

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMUS) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTION FORM

Course Title	INTRODUCTION TO AEROSPACE ENGINEERING											
Course Code	BAE701	BAE701										
Regulation	R16	R16										
Comment Stars America	Lectures	Tutorials	Practicals Credits									
Course Structure	3 - 3											
Course Coordinator	Mr. R. Sabari vihar, As	sistant Professor,										
Course Faculty	Mr. M. Vijay Kumar Assistant Professor Mr. R. Sabari vihar, Assistant Professor Ms. M.Snigdha, Assistant Professor											

I. COURSE OVERVIEW:

Introduction to Aerospace engineering covers the fundamental concepts, and approaches of aerospace Engineering, and are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighterthan-air (LTA) vehicle design project, where they design, LTA vehicles. The connections between theory and practice are realized in the design exercises. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new science and mathematics

II. PREREQUISITE(S):

Γ	Level	Course Code	Semester	Prerequisites	Credits
	UG	BE701	Ι	Introduction To Aerospace Engineering	4

III. MARKS DISTRIBUTION:

Midterm TestThere shall be two midterm examinations. Each midterm examination consists of essay paper and assignment.The essay paper is for 25 marks of 120 minutes duration and shall contain 5 One mark compulsory questions in part-A and 4 questions in part-B.The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining Portion. Five marks are earmarked for technical seminar and term paper. Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by
OF I COMINCAL SEMINIAL AND LETITI DADEL IS TOL MAXIMUM OF J MALKS. MALKS ALE AWALUED UV

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1.	I Mid Examination	120 minutes	25
2.	I Assignment	-	5
3.	II Mid Examination	120 minutes	25
4.	II Assignment	-	5
5.	External Examination	3 hours	70

V. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

- I. Outline different aspects of flight vehicles and their operational environment.
- II. Description of flow behavior of one-dimensional incompressible and compressible flow, twodimensional flow and finite wing.
- III. Apprise about boundary layer effects, aerodynamic forces on airfoils, wings and high-lift systems.
- IV. Analyze airplane performance, stability and control.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

- I. Choose a concept or idea of technical real time problems to form solutions for the same.
- II. Develop one- self to extend the outputs of research
- III. Outline performance of the output of research, development, or design
- IV. Identify, solve new problems and gain new knowledge
- V. Understand about the performance parameters, performance in steady flight, cruise, climb, range, endurance, accelerated flight symmetric maneuvers, turns, sideslips, takeoff and landing
- VI. Understand the theoretical knowledge behind the design and development of aircrafts
- VII. Discuss the principle constituents of the transportation system involved in civil and commercial aircrafts and understanding the national and international regulations of the aviation organizations
- VIII. Extend the outputs of earlier research and discover good ideas for new products or improving current products
- IX. Gain knowledge about the anatomy of aircraft, helicopters, satellites and other air vehicles, and about the working importance of each component in an air vehicle
- X. Ability to summarize the efficiency of the design in achieving the mission goal and safety of flight

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering Knowledge Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	Н	Assignments, Tutorials
PO2	Problem Analysis Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	G	
PO3	Design/Development of Solutions Design solutions for complex meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	S S	Assignments Real time Applications
PO4	Conduct Investigations of Complex Problems Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions	S	Real time Applications
PO5	Modern Tool Usage Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations	S	Projects
PO6	The Engineer and Society Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	N	
PO7	Environment and Sustainability Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development	S	Assignments
PO8	Ethics Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice	Ν	
PO9	Individual and Team Work Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	Ν	
PO10	Communication Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	S	Presentation
PO11	Project Management and Finance Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments	S	Seminars, Discussions
PO12	Life-long Learning Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	H	Discussion Development of Prototype, Projects
	N - None S - Supportive		ghly Related

N - None

S - Supportive

H - Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	Н	Lectures, Assignments
PSO2	Problem-solving skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	S	Tutorials
PSO3	Successful career and Entrepreneurship: An understanding of social- awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.	S	Seminars and Projects

N - None

S - Supportive

H - Highly Related

IX. SYLLABUS:

UNIT-I INTRODUCTION TO AERONAUTICS AND ASTRONAUTICS

Historical perspective of aeronautics and astronautics, anatomy of the airplane, anatomy of a space vehicle, aerodynamic forces; Parameters affecting aerodynamic forces: Dimensional analysis; Theory and experiment, wind tunnels; Atmosphere: Properties of U.S. standard atmosphere, definitions of altitude.

