

Department of Electrical and Electronics Engineering

COURSE DESCRIPTION FORMS

Course Title	Electrical Ma	Electrical Machines - I									
Course Code	A30206	430206									
Regulation	R15	15									
Comme Standard	Lectures	Lectures Tutorials Practical's Credits									
Course Structure	4 1 - 4										
Course Coordinator	Mr. K Devend	ler Reddy, Assistant P	rofessor								
Team of Instructors	Mr. K Devend	ler Reddy, Assistant P	rofessor								

I. COURSE OVERVIEW:

Electrical machines course in one of the important courses of the Electrical discipline. In this course the different types of DC generators and motors which are widely used in industry are covered and their performance aspects will be studied

II. PREREQUISITES:

Level	Credits	Periods	Prerequisite
UG	4	4	Knowledge of electromagnetic fields required

III. COURSE ASSESSMENT METHODS:

a) Marks distribution:

Session Marks	University End Exam Marks	Total Marks
There shall be two mid tem examinations. Each id term exam consists of subjective type and objective type test.	75	100
The subjective test is for 10 marks, with duration of 1 hour. Subjective test of each semester shall contain four questions; the student has to answer two out of them. Each carrying 5 marks		
The objective test paper Is prepared by JNTUH, which consists of 20 questions each carrying 0.5 marks and total of 10 marks.		
The student is assessed by giving two assignments, one, after completion of 1 to 4 units and the second, after the completion of 4 to 8 units each carrying 5 marks. On the total the internal marks are 25.		
The average of two internal tests is the final internal marks.		
The external question paper is set by JNTUH consisting of 8 questions each carrying 15 marks out of which 5 questions are to be answered their by external examination is of total 75 mark		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1	I Mid Examination	90 minutes	20
2	I Assignment		05
3	II Mid Examination	90 minutes	20
4	II Assignment		05
5	External Examination	3 hours	75

V. COURSE OBJECTIVE:

At the end of the course, the students will be able to:

- i) To attain the knowledge of Electro mechanical energy conversion.
- ii) To attain the knowledge of Energy balance and magnetic force.
- iii) To attain the knowledge of DC generators construction and operation.
- iv) To attain the knowledge of Armature reaction and winding structures.
- v) To attain the knowledge in motors and starters.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

- i) Gets the knowledge of Electro mechanical energy conversion
- ii) Gets the knowledge of Energy balance and magnetic force.
- iii) Gets the knowledge of DC generators construction and operation
- iv) Gets the knowledge of Armature reaction and winding structures.
- v) Gets the knowledge in Load characteristics of DC generators.
- vi) Gets the knowledge in Parallel operation of DC generators.
- vii) Gets the knowledge of DC motors construction and operation.
- viii) Gets the knowledge of Speed control of DC motors.
- ix) Gets the knowledge in Testing of D.C machines
- x) Gets the knowledge in different starters

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficienc y Assessed By
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignment s
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Н	Exercises'
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	N	
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	N	

PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	N	
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	Н	Design exercise, Prototypes
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	Н	Exercise, Seminars, Discussions
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	S	Discussions
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	N	
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	S	Seminars, Discussions
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Н	Workshops, Prototypes
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	S	Seminar, Discussions

N= None

S=Supportive

H=highly related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency Assessed By
PSO1	Professional Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.	S	Lectures, Assignments
PSO2	Problem-Solving Skills: Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.	N	
PSO3	Successful Career and Entrepreneurship: The understanding of technologies like PLC, PMC, process controllers, transducers and HMI one can analyze, design electrical and electronics principles to install, test, maintain power system and applications.	S	Guest Lectures

IX. SYLLABUS:

UNIT I:

Electromechanical Energy Conversion: Electromechanical Energy conversion – forces and torque in magnetic field systems – energy balance – energy and force in a singly excited magnetic field system, determination of magnetic force - co-energy – multi excited magnetic field systems.

UNIT II:

D.C. Generators & Armature Reaction: D.C. Generators – Principle of operation – Action of commutator – constructional features – armature windings – lap and wave windings – simplex and multiplex windings – use of laminated armature – E. M.F Equation – Problems. Armature reaction – Cross magnetizing and de-magnetizing AT/pole – compensating winding – commutation – reactance voltage – methods of improving commutation

UNIT III:

Types of D.C Generators & Load Characteristics: Methods of Excitation – separately excited and self-excited generators – build-up of E.M.F - critical field resistance and critical speed - causes for failure to self-excite and remedial measures. Load characteristics of shunt, series and compound generators – parallel operation of d.cseries generators – use of equalizer bar and cross connection of field windings – load sharing

UNIT IV:

D.C. Motors & Speed Control Methods: D.C Motors – Principle of operation – Back E.M.F. - Torque equation – characteristics and application of shunt, series and compound motors – Armature reaction and commutation. **Speed control of DC Motors:** Armature voltage and field flux control methods. Ward-Leonard system. Principle of 3 point and 4 point starters – protective devices

UNIT V:

Testing of D.C. Machines: Losses, Constant & Variable losses – calculation of efficiency – condition for maximum efficiency. Methods of Testing – direct, indirect and regenerative testing – brake test – Swinburne's test – Hopkinson's test – Field's test – Retardation test – separation of stray losses in a DC motor test

