DIGITAL COMMUNICATIONS LABORATORY

V Semester: ECE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AECB22	Core	L	T	P	C	CIA	SEE	Total	
		-	-	2	1	30	70	100	
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 24 Total Classes: 24							

I. COURSE OVERVIEW:

This lab course gives the hands on experience in elements of digital communication systems. The design of various coding techniques, pulse analog and digital modulations to analyse signal to noise ratio, bit error rate, power and bandwidth for digital communication systems. This lab is useful inthe digital signal processors in secured communication systems, multimedia communications and datastorage applications.

II. OBJECTIVES:

The course should enable the students to:

- I The Elements of digital communication systems to convert continuous time signals into discrete time signals.
- II The pulse analog modulation techniques, generation and detection of digital modulation techniques.
- III The time and frequency domain analysis of the signals in communication system by using MATLAB tools.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 Examine sampling theorem for processing of different signals such as low pass Analyze signals, band-limited signals and band pass signals.
- CO 2 Classify the pulse modulation and demodulation methods forencoded data in analog Analyze to digital conversion.
- CO 3 Apply the concept of pulse code modulation and demodulation for the equivalent Analyze sequence of binary code word data.
- CO 4 Categorize the digital modulation techniques used for transfer a digital bit stream Analyze over an analog channel at a high frequency.
- CO 5 **Determine** bit rate in delta modulation and demodulation process for the no. of bits Apply per sample are transmitted.
- CO 6 **Develop** frequency domain description of different digital modulation techniques for Apply spectral characteristics analysis.

LIST OF EXPERIMENTS

Week-l	SAMPLING THEOREM – VERIFICATION		
Verification of sampling theorem for under, perfect, over sampling cases			
Week-2	PULSE AMPLITUDE MODULATION AND DEMODULATION		
Generation of Pulse Amplitude modulation and demodulation using hardware and matlab			
Week-3	PULSE WIDTH MODULATION AND DEMODULATION		
Generation of Pulse width modulation and demodulation using hardware and matlab			

Week-4	PULSE POSITION MODULATION AND DEMODULATION.		
Generation of pulse position modulation and demodulation using hardware and matlab			
Week-5	PULSE CODE MODULATION		
	f pulse code modulation and demodulation using hardware and understanding the concept ital conversion		
Week-6	DIFFERENTIAL PULSE CODE MODULATION		
Generation o	f differential pulse code modulation and demodulation using hardware		
Week-7	DELTA MODULATION.		
Generation o PCM and DM	f delta modulation and demodulation using hardware .Understanding difference between		
Week-8	FREQUENCY SHIFT KEYING		
Generation of Frequency shift keying modulation and demodulation using hardware			
Week-9	PHASE SHIFT KEYING.		
Generation of Phase shift keying modulation and demodulation using hardware			
Week-l0	DIFFERENTIAL PHASE SHIFT KEYING		
Generation o	f Differential Phase shift keying modulation and demodulation using hardware		
Week-l1	AMPLITUDE SHIFT KEY(ASK)		
Generation of Amplitude Shift Key modulation and demodulation using hardware			
Week-12	QUADRATURE PHASE SHIFT KEYING		
Generation of QPSK modulation and demodulation using hardware			
Week-13	MATLAB for QPSK & SIMULINK for DPSK.		
Understand f keying	requency domain description of Quadrature Phase Shift Keying and Differential Phase shift		
Week-14	STUDY OF THE SPECTRAL CHARACTERISTICS OF AMPLITUDE MODULATION		
Understand frequency domain description of Amplitude Modulation			

Reference Books:

- 1. K.SamShanmugam, "Digital and Analog Communication Systems", Joh Wiley & Sons, 2nd Edition,
- B.P.Lathi, "Modern Analog and Digital Communication", Oxford reprint, 3rd Edition, 2004.
 Singh,Sapre, "Communication Systems Analog and Digital", TMH, 2nd Edition, 2004

Web References:

- 1. https://ocw.mit.edu/courses/electrical.../6...digital-communications.../lecture-notes
- 2. https://everythingvtu.wordpress.com
- 3. http://www.iare.ac.in

SOFTWARE AND HARDWARE REQUIRED FOR A BATCH OF 36 STUDENTS

HARDWARE: Desktop Computer Systems 18 nos

SOFTWARE: MATLAB