UNIT II: ONE DIMENSIONAL FLOW IN INCOMPRESSIBLE AND COMPRESSIBLE FLUIDS, TWO DIMENSIONAL FLOW AND FINITE WING

Continuity equation, Bernoulli's equation; Application of Bernoulli's equation: Airspeed indicators and wind tunnels, one dimensional compressible flow concepts, speed of sound, compressible flow equations in a variable-area stream tube, application to airspeed measurement, applications to channels and wind tunnels; Two dimensional flow and finite wing: Limitations of one dimensional flow equations; Theory of lift: circulation, Airfoil pressure distribution, Helmholtz vortex theorems, Simulating the wing with a vortex Line, downwash, elliptic lift distribution; Lift and drag: Momentum and energy, Slope of finite wing lift curve, verification of Prandtl wing theory, additional effects of wing vortices, search for reduced induced drag

UNIT III: VISCOUS EFFECTS, DRAG DETERMINATION, AIRFOILS, WINGS AND HIGH-LIFT SYSTEMS

Boundary layer, boundary layer on bluff bodies, creation of circulation, laminar and turbulent boundary layers: skin friction, nature of Reynolds number, effect of turbulent boundary layer on separation; Total Incompressible drag: Parasite drag, drag due to lift, importance of aspect ratio; Compressibility drag: Prediction of drag divergence Mach number, sweptback wings, total drag; Supersonic flow: Shock waves and Mach waves, supersonic wing lift and drag, area rule, supersonic aircraft, airfoils.

Wings: early airfoil development, modern airfoils, supersonic airfoils, airfoil pitching moments, effects of sweepback on lift, airfoil characteristics, airfoil selection and wing design; High-lift Devices: Airfoil maximum lift coefficient, leading and trailing edge devices, effect of sweepback, deep stall, effect of Reynolds number, propulsive lift.

UNIT IV: AIRPLANE PERFORMANCE, STABILITY AND CONTROL, AEROSPACE PROPULSION

Level flight performance, climb performance, range, endurance, energy-state approach to airplane performance, takeoff performance, landing performance; Static longitudinal stability; Dynamic longitudinal stability; Dynamic lateral stability; Control and manoeuvrability: Turning performance, control systems, active controls; Aerospace propulsion: Piston engines, gas turbines; Speed limitations of gas turbines: Ramjets, propellers, overall propulsion efficiency, rocket engines, rocket motor performance, propulsion-airframe integration.

UNIT V: AIRCRAFT STRUCTURES, HYPERSONIC FLOWS, ROCKET TRAJECTORIES AND ORBITS

Aircraft structures: Importance of structural weight and integrity, development of aircraft structures, importance of fatigue, materials, loads, weight estimation; Hypersonic flows: temperature effects, Newtonian theory; rocket trajectories, multistage rockets, escape velocity, circular orbital or satellite velocity, elliptical orbits, orbital maneuvers.

Text Books:

- 1. Richard S. Shevell, Fundamentals of Flight, Pearson Education Publication, 2nd Edition, 1988
- 2. Newman D, "Interactive Aerospace Engineering and Design", McGraw-Hill, 1st Edition, 2002
- 3. Barnard R.H and Philpot. D.R, "Aircraft Flight", Pearson, 3rd Edition, 2004

Reference Books:

- 1. John D. Anderson, "Introduction to Flight", Tata McGraw-Hill Publishing Company, Fifth Edition, Fifth Edition, 2007
- 2. A. C. Kermode, "Flight without Formulae", McGraw Hill, 4th Edition, 1997
- 3. P. J. Swatton, "Flight Planning", Blackwell Publisher, 6th Edition, 2002

IX. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture No.	CLO	Unit	Learning Objective	Topics to be covered	Reference
		Cour	se Content Delivery Lecture Wise I SPELL	e Break-up of Topics	
1	1		Explain history of aircraft.	Historical perspective of aeronautics and astronautics, anatomy of the airplane	T1,R1
2-3	2		Explain the anatomy of aircraft	Anatomy of a space vehicle, aerodynamic forces	T2
4-5	3	Ι	Describe aerodynamic forces and parameters affecting them	Parameters affecting aerodynamic forces: Dimensional analysis;	R1,T2
6	4		Explain aerodynamic forces	Theory and experiment, wind tunnels	R1
7-8	5		Explain about atmosphere and what is standard atmosphere	Atmosphere: Properties of U.S. standard atmosphere, definitions of altitude.	T2
9-10	6		Explain different theories that define flow parameters	Continuity equation, Bernoulli's equation; Application of Bernoulli's equation: Airspeed indicators and wind tunnels, one dimensional compressible flow concepts	T1,R2
11-12	7	Π	Define mach speed	speed of sound, compressible flow equations in a variable-area stream tube, application to airspeed measurement	T1,T2
13	8		Describe different equipment used in aerodynamics	applications to channels and wind tunnels;	T1,R2
14-15	9		Describe different wing configurations	Two dimensional flow and finite wing : Limitations of one dimensional flow equations;	T1

