SATELLITE AND MICROWAVE ENGINEERING

VII Semester: ECE								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
AECB28	Core	L	Т	Р	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes: 45		

I. COURSE OVERVIEW:

This course allows students to study and analyze microwave systems at high frequencies, typically in the MHz and GHz range where lumped elements (e.g., resistors, capacitors, inductors) are no longer appropriate. It introduces passive and active microwave devices that constitute wireless communication systems between the antenna and the signal processor. It deals withthe concepts of satellite communication and its principles to design of global satellite systems for communication. The main ap- plications are cellular communications, high-speed digital and analog circuits, wireless networks and radar.

II. OBJECTIVES:

The course should enable the students to:

- I. Be Proficient in the concept of Satellite communication and understand placement of communication satellite in GEO.
- II. Analyze the Satellite link budget and explain the satellite subsystems like telemetry, tracking and command system.
- III. Perceive the concepts of waveguides and analyze the field components in different types of Waveguides.
- IV. Categorize different types of microwave components based on their applications.
- V. Imbibe knowledge to use microwave oscillators & amplifiers in microwave communication and Compare their characteristics.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Recall the concepts of transmission lines and waveguides to derive the field components of wave equations in TE, TM and TEM and understand their field patterns.	Remember
CO 2	Apply the concept of S-Matrix to measure output power in microwave components such as E-plane Tee, H-plane Tee, Magic –Tee and directional couplers.	Apply
CO3	Determine the performance characteristics of reflex klystron and two-cavity klystron for obtaining the mathematical expressions related to power gain and efficiency	Evaluate
CO 4	Describe the concept of microwave tubes for analyzing the microwave solid state devices	understand
CO 5	Explain the operating principle of GUNN diode using Ridley-Watkins-Hilum theory for obtaining the differential negative resistance.	understand
CO 6	Categorize and measure various microwave parameters using microwave test bench setup.	Analyze
CO 7	Identify different satellite systems like Low earth orbit (LEO), Medium earth orbit (MEO) and Geo synchronous earth orbit (GEO).	Apply

CO 8 Exam		in Analyze					
 communication satellites like FDMA, TDMA and CDMA CO 9 Summarize the concept of Sub-Systems of Satellites and Launches by Understand using orbital mechanics 							
CO 10 Illustrate the design of Earth station and tracking of the satellites Understand							
CO 11 Analyz	orbit control system ze the design of satellite links for a specified C/N with a it frequency Re-use and link budget	and Analyze					
IV. SYLLABUS:							
MODULE -I	INTRODUCTION TO SATELLITE COMMUNICATION AN ORBITAL MECHANICS	D Classes: 08					
mechanics: Orbital Inclined orbits; Or	nt and future trends of satellite communications introduction to sate l elements; Locating the satellite with respect to the earth; Coverage bital perturbations; Eclipse of GEO satellite; Placement of a commu- systems; Satellite link; Propagation effects.	e angle; Slant range;					
MODULE -II	IODULE -IISATELLITE SUB-SYSTEMS & MODULATION AND MULTIPLE ACCESS SCHEMES						
Multiple Access (S reception, adjacent Transmitters, recei	nt multiple access (DAMA). Code Division Multiple Access (CDM SSMA); Direct sequence CDMA (DS-CDMA) or DS spread spectru t channel interference, inter modulation, handover, satellite diversit ivers, antennas, tracking systems, terrestrial interface, power test mo SAT (Very Small Aperture Terminal) Systems and Problems	um transmission and y. Earth Station:					
MODULE -III	INTRODUCTION WAVECHIDE COMPONENTS AND						
impedance for a '	lysis of rectangular waveguide Wave impedance in rectangula TM and TE wave in rectangular waveguide, Dominant mode an ics of phase velocity, group velocity, wavelength and impedan tive problems.	nd degenerate modes,					
Wave guide multip	port junctions: Analysis; Ferrites: Faraday rotation principle, gyrato	or, isolator, circulator					
MODULE -IV	MICROWAVE LINEAR BEAM AND CROSS FIELD TUBES (O TYPE AND M TYPE):	Classes: 10					
Klystron; Multica	beam tubes (O type): Limitations of conventional tubes at mi- vity Klystron amplifiers; Reflex Klystron; Helix Traveling Wa vave cross field tubes (M type): Introduction, cross-field effects; Ma	we tube: Slow wave					
MODULE -V	ODULE -V MICROWAVE SOLID-STATE DEVICES & MICROWAVE MEASUREMENTS						
diodes, Avalanche	state devices: Microwave tunnel diode; Transferred electron e transit time devices: IMPATT diode, TRAPATT diode, BARIT rystal detectors. Description of microwave bench: Different bloc	T diode, Pin diodes,					

precautions; Microwave power measurement: Bolometer; Measurement of attenuation; Frequency standing wave measurements: measurement of low and high VSWR; Cavity Q; Impedance measurements.

V. Text Books:

- 1. Dennis roddy, "Satellite Communications", 4th Edition, 2004.
- 2. Pratt. Bostian, Allnutt, "Satellite Communications", Wiley India, 2nd Edition, 2006.
- 3. Gérard Maral, "Satellite Communication Systems", 1993.
- 4. Tri T. Ha, "Digital Satellite Communications", TMH, 2nd Edition, 1990.
- 5. Samuel Y. Liao, "Microwave Devices and Circuits", Pearson, 3rd Edition, 2003.
- 6. Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, "Microwave Principles", CBS Publishers and Distributors, New Delhi, 1st Edition, 2004.
- 7. F.E. Terman, "Electronic and Radio Engineering", Tata McGraw-Hill Publications, 4th Edition, 1955.

VI. Reference Books:

- 1. Rappaport T.S., "Wireless communications", Pearson Education, 2nd Edition, 2010.
- 2. Bruce Elbert, "Introduction to Satellite Communications", 1987.
- 3. M Richharia, "Satellite Communication Systems", R.E. Collin MacMillan, 2nd Edition, 2005.

VII. Web References:

- 1. http://nptel.ac.in/courses/106105082/33
- 2. http://onlinecourses.nptel.ac.in/noc16_ec10/preview
- 3. https://onlinecourses.nptel.ac.in/noc16_ec10/preview http://nptel.ac.in/courses/117101119/1
- 4. http://www-group.slac.stanford.edu/kly/Lecture_Series/slac_klystron_lecture_series.htm
- 5. https://books.google.co.in/books?id=ZU19Uemy83YC&printsec=frontcover&dq=microwave+ engineering & hl=en & redir esc=y#v=onepage & q&f=false

VIII. E-Text Books:

1.https://ecedmans.files.wordpress.com/2014/10/microwave-devices-and-circuits-samuel-liao.pdf

- 2.http://www.faadooengineers.com/threads/11621-Microwave-engineering-ebook-pdf-Free-Download
- 3.http://www2.electron.frba.utn.edu.ar/~jcecconi/Bibliografia/Ocultos/Libros/Microwave_Engineering_D

_avid_M_Pozar_4ed_Wiley_2012.pdf.