

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMP	COMPUTER SCIENCE AND ENGINEERING				
Course Title	ENGIN	ENGINEERING CHEMISTRY				
Course Code	AHSB0	AHSB03				
Program	B.Tech	B.Tech				
Semester	I	I				
Course Type	FOUNDATION					
Regulation	R-18					
		Theory		Pract	ical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	3	1.5	
Course Coordinator	Dr V Anitha Rani, Associate Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10+2	-	-	Vital principles of chemistry

II COURSE OVERVIEW:

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the Intermediate level. Technology is being increasingly based on the electronic, atomic and molecular level modifications. Quantum theory is more than 100 years old and to understand phenomena at nanometer levels; one has to base the description of all chemical processes at molecular levels.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Engineering Chemistry	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point Presentations	✓	Chalk & Talk	>	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	x Others						

V EVALUATION METHODOLOGY:

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with either or choice will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
50%	Apply
0 %	Analyze
0%	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam Quiz		AAT	10tal Walks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

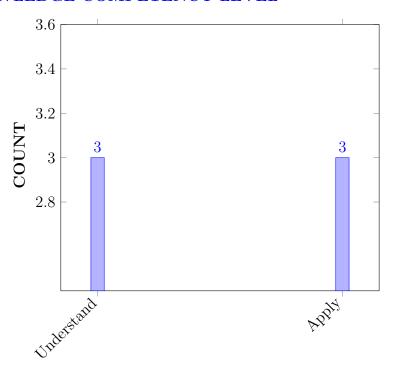
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The concepts of electrochemical principles and causes of corrosion in the new development and breakthroughs efficiently in engineering and technology.
II	The different parameters to remove causes of hardness of water and their reactions towards the complexometric method.
III	The microscopic chemistry in terms of atomic, molecular orbitals and Intermolecular forces.
IV	The different molecular organic chemical reactions that are used in the synthesis of molecules.
V	The properties, separation techniques of natural gas and crude oil along with potential applications in major chemical reactions.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the electrochemical principles, corrosion process in metals for protection of different metals from corrosion.	Understand
CO 2	Utilize electrochemical cell parameters, electrochemical active surface area, current and over potential under given condition for calculating the electromotive force and electrode potential.	Apply
CO 3	Identify the hardness of water by different treatment methods for finding the hardness causing salts in water.	Apply
CO 4	Illustrate the molecular orbital energy level diagrams of different molecules and theories of bonding for understanding the magnetic properties of coordination compounds.	Understand
CO 5	Explain the mechanism of different chemical reactions, stereo isomers for finding the optically active compounds and synthesizing the drug molecules.	Understand
CO 6	Make use of green synthesis methods, different types of solid, liquid and gaseous fuels in terms of calorific value for utilizing in industries and automobiles.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

	Program Outcomes			
PO 9	Individual and team work: Function effectively as an individual, and as a			
	member or leader in diverse teams, and in multidisciplinary settings.			
PO 10	Communication: Communicate effectively on complex engineering			
	activities with the engineering community and with society at large, such as,			
	being able to comprehend and write effective reports and design			
	documentation, make effective presentations, and give and receive clear			
	instructions.			
PO 11	Project management and finance: Demonstrate knowledge and			
	understanding of the engineering and management principles and apply these			
	to one's own work, as a member and leader in a team, to manage projects			
	and in multidisciplinary environments.			
PO 12	Life-Long Learning: Recognize the need for and having the preparation			
	and ability to engage in independent and life-long learning in the broadest			
	context of technological change			

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	2.5	SEE/CIE/Quiz/
	knowledge of mathematics, science, engineering		AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	1	SEE/CIE/Quiz/
	research literature, and analyze complex		AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 7	Environment and sustainability:	2	SEE/CIE/Quiz/
	understand the impact of the professional		AAT
	engineering solutions in societal and		
	Environmental contexts, and demonstrate the		
	knowledge of, and need for sustainable		
	development.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Build the prototype of UAVs and aero-foil models	-	-
	for testing by using low speed wind tunnel		
	towards research in the area of experimental		
	aerodynamics.		
PSO 2	Focus on formulation and evaluation of aircraft	_	-
	elastic bodies for characterization of aero elastic		
	phenomena.		
PSO 3	Make use of multi physics, computational fluid	-	-
	dynamics and flight simulation tools for building		
	career paths towards innovative startups,		
	employability and higher studies.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 2	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 3	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 4	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 5	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 6	✓	/	-	-	-	-	✓	-	-	-	-	-	-	-			

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the electrochemical properties for producing electrical energy (understand) by using principles of science for solving engineering problems.	2
CO 2	PO 1	Choose different electrodes for finding pH of unknown solutions by applying mathematical expressions of cell potential by using principles of science and mathematics for solving engineering problems	3
	PO 2	Identify the problem formulation and abstraction for calculating electrode potential under non standard conditions by applying Nernst equation from the provided information.	2
CO3	PO1	Explain the concept of corrosion processes in metals by exposing to acidic environment for solving engineering problems by applying the principles of science	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO2	Identify the problem and formulate for finding the hardness of water in terms of CaCO3 equivalents with given information and data by applying principles of science.	2
CO4	PO1	Explain the formation of molecular orbitals by linear combination of atomic orbitals, splitting of d orbitals for formation of octahedral, tetrahedral and square planar complexes for solving engineering problems by applying the principles of science.	2
CO5	PO1	Illustrate the structural and stereo isomers of optically active compounds, different types of molecular organic reactions for synthesizing drugs by using principles of science for solving engineering problems.	2
CO6	PO1	Classify different types of solid, liquid and gaseous fuels with their characteristics and calorific value by using principles of science and mathematics for solving engineering problems.	ന
	PO2	Identify the given problem and formulate for finding the calorific value of fuel with the given information and data by applying principles of science.	2
	PO7	Make use of gaseous fuels like LPG, CNG to reduce the pollutants in atmosphere and know the impact in socio economic and environmental contexts for sustainable development.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES												PSO'S	
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	_	-	-	-	-	-	-	-	_	_	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	2	-	-	-	-	2	-	-	-	_	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

		PROGRAM OUTCOMES												PSO'S	
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	100	20.0	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	100	20.0	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.6	-	-	-	-	-	-	-	-	_	-	-	-	-	-
CO 5	66.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	100	20.0	1	-	-	-	66.6	ı	-	-	ı	-	1	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C< 40% - Low/ Slight

2 - 40 % < C < 60% –Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

		PROGRAM OUTCOMES													PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	2	-	-	-	-	-	-	1	-	-	-	-	-	-			
CO 2	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 3	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 6	3	1	-	-	-	-	2	-	-	-	-	-	-	-	-		
TOTAL	15	3	-	-	-	-	2	-	-	-	-	-	-	-	-		
AVERAGE	2.5	1	-	-	-	-	2	-	-	-	-	-	-	-	-		

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE	✓	5 minutes	✓
		Exams		video	
Laboratory	-	Student	-	Certification	-
Practices		Viva			
Term Paper	✓	_	_	_	-

XVII ASSESSMENT METHODOLOGY-INDIRECT:

x	Early Semester Feedback	✓	End Semester OBE Feedback
x	Assessment of Mini Projects by Experts		

XVIII SYLLABUS:

MODULE I	ELECTROCHEMISTRY AND BATTERIES
	Electro chemical cells: Electrode potential, standard electrode potential, types of electrodes; Calomel, Quinhydrone and glass electrode; Nernst equation; Electrochemical series and its applications; Numerical problems; Batteries: Primary (Dry cell) and secondary batteries (Lead-acid storage battery and Lithium ion battery). Causes and effects of corrosion: Theories of chemical and electrochemical corrosion, mechanism of electrochemical corrosion; Types of corrosion: Galvanic, water-line and pitting corrosion; Factors affecting rate of corrosion; Corrosion control methods: Cathodic protection, sacrificial anode and impressed current; Surface coatings: Metallic coatings- Methods of coating- Hot dipping, cementation, electroplating and Electroless plating of copper.
MODULE II	WATER AND ITS TREATMENT
	Introduction: Hardness of water, Causes of hardness; Types of hardness: temporary and permanent, expression and units of hardness; Estimation of hardness of water by complexometric method; Potable water and its specifications, Steps involved in treatment of water, Disinfection of water by chlorination and ozonization; Boiler feed water and its treatment, Calgon conditioning, Phosphate conditioning and Colloidal conditioning; External treatment of water; Ion-exchange process; Desalination of water: Reverse osmosis, numerical problems.
MODULE III	MOLECULAR STRUCTURE AND THEORIES OF BONDING
	Atomic and Molecular orbitals: Linear Combination of Atomic Orbitals LCAO), molecular orbitals of diatomic molecules; Molecular orbital energy level diagrams of N2, O2F2, CO and NO molecules. Crystal Field Theory (CFT): Salient Features of CFT-Crystal Field; Splitting of transition metal ion d- orbitals in Tetrahedral, Octahedral and square planar geometries; Band structure of solids and effect of doping on conductance.
MODULE IV	STEREOCHEMISTRY, REACTION MECHANISM AND SYNTHESIS OF DRUG MOLECULES
MODULE V	Introduction to representation of 3-dimensional structures: Structural and stereoisomers, configurations, symmetry and chirality; Enantiomers, diastereomers, optical activity and Absolute configuration; Conformation analysis of n- butane. Substitution reactions: Nucleophilic substitution reactions, Mechanism of SN1, SN2 reactions; Electrophilic and nucleophilic addition reactions; Addition of HBr to propene; Markownikoff and anti Markownikoff's additions; Grignard additions on carbonyl compounds; Elimination reactions: Dehydro halogenation of alkylhalides; Saytzeff rule; Oxidation reactions: Oxidation of alcohols using KMnO4 and chromic acid; Reduction reactions: Reduction of carbonyl compounds using LiAlH4 & NaBH4; Hydroboration of olefins; Structure, synthesis and pharmaceutical applications of Paracetamol and Aspirin. FUELS AND COMBUSTION

Fuels: Definition, classification of fuels and characteristics of a good fuels; Solid fuels: Coal; Analysis of coal: Proximate and ultimate analysis; Liquid fuels: Petroleum and its refining; Cracking: Fixed bed catalytic cracking; Knocking: Octane and cetane numbers; Gaseous fuels: Composition, characteristics and applications of natural gas, LPG and CNG; Combustion: Calorific value: Gross Calorific Value(GCV) and Net Calorific Value(NCV), calculation of air quantity required for complete combustion of fuel, numerical problems.

TEXTBOOKS

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company, 16th Edition, 2017.
- 2. Shashi Chawla, "Engineering Chemistry", Dhanat Rai and Company, 2011, 1st Edition.
- 3. R.T. Morrison, RN Boyd and SK Bhattacharya, "Organic Chemistry", Pearson, 7th Edition, 2011
- 4. K.F. Purcell and J.C. Kotz, "Inorganic Chemistry", Cengage learning, 2017.

REFERENCE BOOKS:

- 1. K. P. C. Volhardt and N. E. Schore, "Organic Chemistry Structure and Functions", Oxford Publications, 7th Edition 2010.
- 2. B. H. Mahan, "University Chemistry", Narosa Publishers, 4th Edition, 2009.

WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping		
	CONTENT DELIVERY (THEORY)		
2	Concept of Electro chemical cells	CO1	T1,T2
3	Numerical problems on EMF: Galvanic Cells	CO 2	T1,T2
4	Types of Electrodes: Calomel, Quinhydrone and Glass electrode	CO 2	T1,T2
5	Nernst equation and its applications	CO 2	T1,T2
6	Batteries: Primary cells (dry cells)	CO 1	T1,T2
7	Secondary cells (lead-Acid cell). Applications of batteries	CO 1	T1,T2
8	Corrosion-Definition ,Causes and effects of corrosion, Theories of corrosion – Chemical corrosion theory	CO 1	T1,T2

9	Types of corrosion (water line and pitting), Factors affecting rate of corrosion	CO 1	T1,T2
10	Corrosion control methods – Cathodic protection and metallic coating.	CO 1	T1,T2
11	Hardness of water, expression of hardness-units; Types of hardness: Temporary hardness, permanent hardness and numerical problems.	CO 3	T1,T2
12	Estimation of temporary and permanent hardness of water by EDTA	CO 3	T1,T2
13	Potable water and its specifications, steps involved in its treatment of water.	CO 3	T1,T2
14	Boiler troubles – Priming and foaming, caustic embrittlement	CO 3	T1,T2
15	Treatment of boiler feed water – Internal treatment (Phosphate, carbonate and calgon conditioning)	CO 3	T1,T2
16	Ion exchange process, steps involved in the treatment of this process	CO 3	T1,T2
17	Sterilization of potable water by chlorination and ozonization	CO 3	T1,T2
18	purification of water by reverse osmosis process. Numerical problems	CO 3	T1,T2
19	Shapes of Atomic Orbitals	CO 4	T1,T2
20	Linear combination of Atomic orbitals (LACO)	CO 4	T1,T2
21	Molecular orbitals of diatomic molecules N2 O2 and F2.	CO 4	T1,T2
22	Molecular orbitals diatomic CO and NO molecule	CO 4	T1,T2
23	Crystal Field Theory (CFT), Salient Features of CFT- Crystal Fields	CO 4	T1,T2
24	Splitting of transition metal ion d- orbitals in Tetrahedral	CO 4	T1,T2
25	Splitting of transition metal ion Octahedral and square planar geometries	CO 4	T1,T2
26	Band structure of solids and effect of doping on conductance	CO 4	T1,T2
27	Introduction to representation of 3-dimensional structures	CO 5	T1,T2
28	Structural and stereoisomers of organic compounds	CO 5	Т3
29	Configurations, symmetry and chirality.	CO 5	Т3
30	Enantiomers, diastereomers, optical activity and Absolute configuration	CO 5	Т3
31	Conformation alanalysis of n- butane	CO 5	Т3
32	Nucleophilic substitution reactions, Mechanism of SN1, SN2 reactions	CO 5	Т3
33	Electrophilic and nucleophilic addition reactions; Addition of HBr to Propene; Markownikoff and anti Markownikoff's additions	CO 5	Т3
34	Grignard additions on carbonyl compounds, EliminationreactionsDehydro halogenations of alkylhalides	CO 5	Т3
35	Oxidation reactions: Oxidation of alcohols using KMnO4 and chromicacid.	CO 5	Т3
36	Reduction reactions: Reduction of carbonyl compounds using LiAlH4& NaBH4	CO 5	Т3

37	Hydroboration of olefins	CO 5	Т3
38	Structure, synthesis and pharmaceutical applications of Paracetamol and Aspirin.		Т3
39	Definition, classification of fuels and characteristics of a good fuels	CO 5	T1,T2
40	Solid fuel Coal, analysis of coal- proximate analysis	CO 6	T1,T2
41	Analysis of coal -ultimate analysis.	CO 6	T1,T2
42	Liquid fuels: Petroleum and its refining Cracking: Fixed bed catalytic cracking;	CO 6	T1,T2
43	Knocking: Octane and cetane numbers	CO 6	T1,T2
44	Gaseous fuels: Composition, characteristics and applications of Natural gas, LPG and CNG	CO 6	T1,T2
45	Combustion: Calorific value-Gross calorific value(GCV) and net calorific value(NCV)	CO 6	T1,T2
46	Calculation of air quantity required for complete combustion of fuel, numerical problems.	CO 6	T1,T2
	PROBLEM SOLVING		
1	Probelms on EMF	CO 1	T1:3.3.1; R3:3.2
2	Probelms on Nernst equation	CO 1	T2:16.5; R3:8.10
3	Determination of Electrode potential	CO 2	T2:16.5; R3:8.10
4	Determination of Hardness	CO 3	T1:3.3.1; R3:3.2
5	Determination of Hardness by EDTA	CO 3	T2:16.5; R3:8.10
6	Crystal field stabalization energy	CO 4	T2:16.5; R3:8.10
7	Proximate Analysis of coal	CO 6	T1:3.3.1; R3:3.2
8	ultimate Analysis of coal	CO 6	T2:16.5; R3:8.10
9	Dulungs Equation for coal analysis	CO 6	T2:16.5; R3:8.10
10	Probelms on Combustion	CO 6	T1:3.3.1; R3:3.2
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	Electro Chemistry and Batteries	CO 1	T2:16.5; R3:8.10
2	Water and Its Treatment	CO 2	T1:3.3.1; R3:3.2
3	Molecular Structure and Theories of Bonding	CO 3	T2:16.5; R3:8.10
4	Streo chemistry, Reaction Mechanisim	CO 4	T2:16.5; R3:8.10

5	Fuels and Combustion	CO 6	T2:16.5;
			R3:8.10
	DISCUSSION OF QUESTION BANK		
1	Electro Chemistry and Batteries	CO 1	T2:16.5;
			R3:8.10
2	Water and Its Treatment	CO 2	T1:3.3.1;
			R3:3.2
3	Molecular Structure and Theories of Bonding	CO 3	T2:16.5;
			R3:8.10
4	Streo chemistry, Reaction Mechanisim	CO 4	T2:16.5;
			R3:8.10
5	Fuels and Combustion	CO 6	T2:16.5;
			R3:8.10

Signature of Course Coordinator

 $_{
m HOD,CSE}$

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	СОМР	COMPUTER SCIENCE AND ENGINEERING					
Course Title	ENGIN	ENGINEERING CHEMISTRY					
Course Code	AHS005						
Program	B.Tech						
Semester	1	I					
Course Type	FOUNDATION						
Regulation	R-18	R-18					
	Theory Practica			tical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	1	4	3	1.5		
Course Coordinator	Dr V Anitha Rani, Associate Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Course Code Semester Prerequisites	
10+2	-	-	Vital principles of chemistry

II COURSE OVERVIEW:

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the Intermediate level. Technology is being increasingly based on the electronic, atomic and molecular level modifications. Quantum theory is more than 100 years old and to understand phenomena at nanometer levels; one has to base the description of all chemical processes at molecular levels.

