

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTION

Course Title	MECHANICS OF	MECHANICS OF SOLIDS									
Course Code	A30104	30104									
Course Structure	Lectures	Tutorials	Practicals	Practicals Credits							
	4	-	-	4							
Course Coordinator	Mrs. J. Swetha, Assist	ant Professor.									
Team of Instructors	USP Rao, Professor.										

I. COURSE OVERVIEW

Mechanics of Solids is the physical science that deals with the reaction of a body to movement and deformation due to mechanical, thermal, or other loads. The basis of virtually all mechanical design lies in how the material reacts to outside forces. Mechanics is the core of engineering analysis and is one of the oldest of the physical sciences. An in-depth understanding of material properties as well as how certain materials react to outside stimulus is paramount to an engineering education.

II. PREREQUISITE(S)

Level	Credits	Periods	Prerequisite	
UG	4	6	Engineering Mechanics, Metallurgy and Material Science, Physics, Mathematics.	

III. MARKS DISTRIBUTION

Sessional Marks		Iniversity End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists subjective test. The subjective test is for 20 marks, with duration of 2 hours. Subjective test of each semester shall contain 5 one mark compulsory question in part-A and part-B contains 5 questions, the student has to answer 3 questions, each carrying 5 marks.	of ons		
First midterm examination shall be conducted for the first two and half units syllabus and second midterm examination shall be conducted for the remaining portion.	of ng	75	100
Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.	1		

IV. EVALUATION SCHEME

S.No	Component	Duration	Marks
1	I Mid examination	90 minutes	20
2	I Assignment		05
3	II Mid examination	90 minutes	20
4	II Assignment		05
5	External examination	3 hours	75

V. COURSE OBJECTIVES

- I. To understand the theory of elasticity including stress, strain / displacement and Hooke's law and strain energy relationships.
- II. To understand the shear force and bending moment diagrams of symmetrical beams.
- III. To determine bending and shear stresses developed in beams of various sections. **Understand** the advantages and limitations of various measuring instruments
- IV. To understand various theories of failure, Mohr's circle of stresses, principle stresses and strains.
- V. To determine stresses in a shaft under torsion and in thin cylindrical shells.

VI. COURSE OUTCOMES

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Ability to apply the principles of elasticity, plasticity, stresses, strains and their relationships under various types of loads and to analyze the composite bars.
- 2. Able to draw shear force and bending moment diagrams for various loads.
- 3. To determine flexural and shear stresses developed in various sections of beams.
- 4. To find principle stresses and strains and to apply theories of failure in the design of various mechanical parts.
- 5. To determine stresses developed in a shaft and design of a shaft.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program outcomes	Level	Proficiency assessed by
PO1	Ability to apply acquired knowledge of science and engineering fundamentals in problem solving.	Н	Assignments and Exams
PO2	Ability to undertake problem identification, formulation and providing optimum solution in software applications.	Н	Assignments and Exams
PO3	Ability to utilize systems approach in designing and to evaluate operational performance of developed software.	S	Assignments and Exams
PO4	Graduates will demonstrate an ability to identify, formulate and solve complex information technology related problems.	N	
PO5	Graduate will be capable to use modern tools and packages available for their professional arena.	Н	Assignments and Exams
PO6	Understanding of the social, cultural responsibilities as a professional engineer in a global context.	N	
PO7	Understanding the impact of environment on engineering designs based on the principles of inter-disciplinary domains for sustainable development.	N	
PO8	Ability to understand the role of ethics in professional environment and implementing them.	N	
PO9	Competency in software development to function as an individual and in a team of multidisciplinary groups.	N	
PO10	Ability to have verbal and written communication skills to use effectively not	Ν	

	only with engineers but also with community at large.		
PO11	Ought to have strong fundamentals in Information Technology and be able to	Ν	
	have lifelong learning required for professional and individual developments.		
PO12	Be able to design, implement and manage projects in Information Technology	S	Assignments
	with optimum financial resources with, environmental awareness and safety		and Exams
	aspects.		

