

IINSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTION FORM

Course Title	MECHANICS C	MECHANICS OF FLUIDS AND HYDRAULIC MACHINES									
Course Code	A40112										
Regulation	R13										
Course Structure	Lectures	Tutorials	Practicals	Credits							
	4	-	-	4							
Course Coordinator	Mr. G.Sarat Raju	,Associate Professo	r, Mr. N. Krishna M	Iohan							
Team of Instructors											

I. COURSE OVERVIEW:

The aim of this course is to introduce basic principles of fluid mechanics and it is further extended to cover the application of fluid mechanics by the inclusion of fluid machinery. Nowadays the principles of fluid mechanics find wide applications in many situations. The course deals with the fluid machinery, like turbines, pumps in general and in power stations. This course also deals with the large variety of fluids such as air, water, steam, etc; however the major emphasis is given for the study of water.

II. PREREQUISITES:

Level	Credits	Periods / Week	Prerequisites
UG	4	4	Engineering physics, Thermodynamics, Engineering
			Mechanics.

III. COURSE ASSESSMENT METHODS:

Session Marks	University End Exam Marks	Total Marks
Mid Semester Test		
There shall be two midterm examinations.		
Each midterm examination consists of subjective type and objective type tests.		
The subjective test is for 10 marks of 60 minutes duration.		
Subjective test of shall contain 4 questions; the student has to answer 2 questions, each carrying 5 marks.		
The objective type test is for 10 marks of 20 minutes duration. It consists of 10 Multiple choice and 10 objective type questions, the student has to answer all the questions and each carries half mark.	75	100
First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.		
Assignment		
Five marks are earmarked for assignments.		
There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1	I Mid Examination	90 minutes	20
2	I Assignment	-	5
3	II Mid Examination	90 minutes	20
4	II Assignment	-	5
5	External Examination	3 hours	75

V. COURSE OBJECTIVES:

The objectives of the course are to enable the student;

- 1. To understand the basic principles of fluid mechanics
- 2. To identify various types of flows
- 3. To understand boundary layer concepts and flow through pipes
- 4. To evaluate the performance of hydraulic turbines
- 5. To understand the functioning and characteristic curves of pumps

VI. COURSE OUTCOMES:

- 1. Able to explain the effect of fluid properties on a flow system.
- 2. Able to identify type of fluid flow patterns and describe continuity equation
- **3.** To analyze a variety of practical fluid flow and measuring devices and utilize fluid mechanics principles in design.
- 4. To select and analyze an appropriate turbine with reference to given situation in power plants.
- 5. To estimate performance parameters of a given Centrifugal and Reciprocating pump.
- 6. Able to demonstrate boundary layer concepts.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, Engineering in the field of Mechanical Engineering.4e	Н	Assignments, Tutorials
PO2	Problem analysis : An Ability to analyze complex engineering problems to arrive at relevant conclusions using knowledge of Mathematics, science and Engineering	Н	Assignments
PO3	Design/development of solutions : Competance to design a system, component or process to meet socital need within realistic constraints.	S	Mini Projects
PO4	Conduct investigations of complex problems : To design and conduct research oriented experiments as well as analyze and implement data using research methodologies.	S	Projects
PO5	Modern tool usage : An ability to formulate solve complex engineering problems using modern engineering and information technology tools.	S	Mini Projects
PO6	The engineer and society : To utilize the engineering practices, techniques, skills to meet needs of the health, safety, legal, cultural, and society issues.	Ν	
PO7	Environment and sustainability : To Understand the impact of the engineering solutions in societal contexts, and demonstrate the knowledge for sustainable development.	N	

	Program Outcomes	Level	Proficiency assessed by
PO8	Ethics : An understanding and implementation of professional and Ethical responsibilities	Ν	
PO9	Individual and team work : To Function as an effectively individual, and as an member or leader in Multi-disciplinary environment and adopt in diverse teams.	N	
PO10	Communication : An ability to assimilate, communicate, give and receive instructions to present effectively with engineering community and society.	Ν	
PO11	Project management and finance : An ability to provide leadership in managing complex engineering projects at multi-disciplinary environment and to become a professional engineer.	Ν	
PO12	Life-long learning : Recognize the need and an ability to engage in lifelong to keep broadest with technological changes.	S	Projects