III MARKS DISTRIBUTION:

Subject SEE Examination		CIE Examination	Total Marks
Engineering Chemistry	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point Presentations	✓	Chalk & Talk	>	Assignments	x	МООС
x	Open Ended Experiments	х	Seminars	x	Mini Project	х	Videos
X	Others						

V EVALUATION METHODOLOGY:

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE UNITs and each UNIT carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with either or choice will be drawn from each UNIT. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE UNITs and each UNIT carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each UNIT. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
50%	Apply
0 %	Analyze
0%	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz	AAT	Total Ivial KS
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

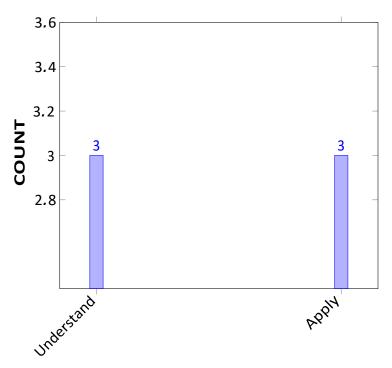
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The concepts of electrochemical principles and causes of corrosion in the new development and breakthroughs efficiently in engineering and technology.
П	The different parameters to remove causes of hardness of water and their reactions towards the complexometric method.
III	The microscopic chemistry in terms of atomic, molecular orbitals and Intermolecular forces.
IV	The different molecular organic chemical reactions that are used in the synthesis of molecules.
V	The properties, separation techniques of natural gas and crude oil along with potential applications in major chemical reactions.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the electrochemical principles, corrosion process in metals for protection of different metals from corrosion.	Understand
CO 2	Utilize electrochemical cell parameters, electrochemical active surface area, current and over potential under given condition for calculating the electromotive force and electrode potential.	Apply
CO 3	Identify the hardness of water by different treatment methods for finding the hardness causing salts in water.	Apply
CO 4	Illustrate the molecular orbital energy level diagrams of different molecules and theories of bonding for understanding the magnetic properties of coordination compounds.	Understand
CO 5	Explain the mechanism of different chemical reactions, stereo isomers for finding the optically active compounds and synthesizing the drug molecules.	Understand
CO 6	Make use of green synthesis methods, different types of solid, liquid and gaseous fuels in terms of calorific value for utilizing in industries and automobiles.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

	Program Outcomes									
PO 9	Individual and team work: Function effectively as an individual, and as a									
	member or leader in diverse teams, and in multidisciplinary settings.									
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.									
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.									
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change									

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2.5	SEE/CIE/Quiz/ AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	1	SEE/CIE/Quiz/ AAT
PO 7	Environment and sustainability: understand the impact of the professional engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2	SEE/CIE/Quiz/ AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Build the prototype of UAVs and aero-foil models for testing by using low speed wind tunnel towards research in the area of experimental aerodynamics.	-	-
PSO 2	Focus on formulation and evaluation of aircraft elastic bodies for characterization of aero elastic phenomena.	-	-
PSO 3	Make use of multi physics, computational fluid dynamics and flight simulation tools for building career paths towards innovative startups, employability and higher studies.	-	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	<	-		-	-	-	-	-	-	-		-	-	-	-
CO 2	/	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	/	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	✓	✓	-	-	-	-	✓	-	-	-	-	-	-	-	

XII JUSTIFICATIONS FOR CO - PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the electrochemical properties for producing electrical energy (understand) by using principles of science for solving engineering problems.	2
CO 2	PO 1	Choose different electrodes for finding pH of unknown solutions by applying mathematical expressions of cell potential by using principles of science and mathematics for solving engineering problems	3
	PO 2	Identify the problem formulation and abstraction for calculating electrode potential under non standard conditions by applying Nernst equation from the provided information.	2
CO3	PO1	Explain the concept of corrosion processes in metals by exposing to acidic environment for solving engineering problems by applying the principles of science	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO2	Identify the problem and formulate for finding the hardness of water in terms of CaCO3 equivalents with given information and data by applying principles of science.	2
CO4	PO1	Explain the formation of molecular orbitals by linear combination of atomic orbitals, splitting of d orbitals for formation of octahedral, tetrahedral and square planar complexes for solving engineering problems by applying the principles of science.	2
CO5	PO1	Illustrate the structural and stereo isomers of optically active compounds, different types of molecular organic reactions for synthesizing drugs by using principles of science for solving engineering problems.	2
CO6	PO1	Classify different types of solid, liquid and gaseous fuels with their characteristics and calorific value by using principles of science and mathematics for solving engineering problems.	3
	PO2	Identify the given problem and formulate for finding the calorific value of fuel with the given information and data by applying principles of science.	2
	PO7	Make use of gaseous fuels like LPG, CNG to reduce the pollutants in atmosphere and know the impact in socio economic and environmental contexts for sustainable development.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	1	-	-	-	-	-	-	-	1		-	-	1
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	2	-	-	-	-	2	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.6	1	1	-	-	-	-	-	-	-	1	1	-	ı	-
CO 2	100	20.0	1	-	-	-	-	-	-	-	1	1	-	-	-
CO 3	100	20.0	ı	ı	-	-	ı	ı	ı	ı	ı	-	-	ı	-
CO 4	66.6	1	ı	-	-	-	-	-	-	-	1	1	-	ı	-
CO 5	66.6	-	1	-	_	-	-	-	-	-		-	-		_
CO 6	100	20.0	ı	-	-	-	66.6	ı	-	-		-	-	ı	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $0 - 0 \le C \le 5\%$ – No correlation

1 -5 <C≤ 40% - Low/ Slight

2 - 40 % <C < 60% –Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-	1	-	ı	
CO 2	3	1	ı	ı	-	-	ı	ı	ı	ı	ı	-	-	ı	-
CO 3	3	1	-	-	-	-	-	-	-	-	-	1	-	ı	-
CO 4	2	-	-	-	-	-	-	-	-	-	-	-	-	1	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	1	-	-	-	-	2	-	-	-	-	-	-	-	-
TOTAL	15	3	-	-	-	-	2	-	-	-	-	-	-	1	-
AVERAGE	2.5	1	-	-	-	-	2	-	-	-	-	-	-	-	_

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE	✓	5 minutes	✓
		Exams		video	
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	✓	-	-	-	-

XVII ASSESSMENT METHODOLOGY-INDIRECT:

х	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVIII SYLLABUS:

UNIT I	ELECTROCHEMISTRY AND BATTERIES
	Electro chemical cells: Electrode potential, standard electrode potential, types of electrodes; Calomel, Quinhydrone and glass electrode; Nernst equation; Electrochemical series and its applications; Numerical problems; Batteries: Primary (Dry cell) and secondary batteries (Lead-acid storage battery and Lithium ion battery). Causes and effects of corrosion: Theories of chemical and electrochemical corrosion, mechanism of electrochemical corrosion; Types of corrosion: Galvanic, water-line and pitting corrosion; Factors affecting rate of corrosion; Corrosion control methods: Cathodic protection, sacrificial anode and impressed current; Surface coatings: Metallic coatings- Methods of coating- Hot dipping, cementation, electroplating and Electroless plating of copper.
UNIT II	CORROSION AND ITS CONTROL
	Corrosion: Introduction, causes and effects of corrosion; Theories of corrosion: Chemical and electrochemical corrosion with mechanism; Factors affecting the rate of corrosion: Nature of the metal and nature of the environment; Types of corrosion: Waterline and crevice corrosion; Corrosion control methods: Cathodic protection- sacrificial anodic protection and impressed current cathodic protection; Surface coatings: Metallic coatings, methods of application of metallic coatings-hot dipping(galvanizing, tinning), electroplating(copper plating); Organic coatings: Paints, its constituents and their functions
UNIT III	WATER TECHNOLOGY
	Water: Sources and impurities of water, hardness of water, expression of hardness-units; Types of hardness: Temporary hardness, permanent hardness and numerical problems; Estimation of temporary and permanent hardness of water by EDTA method; Determination of dissolved oxygen by Winkler's method; Boiler troubles: Priming, foaming, scales, sludges and caustic embrittlement. Treatment of water: Internal treatment of boiler feed water- carbonate, calgon and phosphate conditioning, softening of water by Zeolite process and lon exchange process; Potable water-its specifications, steps involved in the treatment of potable water, sterilization of potable water by chlorination and ozonization, purification of water by reverse osmosis process.
UNIT IV	MATERIALS CHEMISTRY
	Materials chemistry: Polymers-classification with examples, polymerization-addition, condensation and co-polymerization; Plastics: Thermoplastics and thermosetting plastics; Compounding of plastics; Preparation, properties and applications of polyvinyl chloride, Teflon, Bakelite and Nylon-6, 6; Rubbers: Natural rubber its process and vulcanization; Elastomers: Buna-s and Thiokol rubber; Fibers: Characteristics of fibers, preparation properties and applications of Dacron; Characteristics of fiber reinforced plastics; Cement: Composition of Portland cement, setting and hardening of Portland cement; Lubricants: Classification with examples; Properties: Viscosity, flash, fire, cloud and pour point; Refractories: Characteristics and classification with examples

UNIT V	FUELS AND COMBUSTION
	Fuel: Definition, classification of fuels and characteristics of a good fuels; Solid fuels: Coal; Analysis of coal: Proximate and ultimate analysis; Liquid fuels: Petroleum and its refining; Cracking: Fixed bed catalytic cracking; Knocking: Octane and cetane numbers; Gaseous fuels: Composition, characteristics and applications of natural gas, LPG and CNG; Combustion: Calorific value: Gross Calorific Value(GCV) and Net Calorific Value(NCV), calculation of air quantity required for complete combustion of fuel, numerical problems.

TEXTBOOKS

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company, 16th Edition, 2017.
- 2. Shashi Chawla, "Engineering Chemistry", Dhanat Rai and Company, 2011, 1st Edition.
- 3. R.T. Morrison, RN Boyd and SK Bhattacharya, "Organic Chemistry", Pearson, 7th Edition, 2011
- 4. K.F. Purcell and J.C. Kotz, "Inorganic Chemistry", Cengage learning, 2017.

REFERENCE BOOKS:

- 1. K. P. C. Volhardt and N. E. Schore, "Organic Chemistry Structure and Functions", Oxford Publications, 7th Edition 2010.
- 2. B. H. Mahan, "University Chemistry", Narosa Publishers, 4th Edition, 2009.

WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping		
	CONTENT DELIVERY (THEORY)		
2	Concept of Electro chemical cells	CO1	T1,T2
3	Numerical problems on EMF: Galvanic Cells	CO 2	T1,T2
4	Types of Electrodes: Calomel, Quinhydrone and Glass electrode	CO 2	T1,T2
5	Nernst equation and its applications	CO 2	T1,T2
6	Batteries: Primary cells (dry cells)	CO 1	T1,T2
7	Secondary cells (lead-Acid cell). Applications of batteries	CO 1	T1,T2
8	Corrosion-Definition ,Causes and effects of corrosion, Theories of corrosion — Chemical corrosion theory	CO 1	T1,T2

9	Types of corrosion (water line and pitting), Factors affecting rate of corrosion	CO 1	T1,T2
10	Corrosion control methods – Cathodic protection and metallic coating.	CO 1	T1,T2
11	Hardness of water, expression of hardness-units; Types of hardness: Temporary hardness, permanent hardness and numerical problems.	CO 3	T1,T2
12	Estimation of temporary and permanent hardness of water by EDTA	CO 3	T1,T2
13	Potable water and its specifications, steps involved in its treatment of water.	CO 3	T1,T2
14	Boiler troubles – Priming and foaming, caustic embrittlement	CO 3	T1,T2
15	Treatment of boiler feed water – Internal treatment (Phosphate, carbonate and calgon conditioning)	CO 3	T1,T2
16	Ion exchange process, steps involved in the treatment of this process	CO 3	T1,T2
17	Sterilization of potable water by chlorination and ozonization	CO 3	T1,T2
18	purification of water by reverse osmosis process. Numerical problems	CO 3	T1,T2
19	Shapes of Atomic Orbitals	CO 4	T1,T2
20	Linear combination of Atomic orbitals (LACO)	CO 4	T1,T2
21	Molecular orbitals of diatomic molecules N2 O2 and F2.	CO 4	T1,T2
22	Molecular orbitals diatomic CO and NO molecule	CO 4	T1,T2
23	Crystal Field Theory (CFT), Salient Features of CFT- Crystal Fields	CO 4	T1,T2
24	Splitting of transition metal ion d- orbitals in Tetrahedral	CO 4	T1,T2
25	Splitting of transition metal ion Octahedral and square planar geometries	CO 4	T1,T2
26	Band structure of solids and effect of doping on conductance	CO 4	T1,T2
27	Introduction to representation of 3-dimensional structures	CO 5	T1,T2
28	Structural and stereoisomers of organic compounds	CO 5	Т3
29	Configurations, symmetry and chirality.	CO 5	Т3
30	Enantiomers, diastereomers, optical activity and Absolute configuration	CO 5	ТЗ
31	Conformation alanalysis of n- butane	CO 5	Т3
32	Nucleophilic substitution reactions, Mechanism of SN1, SN2 reactions	CO 5	ТЗ
33	Electrophilic and nucleophilic addition reactions; Addition of HBr to Propene; Markownikoff and anti Markownikoff's additions	CO 5	ТЗ
34	Grignard additions on carbonyl compounds, EliminationreactionsDehydro halogenations of alkylhalides	CO 5	ТЗ
35	Oxidation reactions: Oxidation of alcohols using KMnO4 and chromicacid.	CO 5	T3
36	Reduction reactions: Reduction of carbonyl compounds using LiAlH4& NaBH4	CO 5	ТЗ

37	Hydroboration of olefins	CO 5	T3
38	Structure, synthesis and pharmaceutical applications of Paracetamol and Aspirin.		ТЗ
39	Definition, classification of fuels and characteristics of a good fuels	CO 5	T1,T2
40	Solid fuel Coal, analysis of coal- proximate analysis	CO 6	T1,T2
41	Analysis of coal -ultimate analysis.	CO 6	T1,T2
42	Liquid fuels: Petroleum and its refining Cracking: Fixed bed catalytic cracking;	CO 6	T1,T2
43	Knocking: Octane and cetane numbers	CO 6	T1,T2
44	Gaseous fuels: Composition, characteristics and applications of Natural gas, LPG and CNG	CO 6	T1,T2
45	Combustion: Calorific value-Gross calorific value(GCV) and net calorific value(NCV)	CO 6	T1,T2
46	Calculation of air quantity required for complete combustion of fuel, numerical problems.	CO 6	T1,T2
	PROBLEM SOLVING		
1	Probelms on EMF	CO 1	T1:3.3.1; R3:3.2
2	Probelms on Nernst equation	CO 1	T2:16.5; R3:8.10
3	Determination of Electrode potential	CO 2	T2:16.5; R3:8.10
4	Determination of Hardness	CO 3	T1:3.3.1; R3:3.2
5	Determination of Hardness by EDTA	CO 3	T2:16.5; R3:8.10
6	Crystal field stabalization energy	CO 4	T2:16.5; R3:8.10
7	Proximate Analysis of coal	CO 6	T1:3.3.1; R3:3.2
8	ultimate Analysis of coal	CO 6	T2:16.5; R3:8.10
9	Dulungs Equation for coal analysis	CO 6	T2:16.5; R3:8.10
10	Probelms on Combustion	CO 6	T1:3.3.1; R3:3.2
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	1
1	Electro Chemistry and Batteries	CO 1	T2:16.5; R3:8.10
2	Water and Its Treatment	CO 2	T1:3.3.1; R3:3.2
3	Molecular Structure and Theories of Bonding	CO 3	T2:16.5; R3:8.10
4	Streo chemistry, Reaction Mechanisim	CO 4	T2:16.5; R3:8.10

5	Fuels and Combustion	CO 6	T2:16.5;
			R3:8.10
	DISCUSSION OF QUESTION BANK		
1	Electro Chemistry and Batteries	CO 1	T2:16.5;
			R3:8.10
2	Water and Its Treatment	CO 2	T1:3.3.1;
			R3:3.2
3	Molecular Structure and Theories of Bonding	CO 3	T2:16.5;
			R3:8.10
4	Streo chemistry, Reaction Mechanisim	CO 4	T2:16.5;
			R3:8.10
5	Fuels and Combustion	CO 6	T2:16.5;
			R3:8.10

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	ENGINEERI	ENGINEERING CHEMISTRY LABORATORY				
Course Code	AHSB09	AHSB09				
Program	B.Tech					
Semester	II	II CSE				
Course Type	FOUNDATION	FOUNDATION				
Regulation	IARE – R18					
		Theory		Prac	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
					2	
Course Coordinator	Mr G Mahesh K	Mr G Mahesh Kumar, Assiatant Professor				

I COURSE OVERVIEW:

The aim of this Engineering Chemistry laboratory is to develop the analytical ability of the students by better understanding the concepts experimental chemistry. The experiments carried out like preparation of aspirin, thiokol rubber, conductometry, potentiometry, physical properties like viscosity and surface tension of liquids. The volumetric analytical experiments like determination of hardness of water, dissolved oxygen and copper in brass can be carried out in the laboratory.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
10+2	-	-	Basic principles of chemistry	-
		laboratory		

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks	
Engineering Workshop Practice	70 Marks	30 Marks	100	

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab Worksheets		Viva Questions		Probing Further
✓		✓		✓		✓	Experiments

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day-to-day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective Purpose	
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Labor	Total Marks		
Type of Assessment	Day to day performance			
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

A. Experiment Based

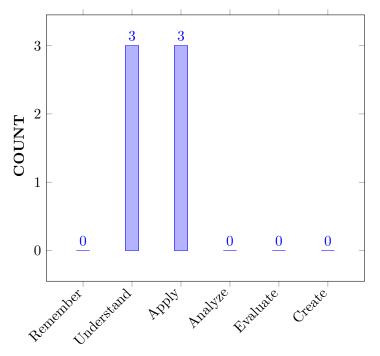
Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

B. Programming Based

Purpose	Algorithm	Program	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	The basic principles involved in chemical analysis and mechanism of synthetic organic reactions. processes.
II	The need and importance of quality of water for industrial and domestic use
III	The measurement of physical properties like surface tension and viscosity.
IV	The knowledge on existing future upcoming devices, materials and methodology.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

Identify Explain the mechanism of chemical reactions for synthesizing	Understand
drug molecules. for making a desired product with given work piece.	
Determine Identify the total hardness, dissolved oxygen in water by	Apply
volumetric analysis for finding the hardness causing salts in water. to	
demonstrating proficiency with hand tools common in fitting.	
Create Make use of conductometric and potentiometric titrations for	Apply
finding the concentration of unknown solutions.to convert given shape	
into useable elements using basic blacksmith techniques.	
Organize the moulding techniques along with suitable tools Choose	Apply
different types of liquids for finding the surface tension and viscosity of	
lubricants.	
Develop Explain the preparation of synthetic rubbers for utilizing in	Understand
industries and domestic purpose. for manufacturing the tin boxes, cans,	
funnels, ducts etc., from a flat sheet of metal.	
Compare various electrical circuits by using conduit system of wiring	Understand
Relate the importance of different types of materials for understanding	
their composition and applications.	
	drug molecules. for making a desired product with given work piece. Determine Identify the total hardness, dissolved oxygen in water by volumetric analysis for finding the hardness causing salts in water. to demonstrating proficiency with hand tools common in fitting. Create Make use of conductometric and potentiometric titrations for finding the concentration of unknown solutions to convert given shape into useable elements using basic blacksmith techniques. Organize the moulding techniques along with suitable tools Choose different types of liquids for finding the surface tension and viscosity of lubricants. Develop Explain the preparation of synthetic rubbers for utilizing in industries and domestic purpose, for manufacturing the tin boxes, cans, funnels, ducts etc., from a flat sheet of metal. Compare various electrical circuits by using conduit system of wiring Relate the importance of different types of materials for understanding

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge	-	SEE/CIE
	of mathematics, science, engineering fundamentals,		
	and an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Design/development of solutions: Problem	-	SEE/CIE
	analysis: Identify, formulate, review research		
	literature, and analyze complex engineering		
	problems reaching substantiated conclusions using		
	first principles of mathematics, natural sciences,		
	and engineering sciences		
PO 7	Modern tool usage: Environment and	-	SEE/CIE
	sustainability: understand the impact of the		
	professional engineering solutions in societal and		
	Environmental contexts, and demonstrate the		
	knowledge of, and need for sustainable development.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed
			by
PSO 1	Formulate and evaluate engineering concepts of	-	-
	design, thermal and production to provide solutions		
	for technology aspects in digital manufacturing.		
PSO 2	Focus on ideation and research towards product	-	-
	development using additive manufacturing, CNC		
	simulation and high speed machining		
PSO 3	Make use of computational and experimental tools	-	-
	for creating innovative career paths, to be an		
	entrepreneur and desire for higher studies.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1 PO 1		Explain the mechanism of chemical reactions for	3
		synthesizing drug molecules by applying mathematical	
		expressions for finding the percentage of Aspirin by using	
		principles of science for solving engineering problems.	

