Hall Ticket No		Question Paper Code: CMB011
	ISTITUTE OF AERONAUTICAL E	
THE LARE OF	(Autonomous)	
THON FOR LIBERT	MBA III Semester End Examinations (Supplement	tary) - April, 2019
	Regulation: IARE–R16	
	Quantitative Analysis for Business	Decisions
Time: 3 Hours	(MBA)	Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Describe the different steps followed in OR Model to provide better solution.	[7M]
	(b) List important Features and limitations of OR solutions.	[7M]
2.	(a) State and explain classification of different Models available in Practice.	[7M]
	(b) Explain the origin of OR in brief and write ts applications.	[7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) A company is producing three products A,B and C. Formulate an LPP model to maximise the Profit for the following collected data given in Table 1; [7M]

Factor	А	В	С	Availability
Selling Price/unit	500	300	400	
Raw Material /unit	15 units	5 units	10 Units	more than 2000 units
Labor Hours/Unit	8	4	5	Less than 1200Hrs.
Machine Hours/Unit	4	2	3	200 Hrs.

(b) Solve the following LPP by graphical method

 $\begin{array}{l} {\rm Max} \ Z{=}5x{+}3y\\ {\rm Subject \ to \ constraints}\\ 2x{+}y \le 1000\\ x{\leq}400\\ y{\leq}700\\ x{,}y{\geq}0 \end{array}$

[7M]

Factory/ Warehouse	W1	W2	W3	Supply
А	6	4	1	50
В	3	8	7	40
С	4	4	2	60
Demand	20	95	35	

Table 2

(b)	Is the following Initial solution	given in Table 3 is	Optimal? Chec	k using MODI method	[7M]
-----	-----------------------------------	---------------------	---------------	---------------------	------

From/ To	W1	W2	W3	Supply
А	6	4(15)	1(35)	50
В	3(20)	8(20)	7	40
С	4	4(60)	2	60
Demand	20	95	35	

Table 3 $\,$

$\mathbf{UNIT}-\mathbf{III}$

- 5. (a) Describe the steps in solving a Maximisation Assignment model by Hungarian method. [7M]
 - (b) Find the optimal solution to following Maximisation assignment problem given in Table 4. (sales in 000 value)

[7M]

Table	4
	4

	А	В	С	D	Е
W1	32	38	40	28	40
W2	40	24	28	21	36
W3	41	27	33	30	37
W4	22	38	41	36	36
W5	29	33	40	35	39

[7M]

- 6. (a) Describe the Travelling Salesman model with one example.
 - (b) Find the optimal route to the following Travelling salesman model given in Table 5

Table 5

	А	В	С	D
A	Х	12	17	3
В	12	Х	6	3
С	17	6	Х	7
D	3	3	7	Х

$\mathbf{UNIT} - \mathbf{IV}$

- 7. (a) With an example describe the Criterion of Pessimism
 - (b) Solve the following Table 6 using Min-Max regret criterion values given in Lakhs.. [7M]

Table 6

Strategies Nature	S1	S2	S3
N1	17	13	12
N2	15	14	10
N3	13	15	13

- 8. (a) Discuss the various types of decision making environments in detail along with different decision making techniques. [7M]
 - (b) The following information given in Table 7 available related to a Rental car system. Cars have fixed cost of Rs. 400/- per day and variable cost of Rs.800. If the rental car owner has 4 vehicles, what are its daily expectations? If it is required to start new business without any cars how many cars he has to buy?

[7M]

Table	7
Labio	•

Number of cars demand	0	1	2	3	4
Probability	0.1	0.2	0.3	0.2	0.2

[7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Describe the operating characteristics of Queuing system with an example [7M]
 - (b) Describe the various service process followed in practice with one example . [7M]
- (a) What is queue system and explain various applications of queuing models. [7M] Arrivals at Railway Ticketing booth are considered to be Poisson with an average time of 5 minutes between one arrival and next. The length of service is assumed to be exponentially distributed with a mean time of 4 Minutes. [7M]
 - i. What is the probability that a person arriving at the ticket booth will have to wait?
 - ii. What is the average length of queue?
 - iii. What is the expected number of customers in the system?
 - iv. If the average time spent by customer in queue is more than 5 minutes a second Ticket booth will be operated. Is second Ticket booth is required?