X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture No.	Learning Objectives	Topic To Be Covered					
1	To know the energy conversion	Electromechanical Energy conversion	ce T ₁				
2,3	To know the Force and Torque	Forces and torque in magnetic field systems	T_1				
4	To know the Energy balance	Energy balance	T ₁				
5,6	To know the excitation	Energy& force in a singly excited magnetic field	T ₁				
7,8	To know the co-energy	Determination of magnetic force- co-energy	T ₁				
9,10	To know multi excited system	Multi excited magnetic field systems	T_1				
11	To know principle of generator	D.C. Generators Principle of operation	T ₁				
12	To know function of commutator	Action of commutate	T ₁				
13	To know machine construction	Constructional Feature	T ₁				
14	To know windings	Armature windings	T _{1,}				
15	To know machine application	lap windings	T ₁				
16	To know machine application	Wave windings	T ₁				
17	To know machine application	Simplex and multiplex windings	T ₁				
18	To know about laminations	Use of laminated armature	T ₁				

19	To know amount of EMF induced in windings	E.M.F Equation	T ₁
20,21	Exercise	Solving problems	T ₁
22	To know reaction of machine when loaded	Armature reaction	T ₁
23	To know the effects of armature reaction	Cross magnetizing and de-magnetizing AT/pole	T ₁
24	To know the effects of armature reaction	Compensating windings	T ₁
25	To know behavior of commutator	Commutation Process	T ₁
26	To know how to improve the performance	Methods of improving commutation	T ₁
27,28	To know methods of excitation	Methods of Excitation	T ₁
29	To know amount of ELF induced in windings	Build-up of E.M.F	T ₁
30	Exercise	Solving problems	T ₁
31	To know the machine performance	Characteristics of D.C Generators O.C.C	T ₁
32	To know solve the failure of emf problems	critical field resistance and critical speed, causes for failure to self-excited machine and remedial measures	T ₁
33	To know how to improve efficiency	load characteristics of shunt Generator	T ₁
34	To know how to improve efficiency	load characteristics of series, load characteristics of Compound generator	T ₁
35	To know how to interconnect the generators	Need for parallel operation, and conditions	T ₁
36	To know how to interconnect the generators	Parallel operation of DC series	T ₁
37	To know load division	Load sharing of Generators	T_1
38	To know how to share the load	Use of equalizer bar and cross connection of field windings	T ₁
39	To know principle of D.C. Motor	D.C Motors Principle of operation	T_1
40	To know amount of EMF induced in windings	Back E.M.F.	T ₁
41	To know torque	Torque equation	T_1
42,43	Exercise	Solving problems	T ₁
44	To know how to improve efficiency	Characteristics & Applications of shunt	T ₁
45	To know how to improve efficiency	Characteristics & Applications of series Characteristics & Applications of compound motors	T ₁
46	To know reaction of machine when loaded	Armature reaction and commutation	T ₁
47	To know how to regulate the speed	Speed control of D.C. Motors	T ₁
48	To know the efficiency	Ward-Leonard system	T ₁
49	To know how to start	Principle of 3 point starters&4 point starters	T ₁
50	To know the protective devices	protective devices	T ₁
51	To Know the losses	Losses –constant and variable losses	T ₁
52	To know the efficiency	Calculation of Efficiency	T ₁
53	To know the max loading capacity	Condition for maximum Efficiency	T ₁

54,55	Exercise	Solving problems	T ₁
56	To know the efficiency and losses	Methods of testing-direct test	T ₁
57	To know the efficiency and losses	Indirect and regenerative test	T ₁
58	To know the efficiency and losses	Brake test	T ₁
59	To know the efficiency and losses	Indirect testing: Swinburne's method	T ₁
60	To know the efficiency and losses	Regenerative or Hopkinson's method Field's test for series machines	T ₁
61	To know the efficiency and losses	Retardation test separation of stray losses in a dc motor test	T ₁
62	To know the efficiency and losses	separation of stray losses in a dc motor test	T_1

XI. TEXT BOOKS:

- 1. Electrical Machines by J. B. Guptha
- 2. Principles of Electrical Machines by V. K. Mehta, Rohit Mehta

XII. REFERENCES:

- 1. Electrical Machines by I. J. Nagarath & D. P. Kothari
- 2. Electrical Machines by P.S. Bimbra

XIII. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course	Program Outcomes												Program Specific Outcomes		
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
I	Н	N	S	N	N	S	Н	N	S	S	S	S	Н	Н	S
II	N	N	N	N	N	S	Н	N	S	S	S	S	Н	Н	S
ш	Н	Н	Н	N	N	S	S	N	S	S	S	S	Н	Н	Н
IV	Н	S	S	S	N	S	S	N	S	S	S	S	Н	Н	S
v	Н	Н	Н	S	N	S	S	N	S	S	S	S	Н	Н	S

N – None **S** – Supportive

H - Highly Related

XIV. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOME

Course Objectives		Program Outcomes												Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
Ι	Ν	S	Ν	N	N	Н	Н	Н	N	S	Н	S	Н	Н		
II	S	S	S	Н	N	N	N	N	N	Ν	S	S	Н	S	S	
III	Н	Н	N	N	N	S	S	S	N	S	S	S	Н	S	Н	

IV	Н	Н	Н	S	N	N	N	S	Ν	Ν	N	S	Н	S	
V	S	S	S	Н	S	S	Ν	Ν	Ν	S	S	Ν	Н	Н	S
VI	Ν	S	Ν	Ν	Ν	Н	Н	Н	Ν	S	Н	S	Н	Н	Н
VII	Н	Н	Ν	Ν	Ν	S	S	S	Ν	S	S	S	Н	Н	S
VIII	Н	Н	Н	S	Ν	S	Ν	Ν	Ν	S	S	Ν	Н	Н	S
IX	Ν	Н	Ν	Ν	Ν	S	S	S	Ν	S	Н	S	Н	S	S
X	Ν	S	S	Н	Н	Η	S	S	Ν	Ν	S	S	Н	S	Н

N - None

·

S – Supportive

H - Highly Related

Prepared by: Mr. K Devender Reddy, Assistant Professor

HOD, ELECTRICAL AND ELECTRONICS ENGINEERING