CO 2	PO 1	Demonstrate the total hardness, dissolved oxygen in water by volumetric analysis for finding the hardness causing salts in water by applying mathematical expressions by using principles of science for solving engineering problems.	3
	PO 2	Identify the problem and formulate for finding the hardness of water in terms of CaCO3 equivalents with given information and data by applying principles of science	2
	PO 7	Identify the dissolved oxygen content in raw water and reduce the pollutants in atmosphere to protect aquatic organisms and know the impact in socio economic and environmental contexts for sustainable development	2
CO 3	PO 1	Choose different electrodes for finding pH of unknown solutions by applying mathematical expressions of cell potential by using principles of science for solving engineering problems.	3
	PO 2	Identify the problem formulation and abstraction for calculating the concentration of unknown solutions by applying normality of standard solution from the provided information.	2
CO 4	PO 1	Choose different types of liquids for finding the surface tension and viscosity of lubricants by applying mathematical expressions by using principles of science for solving engineering problems	3
	PO 2	Identify the problem formulation and abstraction for calculating viscosity and surface tension of test liquids by applying viscosity and surface tension of standard liquids, density of liquids from the provided information.	2
CO 5	PO 1	Explain the preparation of synthetic rubbers for utilizing in industries and domestic purpose by using principles of science for solving engineering problems.	2
CO 6	PO 1	Demonstrate the percentage of copper in brass, manganese dioxide in pyrolusite by volumetric analysis using mathematical expressions by using principles of science for solving engineering problems	3

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM (PROGRAM OUTCOMES			PSO'S
OUTCOMES	PO 1	PO 2	PO 7		
CO 1	1				
CO 2	1	2	-	-	
CO 3	1	2	-	-	-
CO 4	1	2	-	-	-
CO 5	-	-	2	2	-
CO 6	1	-	2	2	2

^{3 =} High; 2 = Medium; 1 = Low

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1, PO 2,	SEE Exams	PO 1,PO 2,	Seminars	-
			PO 7,		
Laboratory Practices	PO 1,PO 2, PO 7,	Student Viva	PO 1, PO 5	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
\mathbf{X}	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK 1	PREPARATIONS OF ORGANIC COMPOUNDS
	Preparation of Aspirin
WEEK 2	VOLUMETRIC ANALYSIS
	Estimation of hardness of water by EDTA method
WEEK 3	CONDUCTOMETRIC TITRATIONS
	Conductometric titration of strong acid Vs strong base
WEEK 4	POTENTIOMETRIC TITRATIONS
	Potentiometric titration of strong acid Vs strong base
WEEK 5	CONDUCTOMETRIC TITRATIONS
	Conductometric titration of mixture of acid Vs strong base
WEEK 6	POTENTIOMETRIC TITRATIONS
	Potentiometric titration of weak acid Vs strong base
WEEK 7	PHYSICAL PROPERTIES
	Determination of surface tension of a given liquid using stalagmometer
WEEK 8	PHYSICAL PROPERTIES
	Determination of viscosity of a given liquid by using Ostwald's viscometer
WEEK 9	VOLUMETRIC ANALYSIS
	Estimation of dissolved oxygen in water
WEEK 10	PREPARATIONS OF RUBBER
	Preparation of Thiokol rubber
	<u> </u>

WEEK 11	VOLUMETRIC ANALYSIS	
	Determination of percentage of copper in brass.	
WEEK 12	VOLUMETRIC ANALYSIS	
	Estimation of MnO 2 in pyrolusite	

TEXTBOOKS

- 1. Vogel's, "Quantitative Chemical Analaysis", Prentice Hall, 6th Edition, 2000.
- 2. Gary D.Christian, "Analytical Chemistry", Wiley India, 6th Edition, 2007.

REFERENCE BOOKS:

- 1. A text book on experiments and calculation Engg. S.S. Dara.
- 2. Instrumental methods of chemical analysis, Chatwal, Anand, Himalaya Publications

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Preparation of Aspirin.	CO 1,	R1, R2
		CO 2	
2	Estimation of hardness of water by EDTA method.	CO 2	R1, R2
3	Conductometric titration of strong acid Vs strong base	CO 3,	R1, R2
4	Potentiometric titration of strong acid Vs strong base.	CO 3	R1, R2
5	Conductometric titration of mixture of acid Vs strong base	CO 3	R1, R2
6	Potentiometric titration of weak acid Vs strong base	CO 3	R1, R2
7	Determination of surface tension of a given liquid using stalagmometer	CO4	R1, R2
8	Determination of viscosity of a given liquid by using Ostwald's viscometer	CO4	R1, R2
9	Estimation of dissolved oxygen in water	CO 2	R1, R2
10	Preparation of Thiokol rubber	CO 5	R1, R2
11	Determination of percentage of copper in brass.	CO 6	R1, R2
12	Estimation of MnO 2 in pyrolusite	CO6	R1, R2

Signature of Course Coordinator Mr G Mahesh Kumar, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	СОМР	COMPUTER SCIENCE AND ENGINEERING				
Course Title	ENGLIS	ENGLISH				
Course Code	AHSB01	AHSB01				
Program	B. Tech	B. Tech				
Semester	П	II				
Course Type	Foundati	Foundation				
Regulation	R-18	R-18				
		Theory		Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	2	-	2	-	-	
Course Coordinator	Dr. M.Sa	Dr. M.Sailaja, Associate Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

II COURSE OVERVIEW:

The principle aim of the course is that the students will have awareness about the importance of English language in the contemporary times and also it emphasizes the students to learn this language as a skill (listening skill, speaking skill, reading skill and writing skill). Moreover, the course benefits the students how to solve their day-to-day problems in speaking English language. Besides, it assists the students to reduce the mother tongue influence and acquire the knowledge of neutral accent. The course provides theoretical and practical knowledge of English language and it enables students to participate in debates about informative, persuasive, didactic, and commercial purposes.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
English	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	LCD / PPT	x	Chalk & Talk	х	Assignments	x	МООС
~	Open Ended Experiments	~	Seminars	х	Mini Project	~	Videos
X	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
37%	Remember
63 %	Understand
-	Apply
-	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component M			Total Marks		
CIA	Continuous Internal Examination – 1 (Mid-term)	Examination – 1 (Mid-term) 10			
	Continuous Internal Examination – 2 (Mid-term)	10	30		
	AAT-1	5	30		
	AAT-2	5			
SEE Semester End Examination (SEE)		70	70		
	100				

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

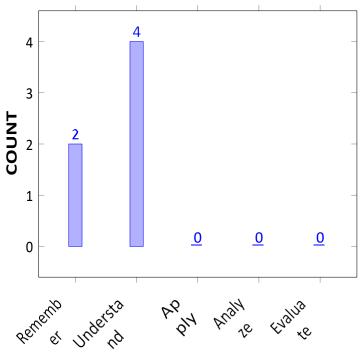
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving	
40%	40%	20%	

VI COURSE OBJECTIVES:

The students will try to learn:


I	Communicate in an intelligible English pronunciation to meet the global standards.
П	Effectively use of four language skills (listening skill, speaking skill, reading skill and writing skill) in day-to-day affairs.
III	A critical aspect of speaking and reading for interpreting in-depth meaning between the sentences.
IV	Develop the art of writing in English keeping the standards of reader's understanding levels.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Describe that Listening skills are essential to leadership which is useful in the real-world situations.	Remember
CO 2	Illustrate appropriate speaking strategies such as keeping the discussion going, turn-taking, asking for clarification or confirmation, paraphrasing, keeping the discussion on topic, and trying to reach a consensus.	Understand
CO 3	Define the value of English as a Lingua-Franca and recall the knowledge in soft skills for the perfect language usage.	Understand
CO 4	Explain the effective usage of functional English grammar and lexical items at academic and non-academic platforms.	Remember
CO 5	Understand the importance of critical reading to catch on the in-depth meaning of a written text at various levels of professional career.	Understand
CO 6	Demonstrate the role of written communication as a key aspect to meet the academic and professional challenges.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	5	Seminar/ Conferences/ Research Papers IE/AAT / Discussion
	(Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally." 1. Clarity (Writing); 2. Grammar/Punctuation (Writing); 3. References (Writing); 4. Speaking Style (Oral); 5. Subject Matter (Oral).		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	-	-
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	-	-
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	-	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-
CO 2	-	-	-	-	-	-	-	-	-	✓-	-	-	-	-	1
CO 3	ı	-	-	-	-	-	-	-	-	✓	-	-	-	-	-
CO 4		-	-	_	_	_	-	-	-	~	-	-	-	-	-
CO 5	-	-	-	-	-	-	_	-	-	✓	-	-	-	-	-

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 6	-	-	-	-	-	-	-	-	-	/	-	-	-	-	

XII JUSTIFICATIONS FOR CO - PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Discuss the heeds of functional grammar and punctuation tools in speaking and writing by generating the clarity of an audio text.	5
CO 2	PO 10	Illustrate essential aspects of grammar as well as punctuation marks for speaking or writing towards a discussion on a topic to give the clarity.	5
CO3	PO 10	Choose suitable grammatical structures and punctuation marks at speaking and writing areas maintaining clarity at professional platform.	5
CO4	PO 10	Interpret the grammatical knowledge and punctuation marks systematically towards providing the clarity in speaking and writing.	5
CO5	PO 10	Demonstrate the role of grammar and punctuation marks understanding the meaning between the sentences as well as paragraphs in speaking or writing for a clarity.	5
CO6	PO 10	Describe the clarity of grammatical usage and the obligation of punctuation marks in speaking and writing.	5

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-PING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	5	-	-	-	1	-
CO 2	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 4	-	-	-	-		-	-	-	-	5	-		-	-	-
CO 5	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	5	-		-	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	ı	-	-	-	-	-	-	-	-	100	1		-	-	-
CO 2	-	-	-	-	-	-	-	-	-	100	1	-	-	-	-
CO 3	-		-	-	-	-	-	-	-	100	1	-	-	-	-
CO 4	-	-	-	-		-	-	-	-	100	1	-	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	100	-	-		-	-
CO 6	-	-	-	-		-	-	-	-	100	-		-	-	

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C≤ 40% - Low/ Slight

2 - 40 % <C < 60% -Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

	PROGRAM OUTCOMES										PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	3	-	-	-	-	
CO 2	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
TOTAL	-	-	-	-	-	-	-	-	-	18	-	-	-	-	-
AVERAGE	-	-	-	-	-	-	-	-	-	3	-	-	-	=	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	~	SEE Exams	✓	Seminars	✓
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	✓	Open Ended Experiments	~
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts	✓	End Semester OBE Feedback
--	----------	---------------------------

XVIII SYLLABUS:

MACRIMET	CENTED AT INTERCENTATION AND LICETONIAL CANAL
MODULE I	GENERAL INTRODUCTION AND LISTENING SKILL
	Introduction to communication skills; Communication process; Elements of communication; Soft skills vs. hard skills; Importance of soft skills for engineers; Listening skills; Significance; Stages of listening; Barriers and effectiveness of listening; Listening comprehension.
MODULE II	SPEAKING SKILL
	Significance; Essentials; Barriers and effectiveness of speaking; Verbal and non-verbal communication. Generating talks based on visual prompts; Public speaking; Exposure to structured talks; Addressing a small group or a large formal gathering; Oral presentation; Power point presentation.
MODULE III	VOCABULARY AND GRAMMAR
	The concept of Word Formation; Root words from foreign languages and their use in English; Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives; Synonyms; Antonyms; Standard abbreviations; Idioms and phrases; One-word substitutes Sentence structure; Uses of phrases and clauses; Punctuation; Subject verb agreement; Modifiers; Articles; Prepositions.
MODULE IV	READING SKILL
	Significance, Techniques of reading, Skimming-Reading for the gist of a text, Scanning - Reading for specific information, Intensive, Extensive reading, Reading comprehension, Reading for information transfer, Text to diagram, Diagram to text.
MODULE V	WRITING SKILL
	Significance; Effectiveness of writing; Organizing principles of Paragraphs in documents; Writing Introduction and conclusion; Techniques for writing precisely, Letter writing; Formal and Informal letter writing, E-mail writing, Report Writing.

TEXTBOOKS

1. Handbook of English (Prepared by the faculty of English, IARE).

REFERENCE BOOKS:

- 1. 1. Norman Whitby, Business Benchmark: Pre-Intermediate to Intermediate BEC Preliminary, Cambridge University Press, 2nd Edition, 2008.
- 2. Devaki Reddy, Shreesh Chaudhary, Technical English, Macmillan, 1st Edition,2009.
- 3. Rutherford, Andrea J, Basic Communication Skills for Technology, Pearson Education, 2nd Edition, 2010.
- 4. Raymond Murphy, Essential English Grammar with Answers, Cambridge University Press, 2nd Edition, 2010.
- 5. Dr. N V Sudershan, President Kalam's Call to the Nation, Bala Bharathi Publications, Secunderabad, 1st Edition, 2003

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1			
	OBE DISCUSSION					
1	1 Discussion on mapping COs with POs. (OBE)					
	CONTENT DELIVERY (THEORY)					
2	Introduction to communication skills.	CO 1	T1:06.06			
3	Communication process.	CO 1	T1:06.09			
4	Soft skills vs hard skills.	CO 3	T1:09.10			
5	Significance of LSRW skills.	CO 1	T1:10.11			
6	Significance of listening skill.	CO 1	TI:12.16			
7	Different stages of listening.	CO 1	T1:16.18			
8	Barriers of listening skill.	CO 1	TI:18.21			
9	Different types of listeners.	CO 1	TI:21.22			
10	Effectiveness of listening skill.	CO 1	T1:22.24			
11	Phonetics: Listening to the sounds of English language.	CO 1	T1:24.29			
12	Introduction to speaking skills.	CO 2	T1:30.32			
13	Effectiveness of speaking skills.	CO 2	T1:33.34			
14	Verbal and non-verbal communication.	CO 2	T1:34.35			
15	Generating talks based on visual or written prompts.	CO 2	T1:36.37			
16	Developing public speaking skills.	CO 2	T1:38.39			
17	Oral presentation with power-point.	CO 3	TI:39.42			
18	The concept of word formation.	CO 4	T1:43.100			
19	Antonyms and synonyms.	CO 4	TI:49.56			
20	Idioms and phrases.	CO 4	TI:57.60			
21	One-word substitutes.	CO 4	TI:60.62			
22	Root words from foreign languages and their usage in English.	CO 4	TI:60.62			
23	Sentence structure.	CO 4	T1:58.62			
24	Punctuation tools and their role in a language.	CO 4	TI:63.66			
25	Subject-verb agreement.	CO 4	TI:66.69			
26	Usage of Adjectives.	CO 4	TI:70.73			
27	Significance of articles and their usage	CO 4	TI:74.75			
28	The usage of prepositions.	CO 4	T1:76.77			
29	Significance of reading skill.	CO 5	T1:78.79			
30	Different techniques of reading skill.	CO 6	T1:80.82			
31	How to Read Your Textbook More Efficiently.	CO 6	TI:83.85			
32	Different types of reading comprehension.	CO 6	TI:85.86			
33	Reading for information transfer.	CO 6	TI:85.96			
34	Significance and effectiveness of writing skill.	CO 6	TI:96.98			

35	Organizing principles of a paragraph in documents and	CO 5	T1:101.103
	types of paragraphs.		
36	Writing introduction and conclusion.	CO 5	T1:103.103
37	Techniques for writing precis.	CO 8	T1:103.103
38	Introduction to informal letters.	CO 7	TI:105.108
39	Introduction to formal letters.	CO 7	TI:109.110
40	Introduction of email writing and formal and informal emails.	CO 7	TI:111.112
41	Significance of Report Writing.	CO 8	TI: 113. 114
	PROBLEM SOLVING/ CASE STUDIES		
42	The aspects to improve listening comprehension Discuss in detail.	CO 1	TI:10,11
43	Different types of listeners with examples	CO 1	TI: 19,21
44	The sounds of English language	CO 1	TI:23,27
45	verbal communication or written communication.	CO 2	TI: 27,30
46	Various difficulties in public speaking.	CO 2	TI: 32,33
47	Different ways of greeting people in formal and informal situation and discuss how do they matter in communication?	CO 2	TI: 35,37
48	'Oral presentation requires a good planning'.	CO 2	TI:36,38
49	Power point presentation and the ways to make Power point presentation.	CO 2	TI: 37,38
50	Methods that are used to establish the process of building vocabulary with examples from the most used words in spoken English.	CO 4	TI:39,41
51	The usage of idioms and phrases in spoken English.	CO 4	TI: 47,50
52	'Structure proposition-evaluation' -Reading technique.	CO 5	TI:56,58
53	Active reading, detailed reading, and speed-reading techniques used in different situations.	CO 5	TI: 79,81
54	The elements of paragraph writing in detail.	CO 8	TI:100,102
55	Logical bridges and Verbal bridges in writing.	CO 8	TI:102,104
56	Soft skills and Interpersonal Communication.	CO 8	TI:102,104
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
57	Soft skills and Interpersonal Communication.	CO 1	TI 8,9
58	Language acquisition is a process.	CO 1	TI: 11,12
59	Communication.	CO 1	TI: 14,16
60	Time management.	CO 3	TI:9,10
61	Stress management.	CO 3	TI:9,10
	DISCUSSION OF QUESTION BANK		
62	Soft Skills for difficult situations in terms of reassurance and reliability.	CO 3	TI:9,10
63	Verbal and non-verbal communication.	CO 2	TI: 34,35
	1	t	1

64	Honesty, Respect, Self-Control and Accountability their role in building long lasting interpersonal skills?	CO 3	TI: 9,10
65	Etiquette and manners. Its importance in social, personal and professional communication.	CO 23	TI: 9,10
66	Problem solving and decision making.	CO 3	TI: 9,10

Signature of Course Coordinator

HOD

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING				
Course Title	PROGRAMMING FOR PROBLEM SOLVING USING C				
Course Code	ACSB01				
Program	B.Tech				
Semester	II				
Course Type	FOUNDATION				
Regulation	R-18				
	Theory Practical			ical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Mr. P Ravinder, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	-	-	Basic Programming Concepts

II COURSE OVERVIEW:

The course emphasis on the problem-solving aspects in using C programming. It is the fundamental course and is interdisciplinary in nature for all engineering applications. The students will understand programming language, programming, concepts of loops, reading a set of data, step wise refinements, functions, control structures, arrays, dynamic memory allocations, enumerated data types, structures, unions, and file handling. This course provides adequate knowledge to solve problems in their respective domains.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
PPSC	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	Power Point Presentations	/	Chalk & Talk	/	Assignments	x	MOOC
/	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
30%	Understand
50%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	30
CIA	Continuous Internal Examination – 2 (Mid-term)	10	
	AAT-1	5	30
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
	100		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

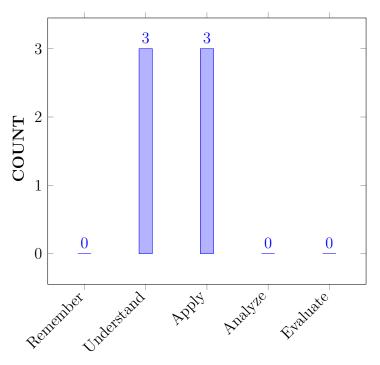
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	Learn adequate knowledge by problem solving techniques.
II	Understand programming skills using the fundamentals and basics of C Language.
III	Improve problem solving skills using arrays, strings, and functions.
IV	Understand the dynamics of memory by pointers.
V	Study files creation process with access permissions.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate problem solving steps in terms of algorithms, pseudocode,	Understanding
	flowcharts and programs with basic data types and operations for	
	Mathematical and Engineering problems.	
CO 2	Implement derived data types, operators in C program statements.	Apply
CO 3	Construct programs involving decision structures, loops, arrays and	Apply
	strings.	
CO 4	Make use of arious types of functions, parameters, and return values	Understand
	for complex problem solving.	
CO 5	Illustrate the static and dynamic memory management with the help	Understand
	of structures, unios and pointers.	
CO 6	Extend file input and output operations in implementation of real time	Apply
	applications.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/SEE
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	CIE/SEE
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	2	CIE/SEE
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 5	Modern Tool Usage: Create, select, and	2	Open Ended
	apply appropriate techniques, resources, and		Experiments
	modern Engineering and IT tools including		
	prediction and modelling to complex		
	Engineering activities with an understanding of		
	the limitations		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to problem solving through programming.	2	Tech talk/Open ended experiments
PSO 2	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	Tech talk/Open ended experiments

