Hall Ticket No	Question Paper Code: BPE003	
INSTITUTE OF AERONAUTICAL EN (Autonomous)	GINEERING	
M.Tech I Semester End Examinations (Supplementary) - July, 2017 Regulation: IARE–R16		
SPECIAL MACHINES AND CONTRO (Power Electronics and Electric Dri		

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	(a)	Distinguish between Axial and Radial air gap Synchronous Reluctance Motors with releva diagrams. [7]	
	(b)	Compare the advantages of Synchronous Reluctance Motor over Permanent Magnet Machines [7]	
2.	(a)	Draw and discuss the torque speed characteristics of Single Phase Synchronous Reluctance Moto [7]	
	(b)	Explain the construction and principle of Vernier Motor. [7N	Л]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	Explain in detail about the constructional features of Single Stack Variable Reluctance Motor	•
		[7N]	/[]
	(b)	Calculate the step angle of a single stack 4 phase, 8/6 pole Variable Reluctance Stepper. Whi is its Resolution. [7N	
4.	(a)	Explain the principle of operation of Stepper motor, which can be operated with combine principles of Permanent magnet and Variable Reluctance motors in order to achieve a small stead angle & high torque from a small size. [7]	ep
	(b)	Explain in detail linear and non-linear analysis of Stepper motor. [7N	/[]

$\mathbf{UNIT}-\mathbf{III}$

5.	(a) Predict the torque speed characteristics of Switched Reluctance motor	[9M]
	(b) List out basic requirements of Power Semiconductor Switching Circuits for SRM.	[5M]
6.	(a) Discuss microprocessor based control of Switched Reluctance Motor Drive.	[8M]
	(b) Determine the star and of 2 where emitting discharge meters have a 19 statement of $(1, 1)$	10

(b) Determine the step angle of 3-phase switched reluctance motor having 12 stator poles and 8 rotor poles. Calculate Commutation frequency at each phase at a speed of 600 rpm. [6M]

$\mathbf{UNIT} - \mathbf{IV}$

- 7. (a) Draw the torque speed characteristics of Brushless Permanent Magnet Square Wave DC motor.
 - (b) A brushless Permanent Magnet DC Motor has no load speed of 6000 rpm ,when connected to 120 V DC supply. $R_a = 2.5 \ \Omega$. Rotational & Iron losses may be neglected. Determine the speed when supply voltage is 60 V and the torque is 0.5 NM. No load speed when supply voltage is 120 V, is 6000 rpm. [7M]
- 8. (a) Derive the general EMF equation of Permanent Magnet Brushless DC Motor. [7M]
 (b) Give the merits & demerits of Brushless Permanent Magnet DC Motors. [7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) Draw the phasor diagram of Brushless Permanet Magnet Synchronous Motor.	[7M]
	(b) Derive the torque equation of an ideal Brushless Permanent Magnet Sine Wave Motor.	[7M]
10.	(a) Explain about microprocessor based control of permanent magnet synchronous motor.	[7M]
	(b) Identify the applications of Permanent magnet Synchronous Motor.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$

[7M]