			Describe have simerafter alteria life		
16-18	10		Describe how aircrafts obtain lift	Theory of lift: circulation, Airfoil pressure distribution, Helmholtz vortex theorems	T1
19-21	11		Explain different terms in flow over a wing	Simulating the wing with a vortex Line, downwash, elliptic lift distribution;	T1
22-24	12		Describe about lift and its affects	Lift and drag: Momentum and energy, Slope of finite wing lift curve	T2
25-28	13		Explain Prandtl wing theory	verification of Prandtl wing theory, additional effects of wing vortices, search for reduced induced drag	T1
29-31	14		Describe about boundary layer	Boundary layer, boundary layer on bluff bodies,	T1,
32-33	15	Ш	Explain theories behind flow conditions	creation of circulation, laminar and turbulent boundary layers skin friction,	T1,R2
34-35	16		Define Reynolds number	nature of Reynolds number, effect of turbulent boundary layer on separation;	T1,R2
36-37	17		Explain types of drag	Total Incompressible drag: Parasite drag, drag due to lift, importance of aspect ratio; Compressibility drag	T1,R2
38-40	18		Explain affects of mach number	Prediction of drag divergence Mach number, sweptback wings, total drag; Supersonic flow	T1,R2
41	19		Explain about shock waves and how they are produced	Shock waves and Mach waves, supersonic wing lift and drag, area rule, supersonic aircraft, airfoils.	T1,R2
		Cours	se Content Delivery Lecture Wise II SPELL	e Break-up of Topics	
42-43	20	III	Discuss about development of wing, aerofoil.	development, modern airfoils, supersonic airfoils, airfoil pitching moments, effects of sweepback on lift, airfoil characteristics, airfoil selection and wing design	T1,T2
44	21		Explain about different high lift devices.	High-lift Devices: Airfoil maximum lift coefficient, leading and trailing edge devices	T1,T2
45	22		Discuss about the effect of sweep back wing	Effect of sweepback, deep stall, effect of Reynolds number, propulsive lift.	T1,T2
46-47	23		Explain about different flight conditions	Level flight performance, climb performance, range, endurance, energy-state approach to airplane performance, takeoff performance, landing	T1,T2

				performance	
			Explain different stability	Static longitudinal stability;	
48-49	24		conditions.	Dynamic longitudinal stability; Dynamic lateral stability	T1,R1
		IV	Define control and	Control and maneuvrability:	
50	25		maneuverability.	Turning performance, control systems, active controls	T1,R1
51	26		Discuss about propulsive devices in aircrafts	Aerospace propulsion: Piston engines, gas turbines	T1,R1
52	27		Discuss about gas turbines	Speed limitations of gas turbines	T1,R1
53	28		Explain different engines.	Ramjets, propellers, overall propulsion efficiency, rocket engines	T1,R1
54	29		Explain about rocket motor performance.	rocket motor performance, propulsion-airframe integration	T1
55	30		Explain about structures of aircraft	Aircraft structures: Importance of structural weight and integrity	T1
56-57	31		Discuss development of aircraft structures.	development of aircraft structures, importance of fatigue	T1,T2
58	32		Discuss about materials used in aircrafts	materials, loads, weight estimation	T1,T2
59	33	v	Explain different types of flows	Hypersonicflows:temperatureeffects,Newtonian theory	T1,T2
60	34		Explain about multi stage rocket	rocket trajectories, multistage rockets, escape velocity	T1,T2
61	35		Discuss about satellite terminologies	circular orbital or satellite velocity	T1,T2
63-64	55		Discuss about different types of orbits and maneuvers	elliptical orbits, orbital maneuvers	T1,T2

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM **OUTCOMES:**

Course Objectives						gram Spe tcomes	ecific								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	S	S				Н						S			Н
2	Н		S	S								S		S	S
3		S		S								S		S	S
4	Н	S	S									S		S	S
S _ Support	ive											Н.	Highly]	Related	

S – Supportive

H - Highly Related

:

Analyze airplane performance, stability and control. I.

XII. MAPPING COURSE OUTCOMES LEADING TO ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcome	Program Outcomes												Program Specific Outcomes			
S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	S	S	Н	S			S					S	S		Н	
2	H	S										S		S		
3	Н		Η			S						S		S		
4	S		S	S								S	S			
5			S											Н	S	
6	S		Н									S		Н		
7	S				S								S	S		
8		Н										S			Н	
9	H				S									S		
10	S		S				S					S	S			

Prepared by: R Sabari Vihar

Date: 24-Oct-2017

HOD,ECE