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	✓	-	-	-	-	-	-	-	-	-	-	✓	-	-
CO 2	✓	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	✓	✓	-	-	✓	-	-	-	-	-	-	-	-	-	-
CO 4	✓	✓	-	-	✓	-	-	-	-	-	-		-	-	-
CO 5	✓	-	-	-	✓	-	-	-	-	-	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	-	-	/	-	-	✓

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Developing algorithms and draw flowcharts for solving mathematical and engineering problems related to areas of computer science.	3
	PO 2	Understand the various symbols to draw a flowchart, identify the appropriate symbols to solve a problem, then formulate the solution, and interpret the result for the improvement of the solution .	6
	PSO 1	Understand the features of procedural programming for designing and analyzing computer programs for problem-solving .	3
CO 2	PO 1	Understand branching statements, loop statements, and apply the fundamentals of mathematics , science and engineering .	3
	PO 2	Understand the problem statement , control the flow of data, design the solution and analyze the same to validate the results in a program to solve complex engineering problems.	6
	PO 3	Recognize an appropriate control structure to design and develop a solution for a real-time scenario, and communicating effectively with engineering community.	5
CO 3	PO 1	Recognize the importance of recursion for developing programs in real-time scenarios using principles of mathematics, and engineering fundamentals.	3
	PO 2	Understand the various kinds of functions, identify the suitable type of function to solve a problem, formulate the solution, and interpret the result for the improvement of the solution.	6
	PO 5	Apply techniques of structured decomposition to divide problem into smaller pieces with an understanding of its limitations.	1

CO 4	PO 1	Extend the focus on the usage of heterogeneous data types as a basic building block in problem solving using principles of science , and engineering fundamentals.	3
	PO 2	Recognize the representation of the structure, assess in solving a problem, express the solution, and analyze the result for solution enhancement.	5
	PO 5	Understand pointers conceptually and apply them in modeling a complex engineering activity.	1
CO 5	PO 1	Make a use of an appropriate type of file to store a large volume of persistent data and give solution to engineering problems .	2
	PO 5	To identify appropriate mode to access a file and run the same program multiple times.	1
CO 6	PO 12	Realize the need and the desire to train and invest in autonomous and lifelong learning in the widest sense of technical transition to achieve employability expertise and excel advanced engineering concepts.	7
	PSO 3	Attain the knowledge and skills for employability and to succeed in national and international level competitive examinations .	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	6	-	-	-	-	-	1	-	-	-	-	3	-	-
CO 2	3	6	5	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	6	-	-	1	-	-	-	-	-	-	-	-		-
CO 4	3	5	-	-	1	-	-	1	-	-	-	-	-	-	-
CO 5	2	-	-	-	1	-	-	-	-	-	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	-	-	7	-	-	3

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	60	-	-	-	-	-	-	-	-	-	-	50	-	-
CO 2	100	60	50	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	100	60	-	-	100	-	-	-	-	-	-	-	-	-	-
CO 4	100	50	-	-	100	-	-	-	-	-	-	-	-	-	-
CO 5	66	-	-	-	100	-	-	-	-	-	-	-	-	-	-
CO 6	_	-	-	-	-	-	-	-	-	-	-	58	-	-	50

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \le C \le 5\%$ No correlation
- 1 -5 <C $\le 40\%$ Low/ Slight
- 2 40 % < C < 60% –Moderate
- $3 60\% \le C < 100\% Substantial / High$

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	-	-	-	1	-	-	-	-	-	2	-	-
CO 2	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	3	-	-	3	_	-	-	-	_	_	-	-		-
CO 4	3	2	-	-	3	_	-	-	-	_	_	-	-	-	-
CO 5	3	-	-	-	3	_	-	-	-	_	_	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	-	-	2	-	-	2
TOTAL	15	11	2	-	9	-	-	-	-	-	-	2	2	-	2
AVERAGE	3	2.7	2.5	-	3	_	_	-	-	_	_	2	2	-	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	-
Laboratory	-	Student Viva	-	Certification	-
Practices					
Term Paper	-	5 Minutes Video	✓	Open Ended	-
				Experiments	
Assignments	-				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

- Assessment of mini projects by experts	/	End Semester OBE Feedback
--	----------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	Introduction to components of a computers: Introduction to
	Programming: Computer system, components of a computer system,
	computing environments, computer languages, creating and running
	programs, algorithms, flowcharts; Introduction to C Language: Computer
	languages, History of C, basic structure of C programs, process of compiling
	and running a C program, C tokens, keywords, identifiers, constants, strings,
	special symbols, variables, data types; Operators and expressions.

MODULE II	CONTROL STRUCTRES
	Conditional Control structures: Decision statements; Simple if, if-else, else if ladder, Nested if and Case Statement-switch statement; Loop control statements: while, for and do while loops. jump statements, break,
	continue, goto statements;
MODULE III	ARRAYS AND FUNCTIONS
	Arrays: Need for user defined functions, function declaration, function prototype, category of functions, inter function communication, function calls, parameter passing mechanisms, recursion, passing arrays to functions, passing strings to functions, storage classes, preprocessor directives; Functions: Need for user defined functions, function declaration, function prototype, category of functions, inter function communication, function calls, parameter passing mechanisms, recursion, passing arrays to functions, passing strings to functions, storage classes, preprocessor directive.
MODULE IV	STRUCTURES, UNIONS AND POINTERS
	Structures and unions: Structure definition, initialization, accessing structures, nested structures, arrays of structures, structures and functions, passing structures through pointers, self-referential structures, unions, bit fields, typedef, enumerations; Pointers:Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, pointers and arrays, pointers as functions arguments, functions returning pointers.Dynamic memory allocation:Basic concepts, library functions.
MODULE V	FILE HANDLING AND BASIC ALGORITHMS
	Files: Streams, basic file operations, file types, file opening modes, input and output operations with files, special functions for working with files, file positioning functions, command line arguments. Searching, basic sorting algorithms (bubble, insertion, selection), algorithm complexity through example programs (no formal definitions required).

TEXTBOOKS

- 1. Byron Gottfried, "Programming with C", Schaum's Outlines Series, McGraw Hill Education, 3rd Edition, 2017
- 2. Reema Thareja, "Programming in C", Oxford university press, 2nd Edition, 2016.

REFERENCE BOOKS:

- 1. W. Kernighan Brian, Dennis M. Ritchie, "The C Programming Language", PHI Learning, 2nd Edition, 1988.
- 2. Yashavant Kanetkar, "Exploring C", BPB Publishers, 2nd Edition, 2003.
- 3. Schildt Herbert, "C: The Complete Reference", Tata McGraw Hill Education, 4th Edition, 2014.
- 4. R. S. Bichkar, "Programming with C", Universities Press, 2 nd Edition, 2012.
- 5. Dey Pradeep, Manas Ghosh, "Computer Fundamentals and Programming in C", Oxford University Press, 2nd Edition, 2006.
- 6. Stephen G. Kochan, "Programming in C", Addison-Wesley Professional, 4th Edition, 2014.

- WEB REFERENCES:
 1. https://www.nptel.ac.in/courses/108106073/
 - 2. https://www.iare.ac.in

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference				
	OBE DISCUSSION						
1	PSO'S Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), ProgramOutcomes (PO) and CO-PO Mapping						
	CONTENT DELIVERY (THEORY)						
2	Understand components of a computer	CO 1	T2: 1.1- 1.2,R4: 1.1-1.3				
3	Identify and apply algorithms and flowcharts for problem solving	CO 1	T2: 2.1- 2.2,R4: 1.4				
4	Understand pseudo code for a given problem	CO 1	T2: 2.1-2.2				
5	Understand the basic structure, process of compiling and running a C program	CO 1	T2: 2.1-2.2,				
6	Understand keywords, identifiers, constants, strings, special symbols, variables	CO 1	T2: 1.4 -1.5, R4: 2.1 - 2.4				
7	Define the data types, and operators to write C Program	CO 1	T2: 2.1-2.2				
8	Understand precedence of operators, expression evaluation	CO 1	T2: 2.3-2.6				
9	Understand formatted input/output functions, Type Conversion and type casting in C Programming	CO 1	T2:2.3- 2.7				
10	Identify and apply decision making statements in C programming	CO 2	T2: 3.1-3.5				
11	Identify and apply loop control structures in C programming	CO 2	T2: 5.2-5.3				
12	Identify and apply unconditional control structures in C programming	CO 2	T2: 6.1-6.6				
13	Understand single dimensional array and multi-deimensional array: declaration, initialization, accessing	CO 3	T2: 6.7				
14	Operations on arrays: traversal, reverse, insertion	CO 3	T2: 8.1-8.2, R4: 15.1				
15	Operations on arrays: deletion, merge, search	CO 3	T2: 8.3, R4: 15.1				

handling functions Operations on strings: array of strings			
17 Operations on strings, array of strings			11.1-11.5
T. Operations on surings, array or surings		CO 3	T2:
		00.0	4.1-4.5
18 Concept of user defined functions, Func	tion declaration	CO 3	T1: 7
19 return statement, Function prototype		CO 3	T2: 6.9
20 Types of functions, Inter function comm	nunication	CO 3	T1: 10,
			T2:10.1- 10.2
21 Function calls, Parameter passing mechanisms	onisms Requision	CO 3	T2:
21 Function cans, Farameter passing meens	amsms, recursion		10.3-10.4,
			R4:8.3-
			8.4
22 Passing arrays to functions, passing stri	ngs to functions	CO 3	T2:10.5
23 Storage classes		CO 3	T1: 8.9,
			R4:8.6.3
24 Basics of pointers, Pointer arithmetic		CO 4	T2: 3.1,
		GO 4	R4:11.1
25 Pointer to pointers		CO 4	T2: 3.2
26 Array of pointers		CO 4	T2: 3.2
27 Generic pointer, Null pointers		CO 4	T2: 3.3
28 Pointers as function arguments, Functio	ons returning pointers	CO 4	T2:
00 D : : : : : : : : : : : : : : : : : :		CO 4	3.4-3.5
29 Dynamic memory allocation		CO 4	T2: 6.1-6.6
30 Structure definition, initialization, struc	eture members	CO 4	T2:
Structure definition, initialization, struc	dure members	004	12.3-12.4,
			R4:13.4
31 Nested structures		CO 4	T2:
			12.3-12.4,
			R4:13.4
32 Arrays of structures, structures and fund	ctions	CO 4	T2:
			2.1-2.2, R4:13.2
33 Structures and pointers, self-referential s	structures	CO 4	T2:
Solution and pointers, sen referencial	Structures		2.1-2.2
34 Union, bit fields, typedef		CO 4	T2: 12.4
35 Enumerations, Preprocessor directives		CO 4	T1: 8.9,
, ,			T2:
			2.3-2.5
36 Concept of a file, text files and binary fi	iles, streams	CO 5	T2: 10.4,
			R4:14.1-
27 Standard I/O formatted I/O flat/O	provetions	CO 5	14.4 T2: 10.4
37 Standard I/O, formatted I/O, file I/O o	pperations	CO 5	T2: 10.4, R4:14.1-
			14.4
38 Error handling		CO 5	R3: 12.1
			- 12.3

39	Line I/O, miscellaneous functions	CO 5	R3: 12.1 - 12.3		
40	Applications of C	CO 6	R4: 17		
PROBLEM SOLVING/ CASE STUDIES					
1	Write a program in C that takes minutes as input, and display the total number of hours and minutes.	CO 1	T2:2.3- 2.6		
2	Write a program in C that reads a forename, surname and year of birth and display the names and the year one after another sequentially.	CO 1	T2:2.3- 2.7		
3	Write a C program to find the third angle of a triangle if two angles are given.	CO 2	T2:3.1- 3.5		
4	Write a program in C to display the such a pattern for n number of rows using a number which will start with the number 1 and the first and a last number of each row will be 1.	CO 2	T2:5.2- 5.3		
5	Write a program in C to find the prime numbers within a range of numbers.	CO 2	T2:5.2- 5.3		
6	Write a program in C to display the n terms of harmonic series and their sum.	CO 2	T2:6.1- 6.6		
7	Write a program in C to display the pattern like right angle triangle using an asterisk.	CO 2	T2:5.2- 5.3		
8	Program to accept N integer number and store them in an array AR. The odd elements in the AR are copied into OAR and other elements are copied into EAR. Display the contents of OAR and EAR	CO 3	T2: 6.7		
9	Write a C program to illustrate how user authentication is made before allowing the user to access the secured resources. It asks for the user name and then the password. The password that you enter will not be displayed, instead that character is replaced by '*'	CO 3	T2: 8.3, R4:15.1		
10	Write a C program to accept a matric and determine whether it is a sparse matrix. A sparse martix is matrix which has more zero elements than nonzero elements	CO 3	T2: 8.1-8.2, R4: 15.1		
11	Write a C program to accept a amtric of order MxN and sort all rows of the matrix in ascending order and all columns in descending order	CO 3	T2: 6.7		
12	Write a C program to accept a set of names and sort them in an alphabetical order, Use structures to store the names	CO 4	T2:12.3- 12.4, R4:13.4		
13	Write a C program to find the sum of two one-dimensional arrays using Dynamic Memory Allocation	CO 4	T2:6.1- 6.6		
14	Write a program in C to find the content of the file and number of lines in a Text File.	CO 5	T2:10.4, R4:14.1- 14.4		
15	Write a program in C to replace a specific line with another text in a file.	CO 5	T2:10.4, R4:14.1- 14.4		
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY			

1	Module I- Components of computers, C programming language	CO 1	T2:1.1- 2.6, R4:1.1- 2.4
2	Module II- Control structures	CO 2	T2:3.1- 6.6
3	Module III- Arrays, Strings and Functions	CO 3	T1:7, T2:6.7- 11.5
4	Module IV- Pointers and Structures	CO 4	T2:3.1- 6.6, R4:11.1- 13.4
5	Module V- File handling functions	CO 5	T2:10.4, R4:14.1- 14.4, R3:12.1- 12.3
	DISCUSSION OF QUESTION BANK	<u>'</u>	
1	Module I- Components of computers, C programming language	CO 1	T2:1.1- 2.6, R4:1.1- 2.4
2	Module II- Control structures	CO 2	T2:3.1- 6.6
3	Module III- Arrays, Strings and Functions	CO 3	T1:7, T2:6.7- 11.5
4	Module IV- Pointers and Structures	CO 4	T2:3.1- 6.6, R4:11.1- 13.4
5	Module V- File handling functions	CO 5	T2:10.4, R4:14.1- 14.4, R3:12.1- 12.3

Signature of Course Coordinator Mr. P Ravinder, Assistant Professor $_{
m HOD,CSE}$

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING					
Course Title	SEMIC	SEMICONDUCTOR PHYSICS				
Course Code	AHSB1	3				
Program	B. Tech.					
Semester	II					
Course Type	FOUNDATION					
Regulation	R-18					
	Theory Practical					
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	4	3	1.5	
Course Coordinator	Mr A. Chandra Prakash, Assistant Professor.					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10+2	-	-	Basic Principles of Semiconductors

II COURSE OVERVIEW:

This course is structured specifically to make the students understand some of the core topics in physics essential for further studies in engineering. It focuses on illustrating and developing an understanding of the interplay between problem solving and their practical applications which include experimental techniques and modern equipment. The topics include quantum mechanics, semiconductors, opto-electronic devices, magnetism, dielectrics, LASER and fiber optics. At the end, this course helps students to appreciate the diverse real-time applications in technological fields in respective branches.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Applied Physics	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	√	Chalk & Talk	x	Assignments	x	MOOC
√	Open Ended Experiments	x	Seminars	x	Mini Project	√	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
0 %	Remember
60 %	Understand
40 %	Apply
0 %	Analyze

Table 1: The expected percentage of cognitive level of questions in SEE

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 10 marks for Alternative Assessment Tool (AAT) (Table 3).

	Component		Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30	
CIA	AAT-1	5	30	
	AAT-2	5		
SEE Semester End Examination (SEE)		70	70	
	Total Marks			

Table 2: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

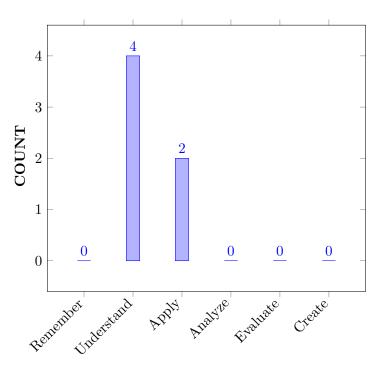
Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	-

Table 3: Assessment pattern for CIA

VI COURSE OBJECTIVES:


The students will try to learn:

I	Basic formulations in wave mechanics for the evolution of energy levels and quantization of energies for a particle in a potential box with the help of mathematical description.
II	Fundamental properties of semiconductors including the band gap, charge carrier concentration, doping and transport mechanisms.
III	The metrics of optoelectronic components, LASER, optical fiber communication and be able to incorporate them into systems for optimal performance.
IV	The appropriate magnetic and dielectric materials required for various engineering applications.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Apply the concepts of dual nature of matter and Schrodinger wave equation to a particle enclosed in simple systems.	Apply
CO 2	Demonstrate the classification of Solids and important aspects of semi- conductors in terms of carrier concentration and Fermi level.	Understand
CO 3	Make use of the key concepts of semiconductors to explain the basic working mechanism of optoelectronic device characteristics of light-emitting diodes, photodetectors and solar cells.	Apply
CO 4	Illustrate the properties of dielectric and magnetic materials suitable for engineering applications.	Understand
CO 5	Compare the concepts of LASER and normal light in terms of mechanism and working principles for applications in different fields and scientific practices.	Understand
CO 6	Explain functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion.	Understand

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engi-
	neering fundamentals, and an engineering specialization to the solution of complex
	engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first princi-
	ples of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering
	problems and design system components or processes that meet the specified needs
	with appropriate consideration for the public health and safety, and the cultural,
	societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge
	and research methods including design of experiments, analysis and interpretation
	of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources,
	and modern Engineering and IT tools including prediction and modelling to complex
	Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowl-
	edge to assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.

