

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTION

Course Title	:	METALLURGY AND MATERIAL SCIENCE									
Course Code	:	A31803	A31803								
Course Structure	:	Lectures	Practicals	Credits							
	:	4	1	-	4						
Course Coordinator	:	Dr. K.G.K.MURT	Dr. K.G.K.MURTI, Professor.								
Team of Instructors	:	Dr. N N Ramesh,	Dr. N N Ramesh, Professor.								

I. COURSE OVERVIEW

Metallurgy and material science subject is backbone to mechanical engineering discipline. The students are given inputs on fundamentals of crystallography, microstructures and relation to properties of materials. Also students acquire knowledge on phase diagrams, heat treatment which will enable them to select materials for industrial applications. Inputs are also planned on ceramics, glasses, polymers and composites as present day designs are based on many advanced materials.

II. PREREQUISITE(S)

Level	Credits	Periods	Prerequisite
UG	4	5	Physics, Chemistry, Mathematics, Drawing

III. MARKS DISTRIBUTION

Sessional Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of subjective test. The subjective test is for 20 marks, with duration of 2 hours. Subjective test of each semester shall contain 5 one mark compulsory questions in part-A and part-B contains 5 questions, the student has to answer 3 questions, each carrying 5 marks.		
First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.	75	100
Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.		

IV. EVALUATION SCHEME

S.No	Component	Duration	Marks
1	I Mid examination	90 minutes	20
2	I Assignment		05
3	II Mid examination	90 minutes	20
4	II Assignment		05
5	External examination	3 hours	75

V. COURSE OBJECTIVES

- I. Understanding of metallurgical engineering concepts and properties.
- II. Analyze of microstructures of metals and alloys and relationship to heat treatment.
- III. Compare the properties of ceramics, glasses, composites and polymers for industrial applications.

VI. COURSE OUTCOMES

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Relate properties of metals to micro structures.
- 2. Apply the principles of heat treatment for improving properties.
- 3. Select metals and alloys for engineering applications.
- 4. **Understand** various advantages and limitations of non-metals.
- 5. **Identify** suitable metals, non-metals for various industrial products

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program outcomes	Level	Proficiency assessed by
PO1	Capability to apply the knowledge of mathematics, science and engineering in the field of mechanical engineering.	Н	Assignments, Practicals, Midterm and University examination
PO2	An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of mathematics, science and engineering.	Н	Assignments, Practicals, Midterm and University examination
PO3	Competence to design a system, component or process to meet societal needs within realistic constraints.	Н	Assignments, Practicals, Midterm and University examination
PO4	To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	Н	Assignments, Practicals, Midterm and University examination
PO5	An ability to formulate solve complex engineering problem using modern engineering and information Technology tools.	Н	Assignments, Practicals,

			Midterm and University examination
PO6	To utilize the engineering practices, techniques, skills to meet needs of the health, safety, legal, cultural and societal issues.	S	Practicals, Projects
PO7	To understand impact of engineering solutions in the societal context and demonstrate the knowledge for sustainable development.	S	Practicals, Projects
PO8	An understanding and implementation of professional and ethical responsibilities.	S	Practicals, Projects
PO9	To function as an effective individual and as a member or leader in multi disciplinary environment and adopt in diverse teams.	S	Practicals, Midterm and University examination, Projects, Technical activites.
PO10	An ability to assimilate, comprehend, communicate, give & receive instructions to present effectively with engineering community and society.	S	Practicals, Midterm and University examination, Projects, Technical activites.
PO11	An ability to provide leadership in managing complex engineering projects at multidisciplinary environment and to become a Technocrat.	Н	Practicals, Midterm and University examination, Projects, Technical activites. Mini Projects
PO12	Recognition of the need and an ability to engage in lifelong learning to keep abreast with technological changes.	Н	Practicals, Midterm and University examination, Projects, Technical activites.

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes							
PSO 1	Professional Skills: Capability to apply the knowledge of mathematics, science and engineering in the field of mechanical engineering.	Н	Assignments, Practicals, Midterm and University examination					
PSO 2	Engineering practices: An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of mathematics, science and engineering.	S	Assignments , Practicals, Midterm and University examination					

PSO 3		N- None S - Supportive H – High						
	N - None	H – Highly R	elated					

IX. SYLLABUS

UNIT-I

Structure of metals: Crystallography, Miller indices, packing efficiency, Density calculations, Grains and grain boundaries. Effect of grain size on the properties. Determination of grain size by different methods. **Constitution of alloys:** Necessity of alloying, Types of solid solutions, Hume-Rothery rules, Intermediate alloy phases

UNIT-II

Phase Diagrams: Construction and interpretation of phase diagrams, Phase rule, Lever rule. Binary phase diagrams, Isomorphous, Eutectic and Eutectoid transformations with examples.

UNIT-III

Engineering Materials-I Steels: Iron –Carbon phase diagram and heat treatment: Study of iron-iron carbide phase diagram, Construction of TTT diagrams, Annealing, Normalizing,Hardening and Tempering of steels, Hardenabilty, Alloy steels.

UNIT-IV

Engineering Materials –II: Cast Irons: Structure and properties of White cast iron, Malleable cast iron Grey cast iron.