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency					
			Assessed by					
PSO 1	Professional Skills: The ability to research, understand and analyze various measuring instruments for displacement, temperature, pressure, level, flow, acceleration, vibration, strain, humidity, force, torque and power and their appropriate application.	Н	Lectures, Assignments					
PSO 2	Controlling practices: The ability to apply standard practices and strategies in measurement controlling with servo mechanisms.	S	Projects					
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern measuring and controlling techniques in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	Н	Guest Lectures					
	N - None S - Supportive H – Hig							

IX. SYLLABUS

UNIT-I

Elasticity and plasticity - Types of stresses & strains-Hooke's law- stress - strain diagram for mild steel

- Working stress - Factor of safety - Lateral strain, Poisson's ratio & volumetric strain - Elastic moduli & the relationship between them - Bars of varying section - composite bars - Temperature stresses. Strain energy - Resilience - Gradual, sudden, impact and shock loadings.

UNIT-II

Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, u.d.l., uniformly varying loads and combination of these loads – Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT-III

Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R Neutral axis

- Determination bending stresses - section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections - Design of simple beam sections.

Shear Stresses: Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, T angle sections.

UNIT-IV

Introduction – Stresses on an inclined section of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear – Mohr's circle of stresses – Principal stresses and strains – Analytical and graphical solutions. Theories of Failure: Introduction – Various theories of failure - Maximum Principal Stress Theory, Maximum Principal Strain Theory, Strain Energy and Shear Strain Energy Theory (Von Mises Theory).

UNIT-V

Theory of pure torsion – Derivation of Torsion equations : $T/J = q/r = N\theta/L$ – Assumptions made in the theory of pure torsion – Torsional moment of resistance – Polar section modulus – Power transmitted by shafts – Combined bending and torsion and end thrust – Design of shafts according to theories of failure. Thin Cylinders: Thin seamless cylindrical shells – Derivation of formula for longitudinal and

circumferential stresses – hoop, longitudinal and Volumetric strains – changes in dia, and volume of thin cylinders– Thin spherical shells.

TEXT BOOKS:

- T1. Strength of materials R.S. Kurmi and Gupta, S Chand Publications
- T2. Solid Mechanics, by Popov
- T3. Strength of Materials Ryder. G.H.; Macmillan Long Man Pub.
- T4. Strength of Materials W.A. Nash, TMH

REFERENCE BOOKS:

R1.Strength of Materials -By Jindal, Umesh Publications.

R2. Analysis of structures by Vazirani and Ratwani.

R3.Mechanics of Structures Vol -I by H.J.Shah and S.B.Junnarkar, Charotar Publishing House Pvt. Ltd.

R4. Strength of Materials by S. Ramamrutam, R. Narayan, Dhanpat Rai Publishing Company R5. Strength of Materials by R. K. Rajput, S Chand Publications.

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture	Course Learning	Topics to be covered	Reference
No.	Outcomes		
1-2	Explain material	UNIT-I	T1, R4
	properties	Elasticity and plasticity	
3-4	Explain the stresses	Types of stresses & strains-Hooke's	T1, R4, R5
	and strains	law	
5-6	Explain stress-strain	stress – strain diagram for mild steel	T1, R4
	diagram	- Working stress - Factor of safety	
7-9	Define various	Lateral strain, Poisson's ratio &	T1, R4
	parameters	volumetric strain	
10-12	Derive elastic	Elastic moduli & the relationship	T1, R4
	constants	between them	
13-15	Solve for stresses	Bars of varying section – composite	T1, R4, R5
	and strains	bars – Temperature stresses.	
16-18	Describe and Derive	Strain energy – Resilience –	T1, R4, R5
	strain energy for	Gradual, sudden, impact and shock	
	various loads.	loadings.	
19-20	Describe shear force	UNIT-II	R4, R5
	and bending	Shear Force and Bending	
	moment.	Moment:	
		Definition of beam – Types of	
		beams – Concept of shear force and	
		bending moment	
21-30	Draw and analyze	S.F and B.M diagrams for	T1, R4, R5
	shear force and	cantilever, simply supported and	
	bending moment	overhanging beams subjected to	
	diagrams.	point loads, u.d.l., uniformly varying	
		loads and combination of these	
		loads	
31-32	Identify point of	Point of contra flexure – Relation	T1, R4