	Program Outcomes
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibil-
	ities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a mem-
	ber or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to com-
	prehend and write effective reports and design documentation, make effective pre-
	sentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding
	of the engineering and management principles and apply these to one's own work,
	as a member and leader in a team, to manage projects and in multidisciplinary
	environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and abil-
	ity to engage in independent and life-long learning in the broadest context of tech-
	nological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	CIE/SEE/AAT
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex en-		
	gineering problems		
PO 2	Problem analysis: Identify, formulate, review research	3	CIE/SEE/AAT
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles		
	of mathematics, natural sciences, and engineering sci-		
	ences.		
PO 4	Conduct Investigations of Complex Problems: Use	2	CIE/SEE/AAT
	research-based knowledge and research methods includ-		
	ing design of experiments, analysis and interpretation of		
	data, and synthesis of the information to provide valid		
	conclusions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	-	-
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	-	-
PSO3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1	AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH POs, PSOs:

				PSOs											
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	✓	✓	-	✓	-	-	-	-	-	-	-	-	-	-	-
CO 3	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	✓	✓	-	✓	-	-	-	-	-	-	-	-	-	-	✓
CO 5	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – (PO/PSO) MAPPING -DIRECT:

Course Outcomes	POs PSOs	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Outline drawbacks of classical mechanics, basic principles dual nature of matter wave, derive mathematical wave	3
		equation of matter waves and come to conclusion of quantization of energy used in quantum dots.	
	PO 2	Explain the given problem statement and formulate quantum confinement problems related to particle enclosed in small dimension from the provided information and data in reaching substantial conclusions by the interpretation of results.	4
CO 2	PO 1	Illustrate the charge transport mechanism in intrinsic and extrinsic semiconductors using energy level diagrams, calculate their charge carrier concentration and use those expressions to integrate with other engineering disciplines.	3

Course Outcomes	POs PSOs	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Identify the use of these semiconductors under study and their conduction mechanism for the research based knowledge and technological development.	2
	PO 2	Explain the given problem statement and formulate mobility and conductivity aspects of a material from the provided information and data in reaching substantial conclusions by the interpretation of Hall coefficient value.	4
CO 3	PO 1	Acquire detailed knowledge of fundamental and applied aspects of optoelectronic device physics, analyze key parameters and apply them to the functioning of electronic devices.	3
	PO 2	Illustrate the given problem statement and formulate light interaction aspects of direct band gap materials from the provided information and data by the interpretation of carrier generation and recombination in opto-electronic devices	4
CO 4	PO 1	Relate principles of different types of polarization mechanism and expression for polarizability to the properties of functional materials and for solving engineering problems by applying these principles of science.	3
	PO 2	Explain the given problem statement and formulate polarization versus applied electric field related to ferroelectric materials from the provided information and data by the interpretation of hysteresis loop.	4
	PO 1	Utilize spin and orbital motion of electrons in determining magnetic moment of materials in terms of Bohr magneton materials having specific engineering applications.	3
	PO 4	Identify the use of magnetic materials and their magnetization values for the research based knowledge and technological development.	2
	PSO 3	Make use of modern computer tools to determine remnant magnetization and coercivity values from B-H curve and gain knowledge helpful for higher studies.	1
CO 5	PO 1	Compare the concepts of LASER and normal light in terms of mechanism and working principle for applications in different fields and scientific practices.	3
CO 6	PO 1	Explain functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion.	3
	PO 2	Identify the given problem and formulate expressions for acceptance angle and numerical aperture with the given information and data by applying principles of information propagation through optical waveguides.	4

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - (PO/PSO) MAPPING:

				PSOs											
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	4	-	-	-	-	-	-	-	-	-	1	-	-	-
CO 2	3	4	-	2	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	4	-	-	-	-	-	-	-	-	-		-	-	-
CO 4	3	4	-	2	-	-	-	-	-	-	-	-	-	-	1
CO 5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO/PSO):

				PSOs											
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	100	40	-	20	-	-	-	-	-	-	-	-	-	-	-
CO 3	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	100	40	-	20	-	-	-	-	-	-	-	-	-	-	30
CO 5	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (CO-PO/PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\textit{0}}$ - 0 \leq C \leq 5% - No correlation

1-5 <C≤ 40% – Low/ Slight

2 - 40 % <C < 60% –Moderate

3 - $60\% \leq C < 100\%$ – Substantial /High

				PSOs											
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	-	-	1	-	-	-
CO 2	3	2	-	1		-	-	-	-	-	-		-	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-		-	-	-
CO 4	3	2	-	1	-	-	-	-	-	-	-	-	-	-	1
CO 5	3		-	-	-	-	-	-	-	-	-	-	-	-	-

		PROGRAM OUTCOMES						PSOs							
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 6	3	2	-	-	-	-	-	-	-	-	-	1	-	-	-
TOTAL	18	10	-	2	-		-	-	-	-	-	1	-	-	-
AVERAGE	3	2	-	1	-		-	-	-	-	-	-	-	-	1

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	✓	Open Ended Experiments	-
Assignments	-				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

x	Assessment of mini projects by experts	✓	End Semester OBE Feedback
---	--	---	---------------------------

XVIII SYLLABUS:

MODULE I	QUANTUM MECHANICS
	Introduction to quantum physics, black body radiation, planck's law, photo- electric effect, compton effect, de broglie hypothesis, Wave-particle duality, Davisson and Germer's experiment, Time-independent Schrödinger equation for wave function, born's interpretation of the wave function, Schrödinger equa- tion for one dimensional problems - particle in a box.
MODULE II	ELECTRONIC MATERIALS AND SEMICONDUCTORS
	free electron theory, Bloch's theorem for particles in a periodic potential , Kronig-Penney model (Qualitative treatment), Origin of energy bands, types of electronic materials : metals, semiconductors, and insulators. Intrinsic and extrinsic semiconductors, Carrier concentration, Dependence of Fermi level on carrier-concentration and temperature, Hall effect.
MODULE III	LIGHT-SEMICONDUCTOR INTERACTION
	Carrier generation and recombination, carrier transport: diffusion and drift, Direct and indirect band gaps, p-n junction, V-I characteristics, Energy Band diagram, Biasing of a junction. Photo voltaic effect Zener diode. Construction and working of LED, Photo detectors, PIN, Avalanche photodiode, Solar cell.
MODULE IV	ENGINEERED ELECTRIC AND MAGNETIC MATERIALS
	Polarisation, Permittivity, Dielectric constant, Internal field in solids, Clausius Mosotti equation, Ferroelectricity piezo electricity, pyroelectricity; Magnetisation, Permeability, Susceptibility, Classification of dia, para and ferro magnetic materials on the basis of magnetic moment, Domain theory of ferro magnetism on the basis of Hysteresis curve.

MODULE V	LASERS AND FIBER OPTICS
	Characteristics of LASER, Spontaneous and stimulated emission of radiation,
	Metastable state, Population inversion, Lasing action, Ruby LASER, semi-
	conductor diode laser and applications of LASER.Principle and construction of
	an optical fibre, Acceptance angle, Numerical aperture, Types of optical fibers
	(Single mode, multimode, step index, graded index), Attenuation in optical
	fibers, Optical fibre communication system with block diagram .

TEXTBOOKS

- 1. Dr. K Vijay Kumar and Dr. S Chandralingam Modern Engineering Physics || Volume-1 & 2, S Chand. Co, 2018.
- 2. Dr. M. N. Avadhanulu, Dr. P. G. Kshirsagar A Text Book of Engineering Physics | S. Chand.
- 3. B. K Pandey and S. Chaturvedi Engineering physics ||, Cengage learning.

REFERENCE BOOKS:

- 1. J. Singh, —Semiconductor Optoelectronics: Physics and Technology , McGraw-Hill Inc. (1995).
- 2. P. Bhattacharya, —Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 3. Monica Katiyar and Deepak Gupta on NPTEL.Online course: "Optoelectronic Materials and Devices".

WEB REFERENCES

- 1. http://link.springer.com/book
- 2. http://www.thpys.physics.ox.ac.uk
- 3. http://sciencedirect.com/science
- 4. http://www.e-booksdirectory.com

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details & course_id=17

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference				
	OBE DISCUSSION						
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping						
	CONTENT THEORY(DELIVERY)						
2	Introduction to Quantum Physics	CO 1	T2:5.15; R1:1.16				

3	Black body radiation	CO 1	T2:5.17; R1:1.13.1
4	planck's law	CO 1	T2:5.17;
			R1:1.13.1
5	Photo-electric effect	CO 1	T2:5.17; R1:1.13.1
6	Compton effect	CO 1	T2:5.18;
			R1:1.13.2
7	De-broglie hypothesis and de-broglie wavcelength	CO 1	T2:5.18;
			R1:1.13.2
8	Wave particle duality	CO 1	T2:5.18;
		00.1	R1:1.13.2
9	Davisson and Germer's experiment	CO 1	T2:5.19 R1:1.13.3,
10	Schrödinger time independent wave equation	CO 1	T2:5.24;
10	bemodinger time independent wave equation	001	R1:1.17.3
11	Born's interpretation of the wavefunction	CO 1	T2:6.1;
			R1:2.3
12	Schrodinger equation for Particle in a one dimensional problems	CO 1	T2:6.3;
	- Particle in a box		R1:2.6.1
13	Free electron theory	CO 2	T2:6.5;
			R1:2.6.2
14	Bloch's theorem for particle in a periodic potential	CO 2	T2:6.5;
15	Kronig-Penney model	CO 2	R1:2.6.2 T2:7.3;
10	Kronig-reiniey model	CO 2	R1:2.8
16	Origin of energy bands in solids	CO 2	T2:7.5,7.6;
			R1:2.9.2
17	Types of electronic materials: insulators, conductors and semi-	CO 2	T2:7.5,7.6;
	conductors		R1:2.9.2
18	intrinsic and extrinsic semiconductors	CO 2	T2:7.7;
10		00.0	R1:2.10
19	Carrier concentration	CO 2	T2:7.7; R1:2.10
20	Depends of Fermi level on Carrier concentration and tempera-	CO 2	
20	ture	CO 2	T2:7.11; R2:2.10.2
21	Hall effect	CO 2	T2:7.11;
			R2:2.32
22	carrier generation and recombination	CO 3	T2:7.11;
			R2:2.10
23	carrier transport: diffusion and drift	CO 3	T2:7.11;
			R2:2.10
24	Direct and indirect band gaps	CO 3	T2:7.11;
27	77.7.1		R2:2.10
25	p-n junction, V-I characteristics	CO 3	T2:7.12; R2:2.10.3
			114.4.10.3

26	Energy Band diagram of PN Junction	CO 3	T2:7.12; R2:2.10.3
27	Biasing of PN junction	CO 3	T2:7.13; R1:2.10.4
28	photo voltaic effect	CO 3	T2:7.14
29	Construction and working of LED	CO 3	R1:2.10.6 T2:7.15;
30	photo detectors	CO 3	R1:2.10.7 T2:7.15;
31	Construction and working of Photodiode, PIN and Avalanche	CO 3	R1:2.10.7 T1:7.15;
32	Photodiode Construction and working of Solar cell	CO 3	R2:2.10.7 T1:7.15;
33	Introduction to dielectric materials, Polarization, Permittivity, Dielectric constant	CO 4	R2:2.10.7 T1:7.15; R2:2.10.7
34	Internal fields in solids	CO 4	T1:16.9 R2:8.11.1
35	Clausius – Mosotti equation	CO 4	T1:16.9; R2:8.11.2
36	piezo electricity	CO 4	T1:15.2; R4:8.2
37	pyro electricity	CO 4	T1:15.2; R4:8.2
38	Ferroelectricity	CO 4	T2:15.7; R4:8.3.3
39	Magnetic materials, Magnetization, Permeability, Susceptibility	CO 4	T2:15.13 R4:8.7.2
40	classification of Diamagnetic and Paramagnetic and ferromagnetic on the basis of magnetic moment	CO 4	T2:15.13; R4:8.7.2
41	domain theory of ferro magnetism on the basis of Hysteresis curve	CO 4	T1:11.9; R2:12.24
42	Characteristics of LASER, Spontaneous and Stimulated emission of radiation	CO 5	T1:11.9; R3:12.25
43	Metastable state, Population inversion, Lasing action	CO 5	T1:3.2; R3:3.2
44	Ruby LASER	CO 5	T1:3.3.1; R3:3.2
45	semi-conductor diode LASER and Applications of LASER	CO 5	T2:16.5; R3:8.10
46	Principle and construction of optical fibers	CO 6	T2:16.5; R3:8.10
47	Acceptance angle, Numerical Aperture	CO 6	T1:3.3.1; R3:3.2
48	Types of optical fibers	CO 6	T2:16.5; R3:8.10

Attenuation in optical fibers				
PROBLEM SOLVING	49	Attenuation in optical fibers	CO 6	
PROBLEM SOLVING	50	Optical fiber communication systemwith block diagram	CO 6	T2:16.5;
De-broglie wavelength		PROBLEM SOLVING		163.6.10
R3:3.2	1		CO 1	TD1 9 9 1
R3:8.10	1	De-brogne wavelength	CO 1	
R3:8.10	2	Energies associated with one dimensional potential box	CO 1	,
R3.3.2 Society Mobility and conductivity based on Hall coefficient CO 2 T2:16.5; R3.8.10 CO 3 T2:16.5; R3.8.10 T2:16.5; R3.8.10 R3.3.2 R	3	Intrinsic carrier concentration, Fermi level in semiconductors	CO 2	′
5 Mobility and conductivity based on Hall coefficient CO 2 T2:16.5; R3:8.10 6 Diffusion and drift CO 3 T2:16.5; R3:8.10 7 Energy gap in indirect bandgap semiconductors CO 3 T1:3.3.1; R3:3.2 8 Dielectric constant, capacitance, permittivity CO 4 T2:16.5; R3:8.10 9 Electric susceptibility, Polarization vector CO 4 T2:16.5; R3:8.10 10 Polarizability CO 4 T2:16.5; R3:8.10 11 Magnetic moment, Magnetic induction, Permeability CO 4 T2:16.5; R3:8.10 12 Intensity of magnetization, Magnetic susceptibility CO 4 T2:16.5; R3:8.10 13 Wavelength and Energy bandgap, Divergence CO 5 T2:16.5; R3:8.10 14 Relative population of two states, Number of photons emitted CO 5 T1:3.3.1; R3:3.2 15 Acceptance angle and Numerical Aperture CO 6 T2:16.5; R3:8.10 DISCUSSION OF DEFINITION AND TERMINOLOGY 1 Quantum Mechanics CO 1 T2:16.5; R3:8.10 2 Electronic materials and Semiconductors CO 2 T1:3.3.1;	4	Carrier concentration based on Hall coefficient	CO 2	
R3:8.10 CO 3 T2:16.5; R3:8.10 R3:8.2 R3:8.2 R3:8.10	5	Mobility and conductivity based on Hall coefficient	CO 2	
R3:8.10 R3:8.10 R3:8.10 R3:8.10 R3:8.10 R3:8.2 R3:8.2 R3:8.10 R3:8.1			00-	
Tight Tigh	6	Diffusion and drift	CO 3	T2:16.5;
R3:3.2				R3:8.10
R3:8.10 9 Electric susceptibility, Polarization vector	7	Energy gap in indirect bandgap semiconductors	CO 3	
R3:8.10	8	Dielectric constant, capacitance, permittivity	CO 4	T2:16.5;
R3:8.10 10 Polarizability		, , , , , , , , , , , , , , , , , , , ,		R3:8.10
10	9	Electric susceptibility, Polarization vector	CO 4	T2:16.5;
R3:3.2 11 Magnetic moment, Magnetic induction, Permeability CO 4 T2:16.5; R3:8.10 12 Intensity of magnetization, Magnetic susceptibility CO 4 T2:16.5; R3:8.10 13 Wavelength and Energy bandgap, Divergence CO 5 T2:16.5; R3:8.10 14 Relative population of two states, Number of photons emitted CO 5 T1:3.3.1; R3:3.2 15 Acceptance angle and Numerical Aperture CO 6 T2:16.5; R3:8.10 CO 1 T2:16.5; R3:8.10 CO 1 T2:16.5; R3:8.10 CO 2 T1:3.3.1; R3:3.2 CO 3 T2:16.5; R3:8.10 CO 4 T2:16.5; R3:8.10 CO 4 T2:16.5; R3:8.10 CO 5 R3:8.10 CO 5 R3:8.10 CO 6 R3:8.10 CO 7				R3:8.10
R3:8.10 12 Intensity of magnetization, Magnetic susceptibility CO 4 T2:16.5; R3:8.10 13 Wavelength and Energy bandgap, Divergence CO 5 T2:16.5; R3:8.10 14 Relative population of two states, Number of photons emitted CO 5 T1:3.3.1; R3:3.2 15 Acceptance angle and Numerical Aperture CO 6 T2:16.5; R3:8.10 CO 1 T2:16.5; R3:8.10 CO 1 T2:16.5; R3:8.10 CO 2 T1:3.3.1; R3:3.2 CO 3 T2:16.5; R3:8.10 CO 4 T2:16.5; R3:8.10 CO 4 T2:16.5; R3:8.10 CO 4 T2:16.5; R3:8.10 CO 5	10	Polarizability	CO 4	′
12 Intensity of magnetization, Magnetic susceptibility CO 4 T2:16.5; R3:8.10 13 Wavelength and Energy bandgap, Divergence CO 5 T2:16.5; R3:8.10 14 Relative population of two states, Number of photons emitted CO 5 T1:3.3.1; R3:3.2 15 Acceptance angle and Numerical Aperture CO 6 T2:16.5; R3:8.10 DISCUSSION OF DEFINITION AND TERMINOLOGY 1 Quantum Mechanics CO 1 T2:16.5; R3:8.10 2 Electronic materials and Semiconductors CO 2 T1:3.3.1; R3:3.2 3 light Semiconductor interaction CO 3 T2:16.5; R3:8.10 4 Engineered electric and magnetic materials CO 4 T2:16.5; R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5;	11	Magnetic moment, Magnetic induction, Permeability	CO 4	T2:16.5;
R3:8.10 13 Wavelength and Energy bandgap, Divergence CO 5 T2:16.5; R3:8.10 14 Relative population of two states, Number of photons emitted CO 5 T1:3.3.1; R3:3.2 15 Acceptance angle and Numerical Aperture CO 6 T2:16.5; R3:8.10 DISCUSSION OF DEFINITION AND TERMINOLOGY 1 Quantum Mechanics CO 1 T2:16.5; R3:8.10 2 Electronic materials and Semiconductors CO 2 T1:3.3.1; R3:3.2 3 light Semiconductor interaction CO 3 T2:16.5; R3:8.10 4 Engineered electric and magnetic materials CO 4 T2:16.5; R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5;				R3:8.10
13 Wavelength and Energy bandgap, Divergence CO 5 T2:16.5; R3:8.10 14 Relative population of two states, Number of photons emitted CO 5 T1:3.3.1; R3:3.2 15 Acceptance angle and Numerical Aperture CO 6 T2:16.5; R3:8.10 DISCUSSION OF DEFINITION AND TERMINOLOGY 1 Quantum Mechanics CO 1 T2:16.5; R3:8.10 2 Electronic materials and Semiconductors CO 2 T1:3.3.1; R3:3.2 3 light Semiconductor interaction CO 3 T2:16.5; R3:8.10 4 Engineered electric and magnetic materials CO 4 T2:16.5; R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5;	12	Intensity of magnetization, Magnetic susceptibility	CO 4	
R3:8.10 14 Relative population of two states, Number of photons emitted CO 5 T1:3.3.1; R3:3.2 15 Acceptance angle and Numerical Aperture CO 6 T2:16.5; R3:8.10 DISCUSSION OF DEFINITION AND TERMINOLOGY 1 Quantum Mechanics CO 1 T2:16.5; R3:8.10 2 Electronic materials and Semiconductors CO 2 T1:3.3.1; R3:3.2 3 light Semiconductor interaction CO 3 T2:16.5; R3:8.10 4 Engineered electric and magnetic materials CO 4 T2:16.5; R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5; T2:16.5;				R3:8.10
14Relative population of two states, Number of photons emittedCO 5T1:3.3.1; R3:3.215Acceptance angle and Numerical ApertureCO 6T2:16.5; R3:8.10DISCUSSION OF DEFINITION AND TERMINOLOGY1Quantum MechanicsCO 1T2:16.5; R3:8.102Electronic materials and SemiconductorsCO 2T1:3.3.1; R3:3.23light Semiconductor interactionCO 3T2:16.5; R3:8.104Engineered electric and magnetic materialsCO 4T2:16.5; R3:8.105LASER, Fiber opticsCO 5,T2:16.5;	13	Wavelength and Energy bandgap, Divergence	CO 5	· · · · · · · · · · · · · · · · · · ·
R3:3.2 15 Acceptance angle and Numerical Aperture CO 6 T2:16.5; R3:8.10				
15 Acceptance angle and Numerical Aperture CO 6 T2:16.5; R3:8.10 DISCUSSION OF DEFINITION AND TERMINOLOGY 1 Quantum Mechanics CO 1 T2:16.5; R3:8.10 2 Electronic materials and Semiconductors CO 2 T1:3.3.1; R3:3.2 3 light Semiconductor interaction CO 3 T2:16.5; R3:8.10 4 Engineered electric and magnetic materials CO 4 T2:16.5; R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5;	14	Relative population of two states, Number of photons emitted	CO 5	,
R3:8.10 R3:8.10 DISCUSSION OF DEFINITION AND TERMINOLOGY 1 Quantum Mechanics CO 1 T2:16.5; R3:8.10 R3:8.			00.0	
DISCUSSION OF DEFINITION AND TERMINOLOGY 1 Quantum Mechanics CO 1 T2:16.5; R3:8.10 2 Electronic materials and Semiconductors CO 2 T1:3.3.1; R3:3.2 3 light Semiconductor interaction CO 3 T2:16.5; R3:8.10 4 Engineered electric and magnetic materials CO 4 T2:16.5; R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5;	15	Acceptance angle and Numerical Aperture	CO 6	
1 Quantum Mechanics CO 1 T2:16.5; R3:8.10 2 Electronic materials and Semiconductors CO 2 T1:3.3.1; R3:3.2 3 light Semiconductor interaction CO 3 T2:16.5; R3:8.10 4 Engineered electric and magnetic materials CO 4 T2:16.5; R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5;		DISCUSSION OF DEFINITION AND TERMINO	OLOCV	165.6.10
R3:8.10 2 Electronic materials and Semiconductors CO 2 T1:3.3.1; R3:3.2 3 light Semiconductor interaction CO 3 T2:16.5; R3:8.10 4 Engineered electric and magnetic materials CO 4 T2:16.5; R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5;	1			T2.16 E.
2 Electronic materials and Semiconductors CO 2 T1:3.3.1; R3:3.2 3 light Semiconductor interaction CO 3 T2:16.5; R3:8.10 4 Engineered electric and magnetic materials CO 4 T2:16.5; R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5;	1	Quantum Mechanics		
R3:3.2 R3:3.2 R3:3.2	2	Electronic materials and Semiconductors	CO 2	
R3:8.10 R3:8.10			55 2	
R3:8.10 R3:8.10	3	light Semiconductor interaction	CO 3	T2:16.5;
R3:8.10 5 LASER, Fiber optics CO 5, T2:16.5;				
5 LASER, Fiber optics CO 5, T2:16.5;	4	Engineered electric and magnetic materials	CO 4	T2:16.5;
				R3:8.10
CO 6 R3:8.10	5	LASER, Fiber optics	· · · · · · · · · · · · · · · · · · ·	
			CO 6	R3:8.10

