

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION AND ENGINEERING

COURSE DESCRIPTION FORM

Course Title	ELECTRONIC DEVICES AND CIRCUITS											
Course Code	R15 - A30404	R15 – A30404										
Course Structure	Lectures	Tutorials	Practicals	Credits								
Course Structure	4	1	3	4								
Course Coordinator	Mr V.R.Seshagiri Rad	o, Professor,HOD De	epartment of ECE									
	Mr. M. Ramesh Babu	, Professor,HOD De	partment of ECE									
Team of Instructors	Mr. D. Khalandar Bas	sha, Associate Profes	ssor, Department of	ECE								
	Ms. C. Deepthi, Asso	ciate Professor, Depa	artment of ECE									

I. COURSE OVERVIEW:

This course provides the basic knowledge over the construction and functionality of the basic electronic devices such as diodes and transistors. It also provides the information about the uncontrollable and controllable electronic switches and the flow of current through these switches in different biasing conditions. This course is intended to describe the different configurations and modes of controllable switches and how these electronic devices can be configured to work as rectifiers, clippers, clampers, oscillators and amplifiers.

II. PREREQUISITE(S):

Level	Credits	Periods/ Week	Prerequisites
UG	4	4	Engineering Physics, Engineering Mathematics-I

III. MARKS DISTRIBUTION:

Sessional Marks	University End Exam Marks	Total Marks
Midterm Test		
There shall be two midterm examinations. Each midterm examination consists of essay paper, objective paper and assignment.		
The essay paper is for 10 marks of 60 minutes duration and shall contain 4 questions. The student has to answer 2 questions, each carrying 5 marks.		
The objective paper is for 10 marks of 20 minutes duration. It consists of 10 multiple choice and 10 fill-in-the blank questions, the student has to answer all the questions and each carries half mark.	75	100
First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.		
Five marks are earmarked for assignments. There shall be two assignments in every theory course. Assignments are usually issued at the time of commencement of the semester. These are of problem solving in nature with		

Sessional Marks	University End Exam Marks	Total Marks
critical thinking.		
Marks shall be awarded considering the average of two midterm tests in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1	I Mid Examination	80 minutes	20
2	I Assignment	-	5
3	II Mid Examination	80 minutes	20
4	II Assignment	-	5
5	External Examination	3 hours	75

V. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

- I. Be familiar with the basic P-N junction diode, few special purpose diodes and their functioning.
- II. Understand the diode as rectifier and regulator.
- III. Be familiar with the construction, current flow, different configurations and modes of the three terminal electronic devices such as BJT and UJT.
- IV. Be familiar with the different biasing techniques.
- V. Be familiar with the field effect transistors and functioning as amplifier.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Understand the operation of various semiconductor diodes
- 2. Analyze characteristics of different types of diodes.
- 3. Understand the function of diode as rectifier.
- 4. **Analyze** and design various rectifier circuits.
- 5. **Understand** the operation of transistors in different configurations.
- 6. Analyze and characteristics of BJT and UJT in different modes.
- 7. Understand the biasing techniques of transistors.
- 8. **Design** and analyze the DC bias circuitry of BJT and FET.
- 9. **Design** biasing circuits using diodes and transistors.
- 10. Analyze and design amplifier circuits and oscillators employing BJT, FET devices.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : An ability to apply knowledge of basic sciences, mathematical skills, engineering and technology to solve complex electronics and communication engineering problems (Fundamental Engineering Analysis Skills).	S	Assignments, Exercises
PO2	Problem analysis : An ability to identify, formulate and analyze engineering problems using knowledge of Basic Mathematics and Engineering Sciences. (Engineering Problem Solving Skills).	Н	Design Exercises
PO3	Design/development of solutions : An ability to provide solution and to design Electronics and Communication Systems as per social needs (Social Awareness)	S	
PO4	Conduct investigations of complex problems : An ability to investigate the problems in Electronics and Communication field and develop suitable solutions (Creative Skills).	S	Lab Sessions
PO5	Modern tool usage An ability to use latest hardware and software tools to solve complex engineering problems (Software and Hardware Interface).	S	Lab Exercises
PO6	The engineer and society : An ability to apply knowledge of contemporary issues like health, Safety and legal which influences engineering design (Social Awareness).	N	
PO7	Environment and sustainability An ability to have awareness on society and environment for sustainable solutions to Electronics & Communication Engineering problems(Social awareness).	N	
PO8	Ethics : An ability to demonstrate understanding of professional and ethical responsibilities(Engineering impact assessment skills).	N	
PO9	Individual and team work : An ability to work efficiently as an individual and in multidisciplinary teams(Team Work).	Ν	Seminars Discussions
PO10	Communication : An ability to communicate effectively and efficiently both in verbal and written form(Communication Skills).	Ν	
PO11	Project management and finance : An ability to develop confidence to pursue higher education and for life-long learning(Continuing education awareness).	S	Design Exercises, Seminars, Paper Presentations
PO12	Life-long learning : An ability to design, implement and manage the electronic projects for real world applications with optimum financial resources(Practical engineering analysis skills).	Н	Design Exercises, Development of Prototypes, Mini Projects