Engineering materials –III: Non-ferrous metals and alloys: Structure and properties of copper and its alloys, Al-Cu phase diagram, Titanium and its alloys.

UNIT-V

Engineering materials –**IV: Ceramics, Polymers and composites:** Crystalline ceramics, glasses, cermets: Structure, properties and applications. Classification, properties and applications of composites, Classification, properties and applications of polymers.

Textbooks:

1. Material science and Metallurgy /Kodgire

2. Essentials of Material science and engineering/Donald R Askeland/Thomson

Referencebooks:

- 1. Introduction to Physical Metallurgy/Sidney H Avner.
- 2. Material science and Engineering/William and Callister
- 3. Elements of Material science/V Raghavan
- 4. Engineering Materials and Metallurgy/Er.Amandeep Singh Wadhva Material science for engineering students-Traugott Fisher 2009 Edition.

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Course Learning Outcomes	Topics to be covered	Reference
1-2	Identify potential areas of	Introduction to Metallurgy and Material Science	T2
	applications in	Importance to Various Engineering	
	mechanical engineering	disciplines	
3	Define various	Branches of Metallurgy, chemical,	T1,T2
	branches and compare metals	physical, Mechanical Engineering,	
	and non-metals	Metals , Non-metals, composites , nano- materials	
4	Compare various	Atomic structure, bonding in solids,	T1
	crystal structures	different bonds and examples	
		Crystal structure, unit cell, 7 crystal	
		systems, 14 Bravais lattices,	
		Miller indices, crystallographic planes of refrigeration	
	Examine various	Atomic radius, Coordination number,	T1,T2
5-7	factors of crystal structures	Atomic packing factor, Density calculation	
8-12	Compare pure	Crystallization of pure metals ;	T1
	metals and alloys	solidification of pure metals, alloys	
		Grains , Grain boundary , ASTM grain size no	
13	Describe defects in crystals	Crystal imperfections - Defects ; point , line , planar defects	T2
14	Describe Phase	Phase diagrams : Phase rule	T1,T2
1.7	diagrams		T 1
15	Explain Cu-Ni Phase diagram	Binary alloys – phase diagrams: Isomorphous system. Cu-Ni	T1
16-17	Analyze types of	Chemical composition of phases , Lever	T1,T2
10 17	cooling	rule, Equilibrium cooling,	
	-	Non - Equilibrium cooling	
18-19	Describe Bi-Cd	Eutectic system . I Bi-Cd , Hypo ,	T2
	and Pb-Sn system	Hyper II Pb-Sn system	
20-21	Describe the Pt-Ag	Peritictic system Pt-Ag, Euctectoid reaction	T1,T2
	system ,and explain	Peritectoid reaction	
	various eutectoid		
	and peritectoid reactions		
22-23	Categorize &	Engineering Materials – 1 steels :	T1
	Describe steels		
24-26	Explain Fe-C diagram	Steels :Fe – C ; Allotropy of Fe	T1
27	State peritectic reaction	Peritictic transformation	T1,T2
28	Explain eutectoid reaction	Eutectoid transformation	T1

29	Describe Hyper eutectoid transformation	Hyper eutectoid transformation	T1
30	Discuss heat treatment	Heat treatment, Annealing Normalizing, Hardening, Tempering	T2
31-32	Evaluate hardenabilty	Hardenability	T1,T2
33	Describe the effect of alloying elements	Alloy steels – Effect of alloying elements	T1,T2
34	Explain types of alloy steels	Low alloy steels, stainless steels, Tool steels	T2,T1
35-38	Explain Types of cast irons	Engineering Materials – II&III	T1,T2
39-40	Describe various cast irons	White Cast Iron , Malleable CI , Grey CI , SG Iron	T2,T1
41-49	Examine classification of aluminium alloys	Engg. materials III :Non ferrous alloys – classification	T1,T2
50-51	Discuss the properties of copper alloys	Copper alloys	T2,T1
52-56	Describe Al alloys	Al-alloys	T1,T2
57-58	Describe the properties of titanium alloys	Titanium alloys	T2,T1
68	Explain ceramics	Engineering materials –IV:Ceramics , Types , properties , applications	T2
69-70	Describe glasses	Glasses, Types, Properties, applications	T2
71-72	Explain cermets	Cermets, Types, Properties, applications	T2
73-74	Describe composites	Composites , Types , Properties , applications	T2
75-76	Explain polymers	Polymers, Types, Properties, applications	T2

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM **OUTCOMES:**

Course					Pr	ogran	n Outc	omes					Program Specific Outcomes		
Objectives	PO 1	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12								PSO 1	PSO 2	PSO 3			
Ι	S						Н			Н				Н	Н
II			S				Н			Н			S	Н	Н
III		Н Н										Н	Н		
N = None	•	S = Supportive H = High							ly relate	ed					

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF TSHE PROGRAM **OUTCOMES:**

Course		Program Outcomes											Program Specific Outcomes		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1		S						Н						S	Н
2				S							Н		S	Н	S
3				S				Н						Н	Н
4				S									S	S	S
5	Н			Н										Н	S
N = None	•	1	1	1		S = S	Suppo	rtive			H :	= High	y relate	ed	1

Prepared by:

Dr. K. G. K. Murti, Professor. Dr. N. N. Ramesh, Professor.

HOD, MECHANICAL ENGINEERING