	DISCUSSION OF QUESTION BANK					
1	Quantum Mechanics	CO 1	T1:3.3.1; R3:3.2			
2	Electronic materials and Semiconductors	CO 2	T2:16.5; R3:8.10			
3	Light Semiconductor interaction	CO 3	T2:16.5; R3:8.10			
4	Engineered electric and magnetic materials	CO 4	T1:3.3.1; R3:3.2			
5	LASER, Fiber optics	CO 5, CO 6	T2:16.5; R3:8.10			

Signature of Course Coordinator Mr A.Chandra Prakash , Assistant Professor HOD, FE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMP	COMPUER SCIENCE AND ENGINEERING					
Course Title	PROBA	PROBABILITY AND STATISTICS					
Course Code	AHSB12	AHSB12					
Program	B.Tech	B.Tech					
Semester	II	II CSE					
Course Type	Foundati	Foundation					
Regulation	R- 18						
		Theory		Pract	ical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	1	4	-	-		
Course Coordinator	Ms. P. S	Ms. P. Srilatha, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10+2	-	-	Fundamentals of Statistics

II COURSE OVERVIEW:

Probability theory is the branch of mathematics that deals with modelling uncertainty. Inferential Statistics and regression analysis together with random variate distributions are playing an exceptional role in designing data driven technology which is familiarly known as data centric engineering. They also have wide variety applications in telecommunications and other engineering disciplines. The course covers advanced topics of probability and statistics with applications over real-world engineering problems.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks	
Probability and Statistics	70 Marks	30 Marks	100	

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	Power Point Presentations	~	Chalk & Talk	✓	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
30 %	Understand
60%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	10tai warks		
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

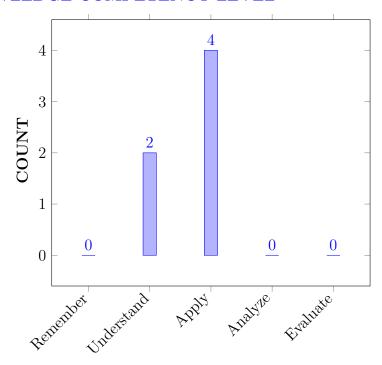
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The Principles of probability, the theory of random variables, basic random variate distributions and their applications.
II	The Methods and techniques for quantifying the degree of closeness among two or more variables and linear regression analysis.
III	The Estimation statistics and Hypothesis testing which play a vital role in the assessment of the quality of the materials, products and ensuring the standards of the engineering process.
IV	The statistical tools which are essential for translating an engineering problem into probability model.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the concepts of Baye's theorem, discrete and continuous	Understand
	random variables under randomized probabilistic conditions.	
CO 2	Interpret the parameters of random variate Probability distributions	Understand
	such as Binomial, Poisson and Normal distribution by using their	
	probability functions, expectation and variance.	
CO 3	Apply Bivariate Regression as well as Correlation Analysis for	Apply
	statistical forecasting.	
CO 4	Make Use of estimation statistics in computing confidence intervals,	Apply
	Regression analysis and hypothesis testing.	
CO 5	Identify the role of statistical hypotheses, types of errors, confidence	Apply
	intervals, the tests of hypotheses for large sample in making decisions	
	over statistical claims in hypothesis testing	
CO 6	Identify the tests of hypothesis for small sample in making decisions	Apply
	over statistical claims in hypothesis testing	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes						
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,						
	engineering fundamentals, and an engineering specialization to the solution						
	of complex engineering problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and						
	analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering						
	sciences.						

	Program Outcomes						
PO 3	Design/Development of Solutions: Design solutions for complex						
	Engineering problems and design system components or processes that meet						
	the specified needs with appropriate consideration for the public health and						
	safety, and the cultural, societal, and Environmental considerations						
PO 4	Conduct Investigations of Complex Problems: Use research-based						
	knowledge and research methods including design of experiments, analysis						
	and interpretation of data, and synthesis of the information to provide valid						
DO 5	conclusions.						
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,						
	resources, and modern Engineering and IT tools including prediction and						
	modelling to complex Engineering activities with an understanding of the limitations						
PO 6	The engineer and society: Apply reasoning informed by the contextual						
100	knowledge to assess societal, health, safety, legal and cultural issues and the						
	consequent responsibilities relevant to the professional engineering practice.						
PO 7	Environment and sustainability: Understand the impact of the						
107	professional engineering solutions in societal and environmental contexts, and						
	demonstrate the knowledge of, and need for sustainable development.						
PO 8	Ethics: Apply ethical principles and commit to professional ethics and						
	responsibilities and norms of the engineering practice.						
PO 9	Individual and team work: Function effectively as an individual, and as a						
	member or leader in diverse teams, and in multidisciplinary settings.						
PO 10	Communication: Communicate effectively on complex engineering						
	activities with the engineering community and with society at large, such as,						
	being able to comprehend and write effective reports and design						
	documentation, make effective presentations, and give and receive clear						
_	instructions.						
PO 11	Project management and finance: Demonstrate knowledge and						
	understanding of the engineering and management principles and apply these						
	to one's own work, as a member and leader in a team, to manage projects						
DO 10	and in multidisciplinary environments.						
PO 12	Life-Long Learning: Recognize the need for and having the preparation						
	and ability to engage in independent and life-long learning in the broadest						
	context of technological change						

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	CIE/Quiz/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 4	Conduct Investigations of Complex	1	Seminar/
	Problems: Use research-based knowledge and		Conferences/
	research methods including design of		Research
	experiments, analysis and interpretation of data,		Papers
	and synthesis of the information to provide valid		
	conclusions.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer	-	-
	programs in the areas related to Algorithms,		
	System Software, Web design, Big data, Artificial		
	Intelligence, Machine Learning and Networking.		
PSO 2	Focus on improving software reliability, network	-	-
	security or information retrieval systems.		
PSO 3	Make use of modern computer tools for creating	-	-
	innovative career paths, to be an entrepreneur		
	and desire for higher studies.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s),PSO(s):

	PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	-	-	~	-	-	-	1	-	ı	-	-	-	-	-
CO 2	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	✓	-	-	-	-	-	-	ı	-	ı	-	ı	-	-	-
CO 4	✓	-	-	✓	-	-	-	-	-	-	-	-	-	-	-
CO 5	✓	✓	-	✓	-	-	-	-	-	-	-	-	-	-	-
CO 6	✓	-	-	✓	-	-	-	-	-	-	-		-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain (understanding) the concept of random variables and their role in solving complex engineering problems involving random events and uncertainty by using Mathematical functions (principles of mathematics).	2
	PO 4	The expected values, variances for the given discrete random variables will be quantitatively measured by using statistical computer software (R-software).	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 2	PO 1	Interpret the Probability distributions such as Binomial, Poisson and Normal distribution (Understanding) with the support of evaluation of integrals (principles of mathematics) and appreciate their importance and applicability (Apply) in solving complex engineering problems involving uncertainty.	2
	PO 2	Understand the statement and formulation of a complex engineering problem which involves the events of uncertainty, Model it with suitable probability distribution and Apply the concepts of discrete or continuous distributions along with basic principles of mathematics to develop the solution and reaching substantiated conclusions by the interpretation of results	5
CO 3	PO 1	Interpret (Understand) the results of Bivariate and Correlation Analysis by using ratios, square roots, straight lines and planes (principles of mathematics) for statistical forecasting (Apply)in complex engineering problems involving bivariate or multivariate data.	2
CO 4	PO 1	Select appropriate statistical methods (understand) for solving some real-time complex engineering problems governed by correlation with the knowledge of fundamental principles of mathematics.	2
	PO 4	Interpret the results of Bivariate and Multivariate Regression and quantifying the degree of closeness between two or more variables by using statistical computer software (R-software, SPSS-software).	1
CO 5	PO 1	Apply tests of hypotheses which involves the role of mathematical tools like statements, sets, ratios and percentages (principles of mathematics) for both large samples and small samples (knowledge) in making decisions over statistical claims that arise in complex engineering problems which requires sampling inspections.	2
	PO 2	Understand the statement and formulation of a complex engineering problem which needs verification of truth values of numerical or statistical hypothesis, collect the necessary information and data through sampling techniques, apply tests of hypotheses (both large and small samples) along with basic principles of mathematics to develop the solution and reaching substantiated conclusions by the interpretation of results	5
	PO 4	Make Use of R software package in computing confidence intervals, statistical averages and hypothesis testing. (Computer software relevance)	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 6	PO 1	Identify the role of types of statistical hypotheses, types of errors, sampling distributions of means and confidence intervals with the aid of statements and sets, percentages (principles of mathematics) in hypothesis testing of complex engineering problems which requires sampling inspections.	2
	PO 4	Test for the assessment of goodness of fit of the given probability distribution model by using statistical quantitative methods and statistical computer software (R-software).	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	_	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	_	-	1	-	-	-	-	-	-	-		-	-	-
CO 5	2	5	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 6	2	-	-	1	-	-	-	-	-	-	-		-	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	-	-	9.0	-	-	-	-	-	-	_	·	-	-	-
CO 2	66.7	50.0	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	66.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.7	-	-	9.0	-	-	-	-	-	-	-	-	-	-	-
CO 5	66.7	50.0	-	9.0	-	-	-	-	-	-	-	-	-	-	-
CO 6	66.7	-	-	9.0	-	-	-	-	-	-	-		-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \le C \le 5\%$ – No correlation

 $1 - 5 < C \le 40\% - \text{Low/ Slight}$

 $\boldsymbol{\mathcal{2}}$ - 40 % < C < 60% – Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	_	-	-	_	-	-	-	_	_	-	-	-	-
CO 4	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	2	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	1	-	-	-	-	-	-	-		-	-	-
TOTAL	18	4	-	4	-	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	2	-	1	-	-	-	-	-	-	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	<u>-</u>	5 Minutes Video	PO 4	Open Ended Experiments	-
Assignments	✓				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

X	Assessment of mini projects by experts	✓	End Semester OBE Feedback
---	--	----------	---------------------------

XVIII SYLLABUS:

MODULE I	PROBABILITY AND RANDOM VARIABLES
	Probability, Conditional Probability, Baye's Theorem; Random variables: Basic definitions, discrete and continuous random variables; Probability distribution: Probability mass function and probability density functions; Mathematical expectation.
MODULE II	PROBABILITY DISTRIBUTION
	Binomial distribution; Mean and variances of Binomial distribution, Recurrence formula for the Binomial distribution; Poisson distribution as a limiting case of Binomial distribution, mean and variance of Poisson distribution, Recurrence formula for the Poisson distribution; Normal distribution; Mean, Variance, Mode, Median, Characteristics of normal distribution.
MODULE III	CORRELATION AND REGRESSION
	Correlation: Karl Pearson's Coefficient of correlation, Computation of correlation coefficient, Rank correlation, Repeated Ranks; Properties of correlation. Regression: Lines of regression, Regression coefficient, Properties of Regression coefficient, Angle between two lines of regression; Multiple correlation and Regression.

MODULE IV	TEST OF HYPOTHESIS - I
	Sampling: Definitions of population, Sampling, Parameter of statistics, standard error; Test of significance: Null hypothesis, alternate hypothesis, type I and type II errors, critical region, confidence interval, level of significance. One sided test, two-sided test. Large sample test: Test of significance for single mean, Test of significance for difference between two sample means, Tests of significance single proportion and Test of difference between proportions.
MODULE V	TEST OF HYPOTHESIS - II
	Small sample tests: Student t-distribution, its properties: Test of significance difference between sample mean and population mean; difference between means of two small samples. Snedecor's F-distribution and its properties; Test of equality of two population variances Chi-square distribution and it's properties; Chi-square test of goodness of fit.

TEXTBOOKS

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons Publishers, 9th Edition, 2014.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2012.

REFERENCE BOOKS:

- 1. N. P. Bali, "Engineering Mathematics", Laxmi Publications, 9th Edition, 2016.& Co., 6th Edition, 2014.
- 2. S. C. Gupta, V. K. Kapoor, "Fundamentals of Mathematical Statistics", S. Chand & Co., 10th Edition, 2000.
- 3. Richard Arnold Johnson, Irwin Miller and John E. Freund, "Probability and Statistics for Engineers", Prentice Hall, 8th Edition, 2013.

WEB REFERENCES:

- 1. http://e4uhu.com/down/Applied/9th
- $2. \ https://toaz.info/32 fa 2 f 50 8490 42 c f 9e 6a f 50 c b 7 ea 9a 5b$
- 3. http://www.mathworld.wolfram.com

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	Course outcomes	Reference
	OBE DISCUSSION		
1	Identify the types of sampling (random, stratified, systematic, cluster). Identify the misuses of statistics. Student will use appropriate statistical methods to collect, organize, display, and analyze relevant data. Probability & Statistics introduces students to the basic concepts and logic of statistical reasoning and gives the students introductory-level practical ability to choose, generate, and properly interpret appropriate descriptive and inferential methods. Identify the types of data (qualitative, quantitative, discrete, and continuous).		
	CONTENT DELIVERY (THEOR	\mathbf{Y})	
2	Introduction on probability	CO 1	T2:26.3
3	conditional probability	CO 1	R2:21.48
4	Baye's law	CO 1	T2:26.6 R2:21.50
5	Discrete Random variables	CO 1	T2:26.7 R2:21.51
6	Mean and variance, probability distribution of discrete Random variables.	CO 1	T2:26.8
7	Continuous Random variables	CO 1	T2:26.10
8	Mean and variance, probability distribution of continuous Random variables.	CO 1	T2:26.14 R2:21.55
9	Properties of random variables	CO 1	T2:26.15 R2:21.58
10	Binomial distribution	CO 2	T2:26.16 R2:21.61
11	Mean and variances of Binomial distribution	CO 2	T2:25.12 R2:21.24
12	Recurrence formula for the Binomial distribution	CO 2	T2:25.16 R2:21.29
13	Poisson distribution	CO 2	T2:25.14 R2:21.31
14	Mean and variance of Poisson distribution	CO 2	T2:25.14 R2:21.33
15	Recurrence formula for the Poisson	CO 2	R2:21.33
16	Normal distribution.	CO 2	T2:27.2 R2:21.64
17	Mean, Variance, Mode, Median, Characteristics of normal distribution	CO 2	T2:27.2

18	Correlation	CO 3	T2:27.2
18	Correlation	CO 3	R2:21.67
19	Karl Pearson's Coefficient of correlation	CO 3	T2:27.2
20	Rank correlation	CO 3	T2:27.3 R2:21.71
21	Properties of correlation	CO 3	T2:27.4 R2:21.68
22	Regression coefficients	CO 4	T2:27.7 R2:21.74
23	Properties of Regression coefficients	CO 4	T2:27.12 R2:21.75
24	Angle between two lines of regression	CO 4	T2:27.8 R2:21.72
25	Lines of regression,	CO 4	T2:27.8 R2:21.73
26	Sampling: Definitions	CO 5	T2:27.14 R2:21.78
27	Types of sampling	CO 5	T2:27.19 R2:21.814
28	Parameter vs. statistics, standard error.	CO 5	T2:27.12 R2:21.82
29	Type I and type II errors, critical region, confidence interval, level of significance. One sided test, two-sided test.	CO 5	T2:27.18 R2:21.82
30	Tests of significance of single mean	CO 5	T2:26.15 R2:21.58
31	Test of difference between means	CO 5	T2:26.16 R2:21.61
32	Tests of significance of single proportion	CO 5	T2:25.14 R2:21.33
33	Test of difference between proportions	CO 5	R2:21.33
34	Small sample tests: Test of equality of two population variances.	CO 6	T2:27.2 R2:21.64
35	Student t-distribution, its properties	CO 6	T2:27.2
36	Test of significance difference between sample mean and population mean.	CO 6	T2:26.16 R2:21.61
37	difference between means of two small samples	CO 6	T2:25.12 R2:21.24
38	Snedecor's F-distribution properties.	CO 6	T2:25.16 R2:21.29
39	F-distribution properties	CO 6	T2:27.14 R2:21.78
40	Chi-square distribution and it's properties	CO 6	T2:27.19 R2:21.814
41	Applications of Chi-square –Distribution	CO 6	T2:27.12 R2:21.82

	PROBLEM SOLVING/ CASE STU	DIES	
42	Problem solving session on discrete random variable	CO 1	T2:26.3
43	Problem solving session on continuous random variables	CO 1	R2:21.48
44	Problem solving session on mathematical expectation	CO 1	T2:26.6 R2:21.50
45	Problem solving session on Binomial distribution	CO 1	T2:26.7 R2:21.51
46	Problem solving session on Poisson distribution	CO 2	T2:26.8
47	Problem solving session on Normal distribution	CO 2	T2:26.10
48	Problem solving session on Karl Pearson's correlation	CO 3	T2:26.14 R2:21.55
49	Problem solving session on Spearman's rank correlation	CO 3	T2:26.15 R2:21.58
50	Problem solving session on linear regression	CO 4	T2:26.16 R2:21.61
51	Problem solving session on sampling distribution of means	CO 5	T2:25.12 R2:21.24
52	Problem solving session on central limit theorem	CO 5	T2:25.16 R2:21.29
53	Problem solving session on large sample tests	CO 5	T2:25.14 R2:21.31
54	Problem solving session on t-test	CO 6	T2:25.14 R2:21.33
55	Problem solving session on F-test	CO 6	R2:21.33
56	Problem solving session on Chi-square - test	CO 6	T2:27.2 R2:21.64
	DISCUSSION OF DEFINITION AND TER	MINOLOGY	
57	Definitions & terminology discussion on probability and random variables	CO 1	T2:26.6 R2:21.50
58	Definitions & terminology discussion on probability distributions.	CO 2	T2:26.7 R2:21.51
59	Definitions & terminology discussion on correlation and regression.	CO 3, CO 4	T2:25.14 R2:21.33
60	Definitions & terminology discussion on Tests of Hypothesis.	CO 5	R2:21.33
61	Definitions & terminology discussion on Tests of significance.	CO 6	R2:21.33

