

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTION

Course Title	:	ENVIRONMENT	ENVIRONMENTAL STUDIES							
Course Code	:	A30009								
Course Structure	:	Lectures	Tutorials	Practicals	Credits					
	:	4	1	-	4					
Course Coordinator	:	Mr. Praveen, Assis	stant Professor.							
Team of Instructors	:	Mrs. M. Malathi, A	Irs. M. Malathi, Assistant Professor.							

I. COURSE OVERVIEW

Environmental study is interconnected; interrelated and interdependent subject. Hence, it is multidisciplinary in nature. The present course is framed by expert committee of UGC under the direction of Honorable Supreme Court to be as a core module syllabus for all branches of higher education and to be implemented in all universities over India. The course is designed to create environmental awareness and consciousness among the present generation to become environmental responsible citizens. The course description is: multidisciplinary nature of environmental studies, Natural Resources: Renewable and non-renewable resources; Ecosystems; Biodiversity and its conservation; Environmental Pollution; Social Issues and the Environment; Human Population and the Environment; pollution control acts and Field Work. The course is divided into five chapters for convenience of academic teaching followed by field visits.

II. PREREQUISITE(S)

Level	Credits	Periods	Prerequisite
UG	4	4	Knowledge of basic sciences

III. MARKS DISTRIBUTION

Sessional Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of subjective test. The subjective test is for 20 marks, with duration of 2 hours. Subjective test of each semester shall contain 5 one mark compulsory questions in part-A and part-B contains 5 questions, the student has to answer 3 questions, each carrying 5 marks. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion. Five marks are earmarked for assignments. There shall be two assignments in	75	100

every theory course. Marks shall be awarded considering the average of two	
assignments in each course.	

IV. EVALUATION SCHEME

S.No	Component	Duration	Marks
1	I Mid examination	90 minutes	20
2	I Assignment		05
3	II Mid examination	90 minutes	20
4	II Assignment		05
5	External examination	3 hours	75

V. COURSE OBJECTIVES

- I. Determine the Natural resources on which the structure of development is raised for sustainability of the society through equitable maintenance of natural resources.
- II. Illustrate about biodiversity that raises an appreciation and deeper understanding of species, ecosystems and also the interconnectedness of the living world and thereby avoids the mismanagement, misuse and destruction of biodiversity.
- III. Summarize a methodology for identification, assessment and quantification of global environmental issues in order to create awareness about the international conventions for mitigating global environmental problems
- IV. Sustainable development that aims to meet raising human needs of the present and future generations through preserving the environment.
- V. Outline green environmental issue provides an opportunity to overcome the current global environmental issues by implementing modern techniques like CDM, green building, green computing etc.

VI. COURSE OUTCOMES

After completing this course the student must demonstrate the knowledge and ability to:

- 1. **Discover** Knowledge regarding environment and its components.
- 2. **Understand** various ecosystems, their biodiversity and Scientific methods to protect them.
- 3. **Categorize** different types of pollutions and their control measures.
- 4. **Discover** effective methods of waste management.
- 5. **Analyze** global environmental problems and come out with best possible solutions.
- 6. **Illustrate** green environmental issues.
- 7. Understand environmental laws and Environmental Impact assessments.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge: An ability to apply knowledge of basic sciences,	Ν	-
	mathematical skills, engineering and technology to solve complex		
	electronics and communication engineering problems (Fundamental		
	Engineering Analysis Skills).		
PO2	Problem analysis: An ability to identify, formulate and analyze engineering	Ν	-
	problems using knowledge of Basic Mathematics and Engineering Sciences		
	(Engineering Problem Solving Skills).		
PO3	Design/development of solutions : An ability to provide solution and to	N	-