	contraflexure	between S.F., B.M and rate of loading at a spation of a beam	
22.24	Domino handina		T1 D4
33-34	Derive bending		11, K4
	moment equation.	Theory of simple bending –	
		Assumptions – Derivation of L_{1}	
		bending equation: $M/I = f/y = E/R$	T1 D (
35-36	Determine bending	Neutral axis – Determination	T1, R4
	stresses	bending stresses	
37-39	Determine section	Section modulus of rectangular and	T1, R4, R5
	modulus of various	circular sections (Solid and Hollow),	
	sections.	I, T, Angle and Channel sections	T 1 D 1
40	Design various beam	Design of simple beam sections.	T1, R4
41.45	sections		
41-45	Derive and Analyze	Shear Stresses: Derivation of	T1, R4, R5
	shear stress	formula – Shear stress distribution	
	distribution	across various beams sections like	
		rectangular, circular, triangular, I, T	
		angle sections.	
46-47	Discuss stresses on	UNIT-IV	T1, R4
	inclined section.	Principal Stresses and Strains:	
		Introduction – Stresses on an	
		inclined section of a bar under axial	
		loading	
48-50	Solve biaxial stresses	Compound stresses – Normal and	T1, R4, R5
	on inclined section.	tangential stresses on an inclined	
		plane for biaxial stresses	
51-53	Construct Mohr's	Two perpendicular normal stresses	T1, R4, R5
	circle for principal	accompanied by a state of simple	
	stresses and strains.	shear Mohr's circle of stresses –	
		Principal stresses and strains –	
		Analytical and graphical solutions.	
54-58	Analyze various	Theories of Failure: Introduction –	T1, R4, R5
	theories of failures	Various theories of failure -	
		Maximum Principal Stress Theory,	
		Maximum Principal Strain Theory,	
		Strain Energy and Shear Strain	
		Energy Theory (Von Mises Theory).	
59-60	Derive an expression	UNIT-V	T1, R4
	for torsion	Torsion of Circular Shafts:	
		Theory of pure torsion – Derivation	
		of Torsion equations : $T/J = q/r =$	
		$N\theta/L$ – Assumptions made in the	
		theory of pure torsion	
61-63	Determine torsional	Torsional moment of resistance –	T1, R4
	moment of resistance	Polar section modulus	
64-65	Derive and	Power transmitted by shafts –	T1, R4, R5
	Determine power	Combined bending and torsion and	
	transmission and	end thrust	
	combined effects		
66-68	Design the shaft	Design of shafts according to	T1, R4, R5
	according theory of	theories of failure.	
	tailure		
69-70	Derive the formula	Thin Cylinders: Thin seamless	T1, R4, R5
	for longitudinal and	cylindrical shells – Derivation of	

	circumferential stresses of thin cylinders	formula for longitudinal and circumferential stresses	
71-73	Determine various strains for thin cylinders and spherical shells	Hoop, longitudinal and Volumetric strains – changes in dia, and volume of thin cylinders– Thin spherical shells.	T1, R4, R5

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES

Course		Program Outcomes													Program Specific Outcomes		
Objectives	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3		
Ι	Н	Н	S		Н							Н	S	Н	Н		
II																	
III	Н	Н	S	S				S	Н				S	Н	Н		
IV																	
V	Н	Н	S		Н									Н	Н		
N = None	:				S = Supportive H = H							ghly related					

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES

Course	Program Outcomes												Program Specific Outcomes			
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	
1	Н	Н	S	S	Н									Н	Н	
2																
3	Н	Н	S		Н							Н	S	Н	Н	
4																
5	Н	Н	S		Н								S	Н	Н	
N = None	None							S = Supportive H = Highly						y related		

Prepared by: Ms. I. Swetha, Assista

Ms. J. Swetha, Assistant Professor Prof. USP Rao, Professor.

HOD, MECHANICAL ENGINEERING