	DISCUSSION OF QUESTION BANK					
62	Question bank discussion on probability and random variables.	CO 1	T2:26.6 R2:21.50			
63	Question bank discussion on probability distributions.	CO 2	T2:26.7 R2:21.51			
64	Question bank discussion on correlation and regression.	CO 3,CO 4	T2:25.14 R2:21.33			
65	Question bank discussion on Tests of Hypothesis.	CO 5	R2:21.33			
66	Question bank discussion on Tests of significance	CO 6	R2:21.33			

Course Coordinator: Ms. P. Srilatha HOD CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	ENGINEERIN	ENGINEERING PHYSICS LABORATORY				
Course Code	AHSB10	AHSB10				
Program	B.Tech	B.Tech				
Semester	II	CSE				
Course Type	FOUNDATION	FOUNDATION				
Regulation	IARE - r18					
		Theory		Prac	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	1.5	
Course Coordinator	Mr. K Saibaba,	Mr. K Saibaba, Assistant Professor				

I COURSE OVERVIEW:

This lab course provides hands on experience in a number of experimental techniques and develops competence in the instrumentation typically used in physics. This also develops student's expertise in applying physical concepts to practical problem and in learning about experimental techniques with advanced equipments. This laboratory includes experiments involving electromagnetism and optoelectronics.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	Basic principles of physics	1.5

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Physics laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab Worksheets		Viva Questions		Probing Further
\checkmark		✓		✓		✓	Experiments

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day-to-day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design Programme	
20 %	Conclusion Conclusion	
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Labor	Total Marks	
Type of	Day to day	Final internal lab	10tai Waiks
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

A. Experiment Based

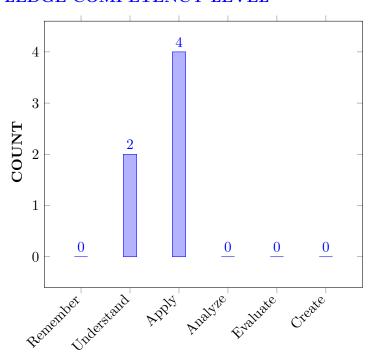
Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

B. Programming Based

Purpose	Algorithm	Program	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	To familiarize with the lab facilities, equipment, standard operating procedures.
II	About the different kinds of functional electric and magnetic materials which paves a way for them to use in various technical and engineering applications.
III	The analytical techniques and graphical analysis to study the experimental data for optoelectronic devices.
IV	The applications of variation in the intensity of light due to natural phenomena like interference and diffraction.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify the type of semiconductor using the principle of Hall Effect and	Apply
	also determine the energy gap of a semiconductor diode.	
CO 2	Illustrate principle, working and application of wave propagation and	Understand
	compare results with theoretical harmonics and overtones.	
CO 3	Investigate the energy losses associated with a given Ferro magnetic	Apply
	material and also magnetic field induction produced at various points	
	along the axis of current carrying coil.	
CO 4	Examine launching of light through optical fiber from the concept of	Understand
	light gathering capacity of numerical aperture.	
CO 5	Utilize the phenomena of interference and diffraction for the	Apply
	determination of various parameters like radius of curvature of convex	
	lens, wavelength of laser light and width of single slit.	
CO 6	Investigate V-I/L-I characteristics of various optoelectronic devices like	Apply
	Light Emitting Diode, Photodiode to understand their basic principle of	
	functioning as well as to infer the value of Planck's constant.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge	3	Laboratory
	of mathematics, science, engineering fundamentals,		experiments,
	and an engineering specialization to the solution of		internal and
	complex engineering problems.		external lab
			examinations.
PO 2	Problem analysis: Identify, formulate, review	2	Laboratory
	research literature, and analyze complex engineering		experiments,
	problems reaching substantiated conclusions using		internal and
	first principles of mathematics, natural sciences,		external lab
	and engineering sciences		examinations.
PO 4	Conduct investigations of complex problems:	1	Laboratory
	Use research-based knowledge and research methods		experiments,
	including design of experiments, analysis and		internal and
	interpretation of data, and synthesis of the		external lab
	information to provide valid conclusions.		examinations.

^{3 =} High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1	Laboratory experi- ments and Surveys

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Identify basic principle of Hall effect and make use of mathematical expression for Hall coefficient to deduce the type of semiconductor.	2
	PO 2	Understand the given problem statement of identification of type of semiconductor and formulate Hall coefficient from experimental collection of information and data in reaching substantial conclusions by the interpretation of results.	4
	PO 1	Determine the energy gap of a semiconductor diode by making use of graphical analysis of current versus temperature curve.	2

CO 2	PO 1	Recall the theory of propagation of longitudinal and transverse waves and make use of number of loops	2
		formation in string to determine frequency of an electronically maintained tuning fork.	
	PO 2	Understand the given problem statement of stationary wave propagation and formulate harmonics and overtones of fundamental frequency from experimental collection of information and data in reaching substantial conclusions by the interpretation of results.	4
CO 3	PO 1	Explain the variation of magnetic field at various points along the axis of current carrying coil and make use of mathematical expression of Tangent's law using Stewart Gee's apparatus.	2
	PO 2	Understand the given problem statement of current loop and formulate magnetic field induction at various points along the axis of current loop from experimental collection of information and data in reaching substantial conclusions by the interpretation of results.	4
	PO 1	Investigate the energy losses associated with a given ferromagnetic material and make use of graphical representation of hysteresis loop exhibited by magnetic material.	2
	PO 2	Understand the given problem statement of energy losses associated with a given ferromagnetic material and formulate hysteresis loop from experimental collection of information and data in reaching substantial conclusions by the interpretation of results.	4
	PO 4	Apply simulation tool to get hysteresis curve of a ferromagnetic material and understand energy losses associated with material.	1
	PSO 3	Make use of modern simulation tool to get information about energy losses associated with a ferromagnetic material.	1
CO 4	PO 1	Interpret launching of light through optical fiber and make use of mathematical expression for analyzing light gathering capacity through numerical aperture.	2
	PO 4	Make use of optical fiber trainer kit and understand conversion of electrical to light energy	1
CO 5 PO		Explain the concept of interference in Newton's rings and make use of it to determine the radius of curvature of convex lens.	2
	PO 4	Make use of microscope to get Newton's rings and understand the phenomenon of interference in reflected light.	1
	PO 1	Recollect the phenomena of diffraction from N-slits and make use of it for the determination of wavelength of a given laser.	1

	PO 1	Understand the phenomenon of single slit diffraction and make use of it to determine the slit width by using laser light as monochromatic source.	1
CO 6	PO 1	Explain the V-I characteristics of light emitting diode and infer the value of planck's constant by plotting temperature versus current curve.	2
	PO 1	Understand the phenomenon of recombination of electron-hole pair and determine the value of threshold voltage of a given LED.	2
	PO 1	Illustrate the variation of photo current with light intensity in a photo diode.	1

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTO	PROGRAM OUTCOMES				
OUTCOMES	PO 1	PO 2	PO 4	PSO 3		
CO 1	3	2	-	-		
CO 2	3	2	1	-		
CO 3	3	-	-	1		
CO 4	3	2	1	-		
CO 5	3	-	1	-		
CO 6	3	2	1	-		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams		SEE Exams		Seminars	-
	✓		✓		
Laboratory		Student Viva		Certification	-
Practices	✓		✓		
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
\mathbf{X}	Assessment of Mini Projects by Exper	rts	

XIV SYLLABUS:

WEEK 1	HAL LEFFECT (LORENTZFORCE)
	Determination of charge carrier density.
WEEK 2	MELDE'S EXPERIMENT
	Determination of frequency of a given tuning fork
WEEK 3	STEWART GEE'S APPARATUS
	Magnetic field along the axis of current carrying coil – Stewart and Gee's method.
WEEK 4	B-H CURVE WITH CRO
	To determine the value of retentivity and coercivity of a given magnetic material.
WEEK 5	ENERGY GAP OF A SEMICONDUCTOR DIODE
	Determination of energy gap of a semiconductor diode.
WEEK 6	PHOTO DIODE
	Studying V-I characteristics of Photo Diode.
WEEK 7	OPTICAL FIBER
	Evaluation of numerical aperture of a given optical fiber.
WEEK 8	WAVELENGTH OF LASER LIGHT
	Determination of wavelength of a given laser light using diffraction grating.
WEEK 9	PLANK'S CONSTANT
	Determination of Plank's constant using LED.
WEEK 10	LIGHT EMITTING DIODE
	Studying V-I Characteristics of LED.
WEEK 11	NEWTONS RINGS
	Determination of radius of curvature of a given plano - convex lens.
WEEK 12	SINGLE SLIT DIFFRACTION
	Determination of width of a given single slit.

TEXTBOOKS

- 1. 1 CL Arora, "Practical Physics", S Chand and Co., New Delhi, 3rd Edition, 2012.
- 2. 2 Vijay Kumar, Dr. T. Radha krishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014.

REFERENCE BOOKS:

- 1. 1 CF Coombs,"Basic Electronic Instrument Handbook", McGraw HillBookCo.,1972.
- 2. 2 CH Bernardand CD Epp, John Wiley and Sons, "Laboratory Experiments in College Physics" Inc.,NewYork,1995.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Determination of charge carrier density.	CO 1	T1:13.5
2	Determination of frequency of a given tuning fork.	CO 2	T1:13.5
3	Determination of Magnetic field along the axis of current carrying coil – Stewart and Gee's method.	CO 3, CO 4	TT1:14.7
4	Determination of the energy loss per unit volume of a given magnetic material per cycle by tracing the Hysteresis loop.	CO 3	T1:15.7
5	Determination of energy gap of a semiconductor diode.	CO 1	T1:16.8
6	Studying V-I Characteristics of Photo Diode.	CO 6	T1:16.9
7	Evaluation of numerical aperture of a given optical fiber.	CO 4	T1:17.9
8	Determination of wavelength of a given laser light using diffraction grating.	CO 5	T1:18.10
9	Determination of Plank's constant using LED.	CO 6	T1:19.10
10	Studying V-I characteristics of LED	CO 6	T1:19.9
11	Determination of radius of curvature of a given Plano-convex lens.	CO 5	T1:23.10
12	Determination of width of a given single slit.	CO 5	T1:23.10

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	To determine the wavelength of different colored light using white light source by
	Newton's ring method
2	To study the bending losses and transmission losses of an optical Fiber
3	To observe the dispersion of prism by using spectrometer.
4	Study the characteristics of Laser diode.
5	To illustrate the interference pattern produced from the air wedge.
6	To determine the voltage current characteristics of solar cell

Signature of Course Coordinator Mr.K Saibaba, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUT	COMPUTER SCIENCE AND ENGINEERING				
Course Title	DATA ST	RUCTURES				
Course Code	ACSB03					
Program	B.Tech	B.Tech				
Semester	III	III				
Course Type	Core	Core				
Regulation	R-18	R-18				
		Theory Practical			tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	3	1.5	
Course Coordinator	Dr V Sithai	Dr V Sitharamulu, Associate Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB01	II	Programming for Problem
			Solving

II COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics covered include managing complexity, analysis, static data structures, dynamic data structures and hashing mechanisms. The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and engineering areas.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Data Structures	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

1	Power Point Presentations	√	whiteboard		Assignments	x	MOOC
1	Open Ended Experiments	x	Seminars	x	Mini Project	√	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
60%	Understand
20%	Apply
10%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam Quiz \AAT		Total Walks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part—A shall have five compulsory questions of one mark each. In part—B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

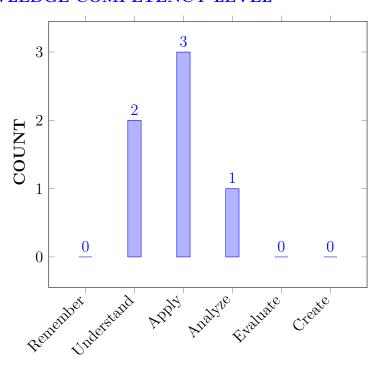
This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course

is given in table.

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The skills needed to understand and analyze performance trade-offs of different algorithms implementations and asymptotic analysis of their running time and memory usage.
TT	, , ,
II	The knowledge of basic abstract data types (ADT) and associated algorithms:
	stacks, queues, lists, tree, graphs, hashing and sorting, selection and searching.
III	The fundamentals of Non-linear Data structure to store, retrieve, and process data efficiently.
TX 7	· ·
IV	The implementing these data structures and algorithms and Understand essential for future programming and software engineering courses.
V	Analyze and choose appropriate data structure to solve problems in real world.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Interpret the complexity of algorithm using the asymptotic	Understand
	notations.	
CO 2	Select appropriate searching and sorting technique for a given	Apply
	problem.	
CO 3	Construct programs on performing operations on linear and	Apply
	nonlinear data structures for organization of a data	
CO 4	Make use of linear data structures and nonlinear data	Apply
	structures solving real time applications.	
CO 5	Describe hashing techniques and collision resolution methods	Understand
	for efficiently accessing data with respect to performance.	
CO 6	Compare various types of data structures; in terms of	Analyze
	implementation, operations and performance.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

	Program Outcomes					
PO 8	Ethics: Apply ethical principles and commit to professional ethics and					
	responsibilities and norms of the engineering practice.					
PO 9	Individual and team work: Function effectively as an individual, and as a					
	member or leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communication: Communicate effectively on complex engineering					
	activities with the engineering community and with society at large, such as,					
	being able to comprehend and write effective reports and design					
	documentation, make effective presentations, and give and receive clear					
	instructions.					
PO 11	Project management and finance: Demonstrate knowledge and					
	understanding of the engineering and management principles and apply these					
	to one's own work, as a member and leader in a team, to manage projects					
	and in multidisciplinary environments.					
PO 12	Life-Long Learning: Recognize the need for and having the preparation					
	and ability to engage in independent and life-long learning in the broadest					
	context of technological change					

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	2	CIA/SEE
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
DO 0	to the solution of complex engineering problems.	2	CIA /CEE
PO 2	Problem analysis: Identify, formulate, review	2	CIA/SEE
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
DO 0	natural sciences, and engineering sciences.		CIA /CEE
PO 3	Design/Development of Solutions: Design	1	CIA/SEE
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 4	Conduct Investigations of Complex	1	CIA/SEE
	Problems: Use research-based knowledge and		
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIA/SEE/Open ended Experiments
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Tech Talk/Concept Videos/Open ended Experiments
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	1	Tech Talk/Concept Videos/Open ended Experiments

3 = High; 2 = Medium; 1 = Low X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency
			Assessed
			by
PSO 1	Understand design and analyze computer	3	CIA/ SEE/
	programs in the areas related to Algorithms,		Tech Talk/
	System Software, Web design, Big data, Artificial		Concept
	Intelligence, Machine Learning and Networking.		Videos
PSO 2	Focus on improving software reliability,	2	CIA/ SEE/
	network security information retrieval systems.		Tech Talk/
			Concept
			Videos
PSO 3	Make use of modern computer tools for	2	CIA/ SEE/
	creating innovative career paths, to be an		Tech Talk/
	entrepreneur and desire for higher studies.		Concept
			Videos

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s),PSO(s):

COURSE				PRO)GR	$\overline{\mathbf{AM}}$	$\overline{ ext{OUI}}$	COI	MES					PSO'S	
OUTCOMES	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	✓	✓	-	-	-	-	-	-	✓	-	-	✓	-	√
CO 2	✓	✓	✓	-	✓	-	-	-	-	✓	-	✓	✓	√	√
CO 3	✓	✓	✓	✓	✓	-	-	-	-	✓	-	✓	✓	✓	✓
CO 4	✓	✓	✓	✓	✓	-	-	-	-	✓	-	✓	✓	✓	✓
CO 5	✓	-	✓	-	✓	-	-	-	-	✓	-	-	✓	✓	✓
CO 6	✓	✓	✓	✓	✓	-	-	-	-	✓	-	✓	✓	✓	✓

XII JUSTIFICATIONS FOR CO - PO/PSO MAPPING - DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO1	PO 1	Understand (knowledge) the concept of conventional digital communication system and (understand) various types of pulse analog modulation techniques for signals analysis by applying the principles of mathematics, science, and engineering fundamentals.	3
	PO 2	Problem Analysis on different types of algorithms to analyze space and time complexities.	4
	PO 3	Design the Solutions for finding space and time complexities of a complex algorithm and representing it by asymptotic notations	2
	PO 10	Subject matter and speaking style assessed in explanation of various algorithms, algorithm complexity.	2
	PSO1	Design and analyze complex algorithms and specify its space and time complexities and representing it by asymptotic notations for faster processing of data.	3
	PSO3	Make use of modern computer tools for finding space and time complexities of a complex algorithm	1
CO 2	PO 1	Make use of broad knowledge of searching and sorting techniques for an efficient search from a data structure and optimize the efficiency of other algorithms by applying the knowledge of mathematics, science, Engineering fundamentals.	1
	PO 2	Problem Analysis on different types of search sort algorithms to analyze space and time complexities.	5

	PO 3	Design/Development of Solutions using appropriate searching and sorting techniques for designing a solution for complex Engineering problems.	2
	PO 5	Implementation of different sorting and searching techniques for given problem with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of searching and sorting along with efficiency of searching and sorting techniques in terms of space and time complexity	2
	PO 12	Keeping current in CSE and advanced engineering concepts of various searching, sorting and respective time and space complexity by tech talk, concept videos and open ended experiments.	3
	PSO1	Understand complex problems and analyzing it and apply appropriate sorting and searching techniques for data processing.	4
	PSO2	Applying various selecting and sorting techniques while designing and developing information retrieval systems and its applications	2
	PSO3	Make use of various selecting and sorting techniques and extend the knowledge for advance frame works and platforms which are necessary for engineering practices and higher studies or become an entrepreneur.	1
CO 3	PO 1	Make use of linear and nonlinear data structures to organize the data in a particular way so to use them in the most effective way by applying the basic knowledge of mathematics, science, engineering fundamentals	2
	PO 2	Problem analysis: Organizing the given data in particular way by performing the operations on linear and nonlinear data structures to use the data in the most effective way.	7
	PO 3	Recognize the need of linear and nonlinear data structures such as linked list, array, stack and queue by Designing solutions for complex Engineering.	5
	PO 4	Conduct Investigations Conduct Investigations of Complex Problems: Ability to apply operations on linear and nonlinear data structures in order to organize the given data in a particular way	4
	PO 5	Implementation of Implementation of different operations on linear and nonlinear data structures for given problem with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of linear and nonlinear data structures like linked lists, stacks and queues	2

	PO 12	Keeping current in CSE and advanced engineering concepts of linear and nonlinear data structures like linked lists, stacks and queues by tech talk, concept videos and open-ended experiments	3
	PSO1	Understand complex problems and analyzing it and apply appropriate operations on linear or nonlinear data structures for Developing the solution.	5
	PSO2	Applying various linear or nonlinear data structures while designing and developing information retrieval systems and its applications	2
	PSO3	Make use of various linear or nonlinear data structures and extend the knowledge for advance frame works and platforms which are necessary for engineering practices and higher studies or become an entrepreneur.	1
CO 4	PO 1	Make use of linear and nonlinear data structures for solving real time applications by applying the basic knowledge of mathematics, science, engineering fundamentals	3
	PO 2	Problem analysis: Solving real time applications by performing the operations on linear or nonlinear data structures.	7
	PO 3	Recognize the need of linear and nonlinear data structures such as linked list, array, stack and queue for Designing real time applications.	2
	PO 4	Conduct Investigations of Complex Problems: Ability to apply operations on linear or nonlinear data structures in order to solve real time applications.	4
	PO 5	Implementation of different operations on linear and nonlinear data structures for solving real time applications with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of linear and nonlinear data structures like linked lists, stacks, queues, trees and graphs	2
	PO 12	Keeping current in CSE and advanced engineering concepts of linear and nonlinear data structures like linked lists, stacks, queues, trees and graphs by tech talk, concept videos and open-ended experiments for solving real time applications.	3
	PSO1	Understand complex problems and analyzing it and apply appropriate operations on linear or nonlinear data structures for solving real time applications.	5
	PSO2	Applying various linear or nonlinear data structures while designing and developing information retrieval systems and its applications	1