	design Electronics and Communication Systems as per social needs (Social		
	Awareness).		
PO4	Conduct investigations of complex problems: An ability to investigate the	Ν	-
	problems in Electronics and Communication field and develop suitable		
	solutions (Creative Skills).		
PO5	Modern tool usage An ability to use latest hardware and software tools to	N	-
	solve complex engineering problems (Software and Hardware Interface).		
PO6	The engineer and society: An ability to apply knowledge of	Ν	-
	contemporary issues like health, Safety and legal which influences		
	engineering design (Social Awareness).		
PO7	Environment and sustainability: An ability to have awareness on society and	Ν	-
	environment for sustainable solutions to Electronics and Communication		
	Engineering problems (Social Awareness).		
PO8	Ethics: An ability to demonstrate understanding of professional and ethical	Ν	-
	responsibilities (Professional		
PO9	Individual and team work: An ability to work efficiently as an individual	Ν	-
	and in multidisciplinary teams (Team work).		
PO10	Communication: An ability to communicate effectively and efficiently	Ν	-
	both in verbal and written form (Communication Skills).		
PO11	Life-long learning: An ability to develop confidence to pursue higher	Ν	-
	education and for life-long learning		
PO12	Project management and finance: An ability to design, implement and	Ν	-
	manage the electronic projects for real world applications with optimum		
	financial resources (Practical Engineering Analysis Skills).		

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency
			Assessed by
PSO 1	Professional Skills: The ability to research, understand and implement	Н	Lectures,
	computer programs in the areas related to algorithms, system software,		Assignments
	multimedia, web design, big data analytics, and networking for efficient		
	analysis and design of computer-based systems of varying complexity.		
PSO 2	Software Engineering practices: The ability to apply standard practices and		
	strategies in software service management using open-ended programming		
	environments with agility to deliver a quality service for business success.		
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern		
	computer languages, environments, and		
	N - None S - Supportive H – H	ighly Re	lated

IX. SYLLABUS

UNIT-I

Structure of metals: Crystallography, Miller indices, packing efficiency, Density calculations, Grains and grain boundaries. Effect of grain size on the properties. Determination of grain size by different methods. **Constitution of alloys:** Necessity of alloying, Types of solid solutions, Hume-Rothery rules, Intermediate alloy phases

UNIT-II

Phase Diagrams: Construction and interpretation of phase diagrams, Phase rule, Lever rule. Binary phase diagrams, Isomorphous, Eutectic and Eutectoid transformations with examples.

UNIT-III

Engineering Materials-I Steels: Iron –Carbon phase diagram and heat treatment: Study of iron-iron carbide phase diagram, Construction of TTT diagrams, Annealing, Normalizing,Hardening and Tempering of steels, Hardenabilty, Alloy steels.

UNIT-IV

Engineering Materials –II: Cast Irons: Structure and properties of White cast iron, Malleable cast iron Grey cast iron.

Engineering materials –III: Non-ferrous metals and alloys: Structure and properties of copper and its alloys, Al-Cu phase diagram, Titanium and its alloys.

UNIT-V

Engineering materials –**IV: Ceramics, Polymers and composites:** Crystalline ceramics, glasses, cermets: Structure, properties and applications. Classification, properties and applications of composites, Classification , properties and applications of polymers.

Textbooks:

1. Material science and Metallurgy /Kodgire

2. Essentials of Material science and engineering/Donald R Askeland/Thomson

Referencebooks:

- 1. Introduction to Physical Metallurgy/Sidney H Avner.
- 2. Material science and Engineering/William and Callister
- 3. Elements of Material science/V Raghavan
- 4. Engineering Materials and Metallurgy/Er.Amandeep Singh Wadhva Material science for engineering students-Traugott Fisher 2009 Edition.

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Course Learning	Topics to be covered	Reference
	Outcomes		
1-2	Identify potential	Introduction to Metallurgy and Material	T2
	areas of	Science	
	applications in	Importance to Various Engineering	
	mechanical engineering	disciplines	
3	Define various	Branches of Metallurgy, chemical,	T1,T2
	branches and	physical, Mechanical Engineering,	
	compare metals	Metals, Non-metals, composites, nano-	
	and non-metals	materials	
4	Compare various	Atomic structure, bonding in solids,	T1
	crystal structures	different bonds and examples	
		Crystal structure, unit cell, 7 crystal	
		systems, 14 Bravais lattices,	
		Miller indices , crystallographic planes of refrigeration	
	Examine various	Atomic radius, Coordination number,	T1,T2

