
institute of Aeronautical engineering
(Autonomous)
M.Tech I Semester End Examinations (Supplementary) - February, 2018

Regulation: IARE-R16
COMPUTER ORIENTED NUMERICAL METHODS
Time: 3 Hours
(STE)
Max Marks:
Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT - I

1. (a) Solve the following system of equations with partial pivoting.

$$
\begin{aligned}
& x_{1}-x_{2}+3 x_{3}=3 \\
& 2 x_{1}+x_{2}+4 x_{3}=7 \\
& 3 x_{1}+5 x_{2}-2 x_{3}=6
\end{aligned}
$$

(b) Use the Givens method to find the Eigen values of the matrix

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

2. (a) Use the triangular method to solve the following simultaneous linear equations.

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

(b) Solve the following linear system of equations using by Jacobi method rounded to four decimal places.

$$
\begin{aligned}
& 10 x_{1}-x_{2}+2 x_{3}=6 \\
& -x_{1}+11 x_{2}-x_{3}+3 x_{4}=25 \\
& 2 x_{1}-x_{2}+10 x_{3}-x_{4}=-11 \\
& 3 x_{2}-x_{3}+8 x_{4}=15
\end{aligned}
$$

UNIT - II
3. (a) A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a $15^{\prime \prime} \times 10^{\prime \prime}$ rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 1.

Table 1

x (in.)	2.00	4.25	5.25	7.81	9.20	10.60
y (in.)	7.2	7.1	6.0	5.0	3.5	5.0

Find the path traversed through the six points using a fifth order Lagrange polynomial.
(b) Construct Newtons forward difference interpolating polynomial for the following data given in Table 2 hence evaluate $\mathrm{f}(4)$

Table 2

x	0	1	2	3
$f(x)$	1	2	1	10

4. (a) Given the following values of $\mathrm{f}(\mathrm{x})$ and $f^{\prime}(x)$ estimate the values of $\mathrm{f}(-0.5)$ using the Hermite interpolation

Table 3

x	$\mathrm{f}(\mathrm{x})$	$f^{\prime}(x)$
-1	1	-5
1	3	7

(b) For linear interpretation, in the case of equispaced tabular data, shows that the error does not exceed $1 / 8$ of the second difference.
[7M]
UNIT - III
5. (a) A rod is rotating in a plane. The Table 4 below gives the angle θ (in radians) through which the rod has turned for various values of the time t (in seconds).
[7M]
Table 4

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity when $\mathrm{t}=0.6$.
(b) Compute $f^{\prime}(4)$ from the following Table 5 using appropriate interpolating polynomial

Table 5

x	1	2	4	8	10
$\mathrm{f}(\mathrm{x})$	0	1	5	21	27

6. (a) By repeated application of Richardson extrapolation find $f^{\prime}(1)$ from the following Table 6 values.
[7M]
Table 6

x	0.6	0.8	0.9	1.0	1.1	1.2	1.4
$\mathrm{f}(\mathrm{x})$	0.707178	0.859892	0.925863	0.984007	1.033743	1.074575	1.127986

Use the formula $f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}$ and $\mathrm{h}=0.4,0.2,0.1$.
(b) Find $\mathrm{f}(32)$ by applying central difference formula given that $\mathrm{f}(25)=0.2707, \mathrm{f}(30)=0.3027$, $\mathrm{f}(35)=0.3386, \mathrm{f}(40)=0.3794$.

UNIT - IV

7. (a) For the method $f^{\prime}(x)=\frac{1}{6}\left[2 f\left(x_{1}\right)-3 f\left(x_{2}\right)+6 f\left(x_{3}\right)-f\left(x_{4}\right)\right]+T E+R E$ determine the optimum value of H , using the criteria $|R E|=|T E|$, where TE and RE are respectively the truncation error and round error.
(b) Find the jacobian matrix for the system of equations
$f_{1}(x, y)=x^{2}+y^{2}-x=0$
$f_{2}(x, y)=x^{2}-y^{2}-y=0$ at the point $(1,1)$ using the second order differentiation method.
8. (a) A solid of revolution is formed by rotating about X-axis, The area between the X-axis and the lines $x=0$ and $x=1$ is a curve through the points with the following coordinates shown in Table 7.
[7M]
Table 7

x	0	2.5	5.0	7.5	10.0	12.5	15.0
y	5	5.5	6.0	6.75	6.25	5.5	4.0

Estimate the volume of the solid so generated.
(b) Determine a,b and c such that the formula $\int_{0}^{h} f(x) d x=h\left\{a f(0)+b f\left(\frac{h}{3}\right)+c f(h)\right\}$ is exact for polynomial of as high order as possible.
[7M]

UNIT - V

9. (a) Using Euler's method solve for y at $\mathrm{x}=2$ from $y^{\prime}=3 x^{2}+1, y(1)=2$ taking $\mathrm{h}=0.25$
(b) Apply the fourth order Runge Kutta method to find y at $\mathrm{x}=1.2$ from $y^{\prime}=x^{2}+y^{2}, y(1)=1.5$ taking $\mathrm{h}=0.1$
10. (a) Solve the boundary value problem $u^{\prime \prime}=u+1,0<x<1 ; u(0)=0, u(1)=e-1$ by using shooting method.
[7M]
(b) given the boundary value problem $x^{2} y^{11}+x y^{1}-y=0, y(1)=1, y(2)=0.5$ apply the cubic spline method to determine the value of $\mathrm{y}(1.5)$.
[7M]