N - None

S - Supportive

H - Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	Η	Lectures and Assignments
PSO2	Problem-solving skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and	S	Tutorials

	Program Specific Outcomes	Level	Proficiency assessed by
	software tools, along with analytical skills to arrive cost effective and appropriate solutions.		
PSO3	Successful career and Entrepreneurship: An understanding of social- awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.	S	Seminars and Projects

N - None S - Supportive H - Highly Related

IX. SYLLABUS:

UNIT -I:

P-N Junction Diode: Qualitative Theory of P-N Junction, P-N Junction as a Diode, Diode Equation, Volt-Ampere Characteristics, Temperature dependence of VI characteristic, Ideal versus Practical – Resistance levels (Static and Dynamic), Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms in Semiconductor Diodes, Zener Diode Characteristics.

Special Purpose Electronic Devices: Principle of Operation and Characteristics of Tunnel Diode (with the help of Energy Band Diagram), Varactor Diode, SCR and Semiconductor Photo Diode.

UNIT-II:

Rectifiers and Filters : The P-N junction as a Rectifier, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier, Harmonic components in a Rectifier Circuit, Inductor Filters, Capacitor Filters, L-Section Filters, π -Section Filters, Comparison of Filters, Voltage Regulation using Zener Diode.

UNIT-III:

Bipolar Junction Transistor and UJT: The Junction Transistor, Transistor Current Components, Transistor as an Amplifier, Transistor Construction, BJT Operation, BJT Symbol, Common Base, Common Emitter and Common Collector Configurations, Limits of Operation, BJT Specifications, BJT Hybrid Model, Determination of h-parameters from Transistor Characteristics, Comparison of CB, CE, and CC Amplifier Configurations, UJT and Characteristics.

UNIT-IV:

Transistor Biasing and Stabilization: Operating Point, The DC and AC Load lines, Need for Biasing, Fixed Bias, Collector Feedback Bias, Emitter Feedback Bias, Collector - Emitter Feedback Bias, Voltage Divider Bias, Bias Stability, Stabilization Factors, Stabilization against variations in VBE and β , Bias Compensation using Diodes and Transistors, Thermal Runaway, Thermal Stability, Analysis of a Transistor Amplifier Circuit using h-Parameters.

UNIT-V:

Field Effect Transistor and FET Amplifiers

Field Effect Transistor: The Junction Field Effect Transistor (Construction, principle of operation, symbol) – Pinch-off Voltage - Volt-Ampere characteristics, The JFET Small Signal Model, MOSFET (Construction, principle of operation, symbol), MOSFET Characteristics in Enhancement and Depletion modes.

FET Amplifiers: FET Common Source Amplifier, Common Drain Amplifier, Generalized FET Amplifier, Biasing FET, FET as Voltage Variable Resistor, Comparison of BJT and FET.

TEXT BOOKS:

- 1. J. Millman, C.C.Halkias and Satyabrata Jit, "Millman's Electronic Devices and Circuits", 2e, 1998, TMH.
- 2. Mohammad Rashid, "Electronic Devices and Circuits", 2013, Cengage learning.
- 3. David A. Bell, "Electronic Devices and Circuits", 5e, Oxford University Press.

REFERENCE BOOKS:

- 1. J. Millman and Christos C. Halkias, "Integrated Electronics", 1e, 2008, TMH.
- 2. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits", 9e, 2006, PEI/PHI.
- 3. B. P. Singh, Rekha Singh, "Electronic Devices and Circuits", 2e, 2013, Pearson.
- 4. K. Lal Kishore, "Electronic Devices and Circuits", 2e, 2005, BSP.
- 5. Anil K. Maini and Varsha Agarwal, "Electronic Devices and Circuits", 1e, 2009, Wiley India Pvt. Ltd.
- 6. S. Salivahanan, N. Suresh Kumar and A. Vallavaraj, "Electronic Devices and Circuits", 2e, 2011, TMH.

