NETWORK ANALYSIS LABORATORY

III Semester: EEE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AEEB12	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	2	1	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 24 Total Cla			tal Classe	s: 24		

I. COURSE OVERVIEW:

The Network Analysis Laboratory is designed to give hands-on experience on virtual instrumentation through digital simulation techniques. These techniques enable the students to design and validate network theorems for DC and AC excitation, transient analysis, network functions and two port networks. Students are able to analyze domestic and industrial power networks during normal as well as abnormal conditions.

II. OBJECTIVES:

The course should enable the students to:

- I The basic laws, network reduction techniques and theorems for different circuits.
- II Two port network parameters of different electrical circuits.
- III The circuit modeling in frequency domain.
- IV The virtual instrumentation using LabVIEW.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:	
CO 1 Analyze an electric circuit using nodal and mesh analysis.	Analyze
CO 2 Apply various network theorems for reducing complex networks into simple equivalent network.	ent Apply
CO 3 Calculate various parameters of two port network for analyzingdifferent electrical circuits.	Apply
CO 4 Analyze the virtual instrumentation (VI) using control loops, arrays, charts and graphs.	Analyze
CO 5 Design of electrical network in frequency domain using digital simulation.	Apply

IV. SYLLABUS:

LIST OF EXPERIMENTS

Expt. 1	MESH AND NODAL ANALYSIS	
Verification of mesh and nodal analysis using hardware.		
Expt. 2	SUPERPOSITION AND RECIPROCITY THEOREMS	
Verification of super position and reciprocity theorems using hardware.		
Expt. 3	MAXIMUM POWER TRANSFER THEOREM	
Verification of maximum power transfer theorem using hardware.		
Expt. 4	THEVENIN'S AND NORTON'S THEOREMS	
Verification of Thevenin's and Norton's theorems using hardware.		
Expt. 5	COMPENSATION AND MILLIMAN'S THEOREM	

Expt. 6	IMPEDANCE (Z) AND ADMITTANCE (Y) PARAMETERS
To calculat	te and verify 'Z' parameters and 'Y' parameters of two-port network
Expt. 7	TRANSMISSION (ABCD) AND HYBRID (H) PARAMETERS
To calculat	te and verify 'ABCD' parameters and 'H' parameters of two-port network.
Expt. 8	VIRTUAL INSTRUMENTS (VI) USING LABVIEW
Editing and	l building a VI, creating a sub VI.
Expt. 9	GENERATION OF COMMON WAVE FORMS USING LABVIEW
	eration of triangular wave; saw tooth, square wave and display of wave form, minimum and maximum values of and modulation.
Expt.10	FREQUENCY MEASUREMENT USING LABVIEW
Frequency	measurement using Lissajous figures in Lab View.
Expt. 11	STRUCTURES USING LABVIEW
Using FOR	R loop, WHILE loop, charts and arrays, graph and analysis VIs.
Expt. 12	SERIES, PARALLEL AND CASCADE CONNECTION OF TWO PORT NETWORK
To determi	ne the equivalent parameters of series, parallel, cascade connection of two port network.
Expt. 13	SOURCE TRANSFORMATION
Analysis c	of given circuit using source transformation technique
Expt. 14	MODELLING ELECTRICAL NETWORK IN FREQUENCY DOMAIN
To learn m	odelling of electrical network in frequency domain using digital simulation.
Reference	Books:
 A Chal V K M 	ment Lab Manual. krabarti, "Circuit Theory", Dhanpat Rai Publications, 6 th Edition, 2006. ehta, Rohit Mehta, "Principles of Electrical Machines", 1 st Edition, 2013. garath & D P Kothari, "Electrical Machines", 1 st Edition, 2011.
Web Refe	rences:
1. https://	/www.ee.iitkgp.ac.in /www.citchennai.edu.in

SOFTWARE: MATLAB R2015a and LabVIEW **HARDWARE:** Desktop Computers (04 no.s)