N= None S= Supportive H = Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills:To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams.	Н	Lectures, Assignments
PSO2	Problem-solving Skills: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	Н	Projects
PSO3	To build the nation, by imparting technological input and managerial skills to become technocrats.	S	

N - None S - Supportive H - Highly Related

IX. SYLLABUS:

UNIT I FLUID STATICS: Dimensions and units, Physical properties of fluids-specific gravity, viscosity, surface tension- vapour pressure and their influence on fluid motion-atmospheric, gauge and vacuum pressures- measurement of pressure- piezometer, U-tube and differential manometers.

UNIT II

streamline, path line, streak line and stream tube, classification of flows- steady and unsteady, uniform and non uniform, laminar and turbulent, rotational and irrotational flows - equation of continuity for one dimensional flow and three dimensional flows.

Fluid dynamics: Surface and body forces, Euler's and Bernoulli's equations for flow along a stream line, Momentum equation and its application on force on pipe bend

UNIT III

BOUNDARY LAYER CONCEPTS: Definition, thickness, characteristics along thin plate, Laminar and turbulent boundary layers (No derivation), boundary layer in transition, Separation of boundary layer, submerged objects- drag and lift

Closed conduit flow: Reynolds's experiment, Darcy Weisbach equation-minor losses in pipes, Pipes in series and pipes in parallel, Total energy line - hydraulic gradient line, Measurement of flow: Pitot tube, venture meter, and orifice meter, flow nozzle

UNIT IV

Basics of Turbo machinery: Hydrodynamic force of jets on stationary and moving flat, inclined vanes, curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.

Hydraulic Turbines: classification of turbines, heads and efficiencies, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies, hydraulic design-draft tube theory –functions and efficiency.

Performance of hydraulic turbines: Geometric similarity, unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer.

UNIT V

Centrifugal pumps: Classification, working, work done-barometric head losses and efficiencies- Specific speed – performance characteristic curves, NPSH.

Reciprocating pumps: working, discharge, slip, indicator diagrams.

TEXT BOOKS:

T1. Fluid Mechanics and Hydraulic Machines by Rajput

T2. Hydraulics, fluid mechanics and Hydraulic machinery, Modi and Seth/Rajsons Publications

REFERENCES:

R1. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, Kotaria & Sons.

R2. Fluid Mechanics and Machinery by D. Rama Durgaiah, New ager international

R3. Hydraulic Machines by Banga & Sharma, Khanna Publishers

R4. A Text Book of Fluid Mechanics and Hydraulic Machines/Dr. R K Bansal/Laxmi Publications.

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Course Learning Outcomes	Topics to be covered	Reference
1	Outline of various units	UNIT-I	R4, T2
		Introduction, dimensions and units	
2-4	Explain fluid properties	Physical properties of fluids-specific	R4, T1
		gravity, viscosity, Surface tension, vapour	
		pressure and their influence on fluid	
		motion	
5	Distinguish various pressures	Atmospheric, gauge and vacuum pressures	R4
6-8	Determine pressure with different	Measurement of pressure- piezometer, U-	R4, T1, T2
	instruments	tube and differential manometers	
9-10	Differentiate various flow lines	Unit-II: Fluid Kinematics: Stream line,	R4, T2
		path line, streak line and stream tube	
11-12	Classify and describe various	Classification of flows- steady and	R4, T1, T2
	flows		