IX. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture No.	Topics to be covered	Course Learning Objectives	Reference
1-2	P-N Junction Diode: Qualitative theory of P-N Junction diode, junction as a diode	Understand the	T1: 5.1
3	Formation of PN Junction, operation PN Junction under forward and reverse direction.	functioning of diode	T1: 5.2
4	Derivation of diode current equation.		T1: 5.3
5	V-I Characteristics, Effect of temp on V-I Characteristics of a diode.		T1: 5.6-5.7
6	Comparison of ideal versus practical diode, Equivalent circuits of diode, load line analysis	Examine the P-N junction diode under different	T1: 5.6 – 5.7 R6: 1.7
7-8	Static & dynamic resistances, Transition and diffusion capacitance.	biasing conditions.	T1: 5.8 - 5.10
9	Avalanche break down.		T1: 5.12 R6: 1.15
10	Operation of Zener diode and V-I Characteristics, Zener break down	Understand the operation of Zener diode.	T1: 5.12
11	Operation of Tunnel diode, Varactor diode and V-I Characteristics	Understand the operation of tunnel diode.	T1:5.13-5.14 R6: 8.2
12-13	SCR and semiconductor photo diode.	Understand the operation of SCR and semiconductor photo diode.	R6: 8.5-8.6
14-15	Rectifiers and Filters: PN junction as a rectifier, Operation of half wave rectifier and its corresponding harmonic components.		T1: 6.1-6.2
16-17	Operation of full wave rectifier and its corresponding harmonic components.	Understand and analyze P-N diode as rectifier	T1: 6.3
18-19	Operation of bridge wave rectifier its corresponding harmonic components.	P-IN diode as rectifier	T1: 6.4-6.6
20	Types of filters, operation of Inductor and capacitor filters		T1: 6.7-6.8
21-22	L-section and Pi-Section filters, comparison of all filters		T1: 6.10- 6.13
23	Zener diode as voltage regulator.	Model Zener diode as voltage regulator.	T1: 6.15
24	Bipolar Junction Transistors and UJT: Introduction to BJT, Construction, symbol	Understand the operation of bipolar transistor	T1: 7.1, 7.4
25	Operation of PNP and NPN transistors.		T1: 7.1

26	Transistor current components,		T1: 7.2-7.3
27	Input & output characteristics of a transistor in CB configuration.		T1:7.7
28	Input & output characteristics of a transistor in CE and configuration.	Examine the BJT	T1: 7.8-7.10
29	Input & output characteristics of a transistor in CC configurations, limits of operation	_	T1: 7.12
30	BJT specifications, BJT Hybrid model		T1:9.6-9.7
31	Determination of h-parameters from transistor characteristics	- Understand the Hybrid model of BJT	T1:9.7
32-33	Transistor as an Amplifier, Comparison of CB, CE and CC amplifiers configuration.	Model the transistor as an amplifier	R6: 3.5
34	UJT and its characteristics	Understand the operation of UJT.	T1: 12.12 R6: 7.12- 7.13
35	Transistor biasing and stabilization: Operating point.		T1: 8.1
36	DC and AC load lines.	1	R6: 4.2
37	Need for biasing, fixed bias.		T1: 8.4
38-40	Collector feedback bias., Emitter feedback bias, Collector-Emitter feedback bias and voltage divider bias	Analyze and design proper BJT circuits	T1:8.5-8.6
41-42	Bias stability, stabilization factor.	bir circuits	T1: 8.2 R6: 4.4
43	Bias compensation using diodes and transistor.		T1: 8.9 R6: 4.5
44	Thermal runaway and stability		T1: 8.12- 8.13
45	h-parameter model for CB amplifier and their comparison.		T1: 10.6
46	h-parameter model for CE amplifier and their comparison.	Distinguish Hybrid model of BJT	T1: 10.4
47-48	h-parameter model for CC amplifier and their comparison.		T1: 10.5
49-50	Field Effect Transistor and FET Amplifiers: Junction field effect transistor (construction, principle, and symbol)	Indonetond the energian	T1: 12.1
51	Junction field effect transistor operation, pinch- off voltage	Understand the operation of JFET	T1: 12.2
52	V-I characteristics of JFET		T1: 12.3
53-54	Small signal model of JFET		R6: 7.8
55-56	MOSFET (construction, principle of operation, symbol), characteristics in enhancement and depletion modes	Understand and analyze	T1:12.5
57	MOSFET (principle of operation)	the operation of IGFETs	T1: 12.5
58	MOSFET characteristics in enhancement and depletion modes		R6: 7.7
59	FET Amplifiers: CS, CD Amplifier		R6: 7.1-7.5
60-62	Biasing FET, Voltage variable resistor and comparison between BJT and FET.	Model the FET circuits	T1: 12.11

X. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course	Program Outcomes											Program Specific Outcomes			
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н	S	S		S							S	Н	S	
II	S	S	Н		S							S	Н	S	
III	Н	S	S		S							S	Н	S	
IV	S	Н	S		S							S	Н	S	
V	S	S	S									S	Н	S	
	-	6	Summe		•	-	-	•	-	•	н н	hl. Da	lated		

S – Supportive

H - Highly Related

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes		Program Outcomes											Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	S	S	Н									S	Н	S	
2	S	S	S		S							S	S	S	
3	S	Н	Н		S							S	S	S	
4	S	Н	S		Η							S	Н	S	
5	Н	S	S	S								S	S	S	
6	S	Н	Н		Н							S	Н	S	
7	S											S	S	S	
8	Н		Н		Н							S	Н	S	
9	S	S		S								S	S	S	
10	S		Н		S							S	S	S	
		S –	Supp	oortiv	e					•	H - Hi	ighly R	elated	••	

Prepared by : Ms. G. Mary swarna latha, Associate Professor, ECE Mr. D. Kalandhar Basha, Associate Professor, ECE

HOD, ELECTRONICS AND COMMUNICATION AND ENGINEERING