

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

M.Tech I Semester End Examinations (Supplementary) - February, 2018

Regulation: IARE-R16

COMPUTER ORIENTED NUMERICAL METHODS

Time: 3 Hours (STE) Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

UNIT - I

1. (a) Solve the following system of equations with partial pivoting.

[7M]

$$x_1 - x_2 + 3x_3 = 3$$

 $2x_1 + x_2 + 4x_3 = 7$
 $3x_1 + 5x_2 - 2x_3 = 6$

(b) Use the Givens method to find the Eigen values of the matrix

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 [7M]

2. (a) Use the triangular method to solve the following simultaneous linear equations. [7M]

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

(b) Solve the following linear system of equations using by Jacobi method rounded to four decimal places. [7M]

$$10x_{1} - x_{2} + 2x_{3} = 6$$

$$-x_{1} + 11x_{2} - x_{3} + 3x_{4} = 25$$

$$2x_{1} - x_{2} + 10x_{3} - x_{4} = -11$$

$$3x_{2} - x_{3} + 8x_{4} = 15$$

UNIT - II

3. (a) A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15"×10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 1. [7M]

Table 1

x(in.)	2.00	4.25	5.25	7.81	9.20	10.60
y(in.)	7.2	7.1	6.0	5.0	3.5	5.0

Find the path traversed through the six points using a fifth order Lagrange polynomial.

(b) Construct Newtons forward difference interpolating polynomial for the following data given in Table 2 hence evaluate f(4) [7M]

Table 2

X	0	1	2	3
f(x)	1	2	1	10

4. (a) Given the following values of f(x) and f'(x) estimate the values of f(-0.5) using the Hermite interpolation [7M]

Table 3

X	f(x)	f'(x)
-1	1	-5
1	3	7

(b) For linear interpretation, in the case of equispaced tabular data, shows that the error does not exceed 1/8 of the second difference. [7M]

UNIT - III

5. (a) A rod is rotating in a plane. The Table 4 below gives the angle θ (in radians) through which the rod has turned for various values of the time t (in seconds). [7M]

Table 4

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity when t=0.6.

(b) Compute f'(4) from the following Table 5 using appropriate interpolating polynomial

[7M]

Table 5

X	1	2	4	8	10
f(x)	0	1	5	21	27

6. (a) By repeated application of Richardson extrapolation find f'(1) from the following Table 6 values. [7M]

Table 6

X	0.6	0.8	0.9	1.0	1.1	1.2	1.4
f(x)	0.707178	0.859892	0.925863	0.984007	1.033743	1.074575	1.127986

Use the formula $f'(x) = \frac{f(x+h)-f(x-h)}{2h}$ and h=0.4,0.2,0.1.

(b) Find f (32) by applying central difference formula given that f (25) =0.2707, f (30) =0.3027, f (35) =0.3386, f (40) =0.3794. [7M]

$$UNIT - IV$$

- 7. (a) For the method $f'(x) = \frac{1}{6}[2f(x_1) 3f(x_2) + 6f(x_3) f(x_4)] + TE + RE$ determine the optimum value of H , using the criteria |RE| = |TE|, where TE and RE are respectively the truncation error and round error. [7M]
 - (b) Find the jacobian matrix for the system of equations [7M] $f_1(x,y) = x^2 + y^2 x = 0$ $f_2(x,y) = x^2 y^2 y = 0$ at the point (1,1) using the second order differentiation method.
- 8. (a) A solid of revolution is formed by rotating about X-axis, The area between the X-axis and the lines x=0 and x=1 is a curve through the points with the following coordinates shown in Table 7. [7M]

Table 7

X	0	2.5	5.0	7.5	10.0	12.5	15.0
У	5	5.5	6.0	6.75	6.25	5.5	4.0

Estimate the volume of the solid so generated.

(b) Determine a,b and c such that the formula $\int_0^h f(x)dx = h\{af(0) + bf(\frac{h}{3}) + cf(h)\}$ is exact for polynomial of as high order as possible. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Using Euler's method solve for y at x=2 from $y' = 3x^2 + 1$, y(1) = 2 taking h=0.25 [7M]
 - (b) Apply the fourth order Runge Kutta method to find y at x=1.2 from $y'=x^2+y^2, y(1)=1.5$ taking h=0.1 [7M]
- 10. (a) Solve the boundary value problem u'' = u + 1, 0 < x < 1; u(0) = 0, u(1) = e 1 by using shooting method. [7M]
 - (b) given the boundary value problem $x^2y^{11} + xy^1 y = 0$, y(1) = 1, y(2) = 0.5 apply the cubic spline method to determine the value of y (1.5). [7M]