5-7	factors of crystal	Atomic packing factor, Density calculation	
	structures		
8-12	Compare pure	Crystallization of pure metals ;	T1
	metals and alloys	solidification of pure metals, alloys	
		Grains, Grain boundary, ASTM grain size	
		no	
13	Describe defects in	Crystal imperfections - Defects ; point,	T2
	crystals	line, planar defects	
14	Describe Phase	Phase diagrams : Phase rule	T1,T2
	diagrams		
15	Explain Cu-Ni	Binary alloys – phase diagrams:	T1
_	Phase diagram	Isomorphous system. Cu-Ni	
16-17	Analyze types of	Chemical composition of phases, Lever	T1,T2
	cooling	rule. Equilibrium cooling	,
	U	Non Equilibrium cooling	
18 10	Deceribe Ri Cd	Futactic system I Bi Cd. Hypo	T2
10-19	and Ph Sn system	Lucette system : 1 bi-Cu , Hypo ,	12
20.21		Hyper II Pb-Sn system	T 1 T 2
20-21	Describe the Pt-Ag	Perification Pt-Ag, Euclectoid reaction	11,12
	system ,and explain	Peritectoid reaction	
	various eutectoid		
	and peritectoid		
	reactions		
22-23	Categorize &	Engineering Materials – 1 steels :	T1
	Describe steels		
24-26	Explain Fe-C	Steels : $Fe - C$; Allotropy of Fe	T1
	diagram		
27	State peritectic	Perifictic transformation	11,12
	reaction		
28	Explain eutectoid	Eutectoid transformation	11
20	reaction		T 1
29	Describe Hyper	Hyper eutectoid transformation	11
	eutectoid		
20	transformation	TT // / / A 1' XT 1'	E2
30	Discuss heat	Heat treatment, Annealing Normalizing,	12
	treatment	Hardening, Tempering	
31-32	Evaluate	Hardenability	T1,T2
	hardenabilty		
33	Describe the effect	Alloy steels – Effect of alloying elements	T1,T2
	of alloying		
	elements		
34	Explain types of	Low alloy steels, stainless steels, Tool	T2,T1
	alloy steels	steels	
35-38	Explain Types of	Engineering Materials – II&III	T1,T2
	cast irons		
39-40	Describe various	White Cast Iron, Malleable CI, Grey CI,	T2,T1
	cast irons	SG Iron	
41-49	Examine	Engg materials III 'Non ferrous alloys –	T1 T2
	classification of	classification	
	aluminium allovs		
50-51	Discuss the	Copper alloys	T2.T1
20.21	properties of	coppor uno jo	,
	copper allovs		
1	- copper anoyo		
52 56	Describe Al allows	Al-allovs	T1 T7

57-58	Describe the properties of titanium alloys	Titanium alloys	T2,T1
68	Explain ceramics	Engineering materials –IV:Ceramics, Types, properties, applications	T2
69-70	Describe glasses	Glasses, Types, Properties, applications	T2
71-72	Explain cermets	Cermets, Types, Properties, applications	T2
73-74	Describe composites	Composites, Types, Properties, applications	Τ2
75-76	Explain polymers	Polymers, Types, Properties, applications	T2

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES:

Course					Pr	ogran	n Outc	omes					Prog C	Program Specific Outcomes	
Objectives	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Ι	Ν							Н				Ν	S	S	Ν
II		Ν								S			Ν	S	
III				Ν				S			S		Ν	S	
IV			S		S							Ν		S	
V	Ν			S											
N = None						S = S	Suppo	rtive			H	= High	ly relate	ed	

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF TSHE PROGRAM OUTCOMES:

Course Outcomes	Program Outcomes												Program Specific Outcomes		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1	Ν		Ν					Н			S	Ν	S	N	Ν
2	Ν				S						S		S	S	
3		S			S			S				Н	Ν	S	
4	Ν			S				S		S	S			S	
5	Ν	S			S								Ν	S	
6	S		S	Ν						S			S	Ν	
7															
N = None						S = Supportive					H	I = Highly related			

Prepared by: Mrs. Malathi, Assistant Professor.

HOD, MECHANICAL ENGINEERING