UNIT} - \mathbf{IV}$

File System Interface – The Concept of File, Access methods, Directory Structure, File System Mounting, File Sharing, Protection, File System Implementation – File System Structure, File System Implementation, Allocation methods, Free-Space Management, Directory Implementation, Efficiency and Performance.

Mass Storage Structure – Overview of Mass Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, Disk Management, and Swap space Management.

UNIT – V

Deadlocks – System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Recovery from Deadlock.

Protection – System Protection, Goals of Protection, Principles of Protection, Domain of Protection, Access Matrix, Implementation of Access Matrix, Access Control, Revocation of Access Rights, Capability-Based Systems, Language-Based Protection.

Text books:

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Principles", 8e, Wiley Student Edition.
- 2. W. Stallings, "Operating Systems Internals and Design Principles", 6e, Pearson.

References:

- 1. S. Godbole, "Operating Systems", 2e, TMH.
- 2. P. C. P. Bhatt, "An Introduction to Operating Systems", PHI.
- 3. S. Haldar and A. A. Aravind, "Operating Systems", Pearson Education.
- 4. T. W. Doeppner, "Operating Systems in Depth", Wiley.

X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture	Topics to be covered	Course Learning Outcomes	Reference
No.			
1 - 2	Operating System Introduction:	Understand the importance of OS and	T2: 2.1
	Operating Systems Objectives &	its functions	T1: 1.1 - 1.5
	Functions, Computer System		
	Architecture, OS Structure And		
	Operations		
3 - 4	Evolution of Operating Systems -	Associate the types of operating	T2: 2.2
	Simple Batch, Multi programmed,	systems with real-life applications	
	time-shared, Personal Computer,		
	Parallel, Distributed Systems,		
	Real-Time systems, Special-		
	Purpose Systems		
5 - 6	OS Services, User OS Interface,	Interpret the OS services and system	T1: 2.1 - 2.5
	Systems Calls, Types of Systems	calls	
	Calls, System Programs		
7 - 8	OS Design & Implementation, OS	Explain the benefits of building	T1: 2.6 - 2.8
	Structure, Virtual Machines	abstract layers in hierarchical fashion	
		and virtualization	
9 - 10	Process & CPU scheduling:	Compare and contrast the common	T1: 3.1 - 3.4
	Process Concepts, Process	algorithms used for both preemptive	T2: 3.1 - 3.4
	Scheduling - Scheduling Queues,	and non-preemptive scheduling of tasks	
	Schedulers, Context Switch,	in operating Systems	
	Preemptive Scheduling,		
	Dispatcher		
11 - 13	Scheduling Criteria, Scheduling		T1: 5.2 - 5.3
	Algorithms		
14	Multiple Processor Scheduling,	Examine appropriate scheduling	T1: 5.5
	Real-Time Scheduling	algorithm for real-life applications	T2:10.1-10.2

15	Thread Scheduling	Infer advantages of threads over Processes	T1: 5.4
16	Case Studies - Linux, Windows	Associate the process management in	T1:5.6, 21.4
		real operating systems	12: 8.3 - 8.5
17 - 19	Process coordination: Process	Summarize the range of mechanisms	T1: 6.1 - 6.4
	Synchronization, The Critical -	that can be employed at the operating	
	Section Problem, Peterson's	system level to realize concurrent	
	Solution, Synchronization	systems and describe the benefits of	
	Hardware	each.	
20 - 21	Semaphores & Classical Problems	Understand classical problems of	T1: 6.5 - 6.7
	of Synchronization, Monitors	synchronization	
22	Case Studies: Linux, Windows	Discuss process synchronization in	T2: 6.7 - 6.8,
		real operating systems	6.10
23 - 24	Memory Management &	State basics of memory	T1: 8.1 - 8.3
	Virtual	management	
	Memory: Logical & Physical	C	
	Address		
	Space Swapping Contiguous		
	Memory		
	Allocation		
25 26	Desing Structure of Dese	Demonstrate the concents of	Τ 1· 9 / 9 5
23 - 20	Table	Demonstrate the concepts of	11. 0.4 - 0.3
07		memory management such as	T 1 0 <i>C</i>
27	Segmentation, Segmentation	paging and segmentation	11: 8.6
	with Paging		
28 - 29	Virtual Memory, Demand	Illustrate the benefits of virtual	T1: 9.1 - 9.2
	Paging,	memory and demand paging	
	Performance of Demand		
	Paging		
30 - 32	Page Replacement, Page	Order the page replacement	T1: 9.4
	Replacement	algorithms according to their	
	Algorithms	performance	
33	Allocation of Frames,		T1: 9.5 - 9.6
	Thrashing		
34	File system Interface: Concept	Summarize the full range of	T1:10.1-10 3
	of File	considerations that support file	
	Access Methods Directory	Systems Compare and contrast	
	Structures	different approaches to file	
	Suuciales	unterent approaches to file	
		organization, recognizing the	
25 25		surenguns and weaknesses of each.	T 1 10 4 10 4
35 - 36	File System Mounting, File	Outline the issues of file system	11:10.4-10.6
	Sharing,	implementation	11:11.1-11.2
	Protection, File System		
	Structure,		
	Implementation		
37 - 38	File Allocation Methods	Define file allocation methods and	T1: 11.4
		performance metrics	
39 - 40	Free-Space Management,	Outline the issues of file system	T1: 11.3,
	Directory	implementation	11.5 -11.6
	Implementation. Efficiency	▲	
	and		
	Performance		
41 - 42	Mass Storage Structure	Distinguish between various	T1·12 1-2 4
1 · · · · · · · · · · · · · · · · · · ·	1.1400 Storage Structure.		

	Overview, Disk	techniques for disk management	
	Structure, Disk Attachment		
43 - 44	Disk Scheduling and	Explain conditions that lead to	T1:12.5-12.6
	Management, Swap-	deadlock and differentiate between	
	Space Management	deadlock, starvation, and race	
45	Deadlocks: System Model,	conditions.	T1: 7.1 - 7.2
	Deadlock		
	Characterization		
46 - 48	Methods of Handling	Understand the difference between	T1: 7.3 - 7.5
	Deadlocks,	Preventing and avoiding deadlocks.	
	Deadlock Prevention and		
	Avoidance		
49 - 50	Dead Lock Detection,		T1: 7.6 - 7.7
	Recovery from		
	Deadlock		
51 - 52	Protection: System Protection,	Quote the goals and principles of	T1:14.1-
	Goals of	system protection	14.3
	Protection, Principles of		
	Protection,		
	Domain of Protection		
53 - 54	Access Matrix, Implementation	Clarify the different types of access	T1:14.4-14.7
	of Access	control	
	Matrix, Access control,		
	Revocation of		
	Access Rights		
55 - 56	Capability- Based systems,	Match appropriate protection	T1:14.8-14.9
	Language -	system for the needs of the system.	
	Based Protection		

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Objectives		Program Outcomes												Program Specific Outcomes	
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н				Η							Н	S		
Π		S			S									Н	
III	S											Н			Н
IV		Н			S								S		S
V	Н				S							S		S	

S - Supportive

H - Highly Related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes		Program Outcomes											Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н				Н							Н	S		
II					S							S		S	
III	S	Н													Н
IV		Н			S							Н	Н		S
V	Н				S							S		S	

S - Supportive H - Highly Related

Prepared by: Mrs.B.Dhanalaxmi, Associate Professor, IT Date : 01-07-2017

HOD, IT