		unsteady, uniform and non uniform,	
		irrotational flows	
13	Formulate continuity equation for 1	Equation of continuity for one dimensional	R4, T1
	and 3-d flow	flow and three dimensional flows	,
14	List various forces	Fluid dynamics: Surface and body forces	R4
15-16	Formulate Euler's and Bernoulli's	Euler's and Bernoulli's equations for flow	R4, T2
	equations	along a stream line	
17-18	Apply momentum equation for a	Momentum equation and its application on	R4, T2
10	pipe bend	force on pipe bend	D 4 T2
19	Define boundary layer	UNIT-III : BOUNDARY LAYER	R4, 12
		characteristics along thin plate	
20-22	Distinguish boundary layer of	Laminar and turbulent boundary layers	R4 T2
20 22	laminar, turbulent and transition	(No derivation), boundary layer in	1(4, 12
		transition	
23-24	Explain separation of boundary	Separation of boundary layer, submerged	R4, T1
	layer	objects- drag and lift	
25	Demonstrate Reynold's experiment	Closed conduit flow: Reynolds's	R4
		experiment	
26-27	Formulate the Darcy's equation	Darcy Weisbach equation-minor losses in	T2
		pipes	
28-29	Discuss the series and parallel	Pipes in series and pipes in parallel	R4, T1
	connections of pipes		,
20.31	Construct total energy and	Total anargy line hydraulic gradient line	P/ T1 T2
50-51	hydraulic gradient lines	rotar energy nne - nydraune gradient nne	K4, 11, 12
	, , , , , , , , , , , , , , , , , , , ,		
32-35	Measure the discharge	Measurement of flow: Pitot tube, venture	R4, T2
		meter, and office meter, flow nozzle	
36-37	Discuss the effect of hydrodynamic	UNIT – IV: Basics of Turbo machinery:	R4, T1
	force on flat vanes	Hydrodynamic force of jets on stationary	
		and moving flat, inclined vanes	
20 20	Drow the velocity triangles for	Curved venes ist striking controlly on that	D/ T1
20-39	Draw the velocity triangles for	tin velocity diagrams work done and	κ4, 11
	Curved vanes	efficiency, flow over radial vanes	
40	Classify the turbines	Hydraulic Turbines: classification of	R4, T1, T2
		turbines, heads and efficiencies, impulse	
		and reaction turbines	
41-44	Evaluate the performance of	Pelton wheel, Francis turbine and Kaplan	R4. T1. T2
	turbines	turbine-working proportions, work done,	,,
		efficiencies	
45-46	Describe the functions of draft tube	Hydraulic design-draft tube theory -	R4, T2
		functions and efficiency	
47-48	Define unit quantities and Draw	Performance of hydraulic turbines:	R4, T2
	characteristic curves	Geometric similarity, unit and specific	
10 51	Mustuate the sevening of tarking	quantities, characteristic curves	D4 T2
49-51	Inustrate the governing of turbines	Governing of turbines, selection of type of	к4, 12

		turbine	
52	Explain Cavitation, water hammer, surge tank	Cavitation, surge tank, water hammer	R4, T2
53-55	Classify and Explain the working	UNIT-V:Centrifugal pumps:	R4, T2
	of centrifugal pump	Classification, working, work done-	
		barometric head losses and efficiencies	
56-57	Compare the characteristic curves	Specific speed – performance	R4, T1, T2
	of centrifugal pump	characteristic curves, NPSH.	
58-60	Describe and Evaluate the	Reciprocating pumps: working,	R4, T1, T2
	performance of reciprocating pumps	discharge, slip, indicator diagrams	

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Objectives	Program Outcomes											Program Specific Outcomes			
	PO1	PO	PO	PO	РО	PSO	PSO	PSO							
		2	3	4	5	6	7	8	9	10	11	12	1	2	3
Ι					Н						S		S		
II					Н									S	
III		Н			Н								S		S
IV	Н	Н	S											Н	S
V			S		Η									Н	S

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course		Program Outcomes												Program Specific Outcomes		
Objectives	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
Ι			S										S			
II		Н			Η									S		
III											S		S		S	
IV		Н	S											Н	S	
V	Η		S								S			Н	S	
VI	Н	Н			Η											

S =Supportive

H=Highly Related

Prepared by: Mr. G.Sarat Raju, Associate Professor, Mr. N. Krishna Mohan Associate Professor.

HOD, MECHANICAL ENGINEERING