	PSO3	Make use of various linear or nonlinear data	1
	1500	structures and extend the knowledge for advance frame works and platforms which are necessary for engineering practices and higher studies or become an entrepreneur.	1
CO 5	PO 1	Understand the knowledge of hashing techniques and collision resolution methods and implementing for specified problem domain using knowledge of mathematics, science and engineering fundamentals	1
	PO 3	Design the Solution for efficiently accessing data with respect to performance by using hashing techniques and collision resolution methods	2
	PO 5	Implementation of hashing techniques and collision resolution methods for efficiently accessing data with respect to performance with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of Hashing, Collision techniques	2
	PSO1	Understand complex problems and analyzing it and apply appropriate hashing techniques and collision resolution methods for efficiently accessing data with respect to performance.	4
	PSO2	Applying various hashing techniques and collision resolution methods while designing and developing information retrieval systems and its applications	1
	PSO3	Build sufficient knowledge hashing techniques and collision resolution methods so that new product can be developed, which leads to become successful entrepreneur in the present market.	1
CO 6	PO 1	Understand various types of data structures in terms of implementations and choose appropriate data structure for specified problem domain using knowledge of mathematics, science and engineering fundamentals	3
	PO 2	Problem Analysis: Recognize the importance of suitable data structures in checking the efficiency of algorithms used for complex engineering problems.	7
	PO 3	Design the Solution complex problems or efficiently accessing data with respect to performance by using hashing techniques and collision resolution methods	5
	PO 4	Conduct Investigations of Complex Problems: Ability to apply operations on linear or nonlinear data structures in order to solve real time applications.	4
	PO 5	Understand the Implementation of various types of data structures with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of Implementation of various types of data structures.	2

PO 12	Keeping current in CSE and advanced engineering concepts of Implementation of various types of data structures by tech talk, concept videos and open ended experiments	3
PSO 1	Understand complex problems and analyzing it and apply Implementation of various types of data structures.	5
PSO 2	Applying Implementation of various types of data structures while designing and developing information retrieval systems and its applications	1
PSO 3	Build sufficient knowledge Implementation of various types of data structures so that new product can be developed, which leads to become successful entrepreneur in the present market.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2
CO 1	1	4	2	-	-	-	-	-	-	2	-	-	3	-	1
CO 2	1	5	2	-	1	-	-	1	-	2	-	3	4	2	1
CO 3	2	7	5	4	1	-	-	-	-	2	-	3	5	2	1
CO 4	3	7	2	4	1	-	-	-	-	2	-	3	5	1	1
CO 5	1	-	2	-	1	-	-	-	-	2	-	-	4	1	1
CO 6	3	7	5	4	1	-	-	-	-	2	-	3	5	1	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	33.3	40	20	-	-	-	-	-	-	40	-	-	50	-	50
CO 2	33.3	50	20	-	100	-	-	-	-	40	-	25	66.6	100	50
CO 3	66.6	70	50	36.3	100	-	-	-	-	40	-	25	83.3	100	50
CO 4	100	70	20	36.3	100	-	-	-	-	40	-	-	66.6	50	50
CO 5	33.3	-	20	-	100	-	-	-	-	40	-	-	66.6	50	50
CO 6	100	70	50	36.3	100	-	-	-	-	40	-	25	83.3	50	50

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, **0** being **no correlation**, **1** being the **low correlation**, **2** being **medium correlation** and **3** being **high correlation**.

 $\boldsymbol{0}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C $\le 40\%$ – Low/ Slight

 $\boldsymbol{2}$ - 40 % <C < 60% – Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	1	1	-	-	-	-	_	-	1	-	-	2	-	2
CO 2	1	2	1	-	3	-	-	-	-	1	-	1	3	3	2
CO 3	3	3	2	1	3	_	-	_	_	1	-	1	3	3	2
CO 4	3	3	1	1	3	_	-	_	_	1	-	1	3	2	2
CO 5	1	-	1	-	3	-	-	_	-	1	-	-	3	2	2
CO 6	3	3	2	1	3	-	-	-	-	1	-	1	3	2	2
TOTAL	12	12	8	3	15	-	-	1	-	6	-	4	17	12	12
AVERAGE	2.0	2.4	1.3	1.0	3.0	-	-	-	-	1	-	1	2.8	2.4	2.0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams		SEE Exams		Assignments	
	✓		✓		✓
Seminars	-	Student Viva	-	Certification	-
Laboratory	-	5 Minutes Video	-	Open Ended	-
Practices				Experiments	
Term Paper	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

ĺ	✓	Early Semester Feedback	✓	End Semester OBE Feedback
	\mathbf{X}	Assessment of Mini Projects by Ex	xperts	

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO DATA STRUCTURES, SEARCHING
MODULLI	AND SORTING
	Basic concepts: Introduction to data structures, classification of data structures, operations on data structures; Algorithms Specification ,Recursive algorithms ,Data Abstraction, Performance analysis-time complexity and space complexity, Asymptotic Notation-Big O ,Omega and Theta notations. Introduction to Linear and Non Linear data structures, Searching techniques: Linear search, Binary search; Sorting techniques: Bubble, Selection, Insertion, Quick and Merge Sort and comparison of sorting algorithms
MODULE II	LINEAR DATA STRUCTURES
	Stacks: Stack ADT, definition and operations, Implementations of stacks using array, applications of stacks, Arithmetic expression conversion and evaluation; Queues: Primitive operations; Implementation of queues using Arrays, applications of linear queue, circular queue and double ended queue (deque).
MODULE III	LINKED LISTS
	Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single linked list; Applications of linked lists: Polynomial representation and sparse matrix manipulation. Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of Stack, linked list representation and operations of queue
MODULE IV	NON LINEAR DATA STRUCTURES
	Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree traversal, binary tree variants, application of trees; Graphs: Basic concept, graph terminology, Graph representations-Adjacency matrix, Adjacency lists, graph implementation, Graph traversals-BFS,DFS, Application of graphs, Minimum spanning trees-Prims and Kruskal algorithms
MODULE V	BINARY TREES AND HASHING
	Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees; Introduction to M-Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash functions, collisions, applications of hashing.

TEXTBOOKS

- 1. Rance D. Necaise, —Data Structures and Algorithms using Python, Wiley Student Edition.
- 2. Benjamin Baka, David Julian, —Python Data Structures and Algorithms, Packt Publishers, 2017.

REFERENCE BOOKS:

- 1. S. Lipschutz, —Data Structures , Tata McGraw Hill Education, 1st Edition, 2008.
- 2. D. Samanta, —Classic Data Structures, PHI Learning, 2nd Edition, 2004.

WEB REFERENCES:

- 1. http://www.tutorialspoint.com/data-structures-algorithms
- 2. https://www.geeksforgeeks.org/data-structures/
- 3. https://www.studytonight.com/data-structures/
- 4. https://www.coursera.org/specializations/data-structures-algorithms

COURSE WEB PAGE:

 $1.\ https://www.iare.ac.in/?q=courses/computer-science-and-engineering-autonomous/datastructures$

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference					
OBE DISCUSSION								
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	https: //www.iare.ac.in q=courses /computer- science-and- engineering- autonomous/data	,				
CONTENT DELIVERY (THEORY)								
1	Basic concepts: Introduction to Data Structures	CO 3	T1:1.1.3 R2:					
2	Classification of data structures	CO 3	T1:1.1.3 R2:					
3	Operations on data Structures	CO 3	T1:1.2					
4	Recursive algorithm, Performance Analysis	CO 1	T1:1.2 T1:5.1					
5	Searching techniques: Linear search and binary search	CO 2, CO 6	T1:5.1					
6	Searching techniques: Fibonacci search and comparison	CO 2, CO 6	T1:5.1					
8	Sorting techniques: Bubble sort, selection sort and companding	CO 2 CO 6	R1:14.5					

9	Sorting techniques: Insertion sort, Quick sort	CO 2, CO 6,	T1:5.2 R2: 10.2
10	Merge sort ,comparison of sorting algorithms	CO 4, CO 6	T1:5.2 R2:
13	Stacks: Primitive operations, implementation of stacks using Arrays	CO 3, CO 4	T1:7.1
14	Applications of stacks arithmetic expression conversion and evaluation	CO 4, CO 6	T1:7.2
16	Queues: Primitive operations; Implementation of queues using Array	CO 3, CO 4	T1:8.1
17	Applications of linear queue, circular queue	CO 3, CO 4	T1:8.4
18	Double ended queue (deque)l	CO 3, CO 4	R2: 5.4
19	Linked lists: Introduction, singly linked list, representation of a linked list in memory	CO 3, CO 4	T1:9.1
20	Operations on a single linked list :creation, insertion and deletion	CO 3, CO 4	T1:9.2
21	Applications of linked lists	CO 4,	T1:9.3
22	Operations on a double linked lists :creation, insertion and deletion	CO 3, CO 4	T1:9.4
23	Operations on a double linked lists : deletion ,traversal.	CO 3, CO 4	T1:9.4
24	single linked list :polynomial expression	CO 3, CO 4	T1:9.3
25	single linked list :Sparse matrix manipulation.	CO 3, CO 4	T1:9.3
26	Operations on a Circular linked lists: creation, insertion and deletion	CO 3, CO 4	T1:9
30	Operations on a Circular linked lists: deletion, traversal	CO 3, CO 4	T1:9
31	Linked list representation and operations of Stack	CO 3, CO 4	T1:9.7
32	Linked list representation and operations of queue	CO 3, CO 4	T1:9.8
37	Trees: Basic concept, Tree terminology	CO 3	T1:13.1

CONTENT DELIVERY (THEORY)					
38	Binary tree :Binary Tree properties	CO 3, CO 4	T1:13.1		
39	Binary tree representation using array	CO 3, CO 4	T1:13.2		
40	Binary tree representation using linked list	CO 3, CO 4	T1:13.2		
41	Binary tree traversal, binary tree variants	CO 3, CO 4	T1:13.2		
42	Application of trees	CO 4	T1:13.2.3		
44	Graphs: Basic concept, graph terminology	CO 3	R2: 8.2		
45	Types of graphs, Representation of graph	CO 3	R2: 8.2		
46	Graph traversals :DFS and BFS, Application of graphs	CO 3	T2:6.2		
48	Minimum Spanning Trees-Prims and Kruskal algorithms	CO 4	T1:6.1 T2:5.6		
50	Binary search trees, properties	CO 3	T1:13.2.3		
51	Binary search trees operations	CO 3	T1:13.2.3		
52	AVL trees	CO 3	T1:14.3		
53	M- Way search trees, B trees	CO 3	T1:14.3		
54	Hashing, Collision	CO 5	R2: 6.4		
7	Problems on linear search, binary search and Fibonacci search.	CO 2	T1:5.1		
11	Problems on bubble sort, selection and insertion	CO 3,	T1:5.2 R2:		
	sort	CO 4	10.2		
12	Problems on quick and merge sort	CO 3,	T1:5.2 R2:		
		CO 4	10.2		
15	Problems on Arithmetic expression conversion and evaluation	CO 3, CO 4	T1:7.2		
27	Problems on single linked list to add, delete element	CO 3, CO 4	T1:9.8		
28	Problems on double linked list to add, delete element	CO 3, CO 4	T1:9.8		
33	Problems on circular linked list to add, delete element	CO 3, CO 4	T1:9.4		
34	Problems on double linked list to add, delete element	CO 3, CO 4	T1:9.3		
35	Problems on stack using linked list	CO 3, CO 4	T1:9.7		
36	Problems on queue using linked list	CO 3, CO 4	T1:9.8		
43	Problems on Binary tree :creation ,insertion and deletion of a node	CO 3, CO 4	T1:13.2		
47	Problems on Graph Traversal: DFS and BFS	CO 3, CO 4	T2:6.2		

49	Problems on MST: Prim's and Kruskal's	CO 3, CO 4	T1:6.1 T2:5.6
55	Problems on Binary search tree	CO 4	T1:14.3
56	Problems oh hashing	CO 5	R2: 6.4
	DISCUSSION ON DEFINITION AND T	ERMINOL	OGY
57	Definitions on Data Structures, searching and sorting	CO 1,CO2,CO 3	T1:1 R1:14
58	Definitions on Linear Data Structures	CO 3	T1:7,.T1:8
59	Definitions on Linked Lists	CO 3	T1:9
60	Definitions on Non Linear data Structures	CO 3	T1:7.5
61	Definitions on Binary Trees and Hashing	CO 3 CO	T1:14
		5	
	DISCUSSION ON QUESTION 1	BANK	
62	Module I	CO 1, CO2,CO6	T1:1 R1:14
63	Module II	CO 3,CO 4,CO 6	T1:9
64	Module III	CO 3,CO 4,CO 6	T1:2.5
65	Module IV	CO 3,CO 4,CO 6	T1: 4.1
66	Module V	CO 3,CO 5,CO 6	T1: 5.1

Course Coordinator Dr V Sitharamulu, Associate Professor HOD,CSE

IARE &

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	OBJECT OF	OBJECT ORIENTED PROGRAMMING THROUGH PYTHON				
Course Code	AITB01					
Program	B.Tech					
Semester	THREE					
Course Type	Core					
Regulation	IARE - R18					
	Theory Practical				cal	
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3		3	-	-	
Course Coordinator	Ms. A Lakshmi, Assistant Professor					

I. COURSE OVERVIEW:

This course introduces students to writing computer programs. This course presents the principles of structured programming using the Python language, one of the most increasingly preferred languages for programming today. Because of its ease of use, it is ideal as a first programming language and runs on both the PC and Macintosh platforms. However, the knowledge gained in the course can be applied later to other languages such as C and Java. The course uses ipython Notebook to afford a more interactive experience. Topics include fundamentals of computer programming in Python, object-oriented programming and graphical user interfaces.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB01	II	Programming for problem solving

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Object Oriented Programming Through Python	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	PPT	~	Chalk & Talk	>	Assignments	X	MOOCs
X	Open Ended Experiments	~	Seminars	X	Mini Project	~	Videos
~	Others:						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Table 1: The expected percentage of cognitive level of questions in SEE.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 2: Assessment pattern for CIA

Component		Total Marks		
Type of Assessment	CIE Exam Quiz AAT			
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

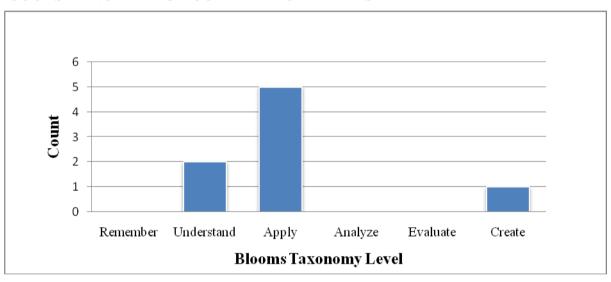
This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

Table 3: Assessment pattern for AAT

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
30%	30%	30%	10%	-

VI. COURSE OBJECTIVES:

The stude	The students will try to learn:				
I	Acquire programming skills in core Python.				
II	Acquire Object-oriented programming skills in Python.				
III	Develop the skill of designing graphical-user interfaces (GUI) in Python.				
IV	Develop the ability to write database application in python				
V	Acquire Python programming skills to move into specific branches - Internet of Things (IoT), Data Science, Machine Learning (ML), Artificial Intelligence (AI) etc.				


VII. COURSE OUTCOMES:

After successful completion of the course, Students will be able to:

CO No	Course Outcomes	Knowledge Level (Bloom's Taxonomy)
CO 1	Setup python to develop simple applications.	Apply
CO 2	Make use of the python programming language to construct basic programs.	Apply

CO 3	Know how to use collections such as list, tuple, range, dictionary and	Understand
	sets.	
CO 4	Make use of functions, classes and objects from those classes.	Apply
CO 5	Understand the concepts of inheritance and polymorphism for code	Understand
	reusability and extensibility.	
CO 6	Write robust code using exception handling.	Apply
CO 7	Create and animate a variety of shapes and develop an application with	Create
	graphical user interface (GUI).	
CO 8	Extend the knowledge of python programming to build successful	Apply
	career in software development.	

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PO1	Engineering knowledge: Apply the knowledge of	3	CIE/Quiz/AAT
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO2	Problem analysis : Identify, formulate, review research	2	CIE/Quiz/AAT
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences.		
PO 3	Design/development of solutions : Design solutions for	2	Seminar/
	complex engineering problems and design system		Conferences
	components or processes that meet the specified needs with		
	appropriate consideration for the public health and safety,		
	and the cultural, societal, and environmental considerations.		
PO 5	Modern tool usage: Create, select, and apply appropriate	3	Assignments/
	techniques, resources, and modern engineering and IT tools		Discussion
	including prediction and modelling to complex engineering		
	activities with an understanding of the limitations.		

Program Outcomes	Strength	Proficiency Assessed by
PO 12 Life - Long Learning: Recognize the need for and have the	2	Short term
preparation and ability to engage in independent and life-long		courses
learning in the broadest context of technological change.		

3 = High; 2 = Medium; 1 = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency
			assessed by
PSO 1	Design next-generation computer systems, networking	2	Research papers/
	devices, search engines, soft computing and intelligent		Group discussion/
	systems, web browsers, and knowledge discovery tools.		Short term courses
PSO 3	Practical experience in shipping real world software,	3	Research papers/
	using industry standard tools and collaboration techniques		Industry exposure
	will equip to secure and succeed in first job upon		
	graduation in IT industry.		

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes		Program Outcomes											Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	V		√												
CO 2	V		V		√								V		√
CO 3	√	√			V										
CO 4	√		V										√		√
CO 5	V		V		√							√			√
CO 6	√	√											√		
CO 7	√		V		√								V		√
CO 8												√	√		√

XI. JUSTIFICATIONS FOR CO-PO MAPPING:

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Setup (apply) python and develop simple applications by	2
		applying the principles of mathematics and basic	
		programming engineering fundamentals.	
	PO 3	Understand the customer needs of installing python,	5
		use creativity in applying the methods of model for	
		innovative solutions, evaluate the outcomes of the	
		model for the performance of python applications, and	

		understand the economic context of the python	
		applications.	
CO 2	PO 1	Make use of the python programming language to	2
		construct basic programs in solving (complex) engineering	
		problems by applying the principles of mathematics and	
		engineering fundamentals.	
	PO 3	Understand the customer needs of python	5
		programming language use creativity in applying the	
		control structures for innovative solutions, evaluate	
		the outcomes of the model for the performance of	
		applications, and understand the economic context of	
		the python applications.	
	PO 5	Make use of the python programming language to construct	1
		basic programs in Computer software (python).	
	PSO 1	Make use of the python programming language to	4
		construct basic programs in design next-generation	
		computer systems, search engines, soft computing and	
		intelligent systems, web browsers.	
	PSO 3	Make use of (apply) python programming language using	2
		industry standard tools and collaboration techniques	
		in IT industry.	
CO 3	PO 1	Know (understand) usage of collections such as list, tuple,	2
		range, dictionary and sets, among them in solving	
		(complex) engineering problems by applying the	
		principles of mathematics and engineering	
		fundamentals.	
	PO 2	Understand the given problem statement and formulate	5
		(complex) specific engineering problems related to	
		collections such as list, tuple, range, dictionary and sets	
		from the information and data collection, develop	
		solutions based on the performance in reaching	
		substantiated conclusions by the interpretation of	
		results.	
	PO 5	Know (understand) how to use collections such as list,	1
		tuple, range, dictionary and sets in Computer software	
		(python).	
CO 4	PO 1	Make use of (apply) functions, classes and objects from	2
		those classes among them in <i>solving (complex)</i>	
		engineering problems by applying the principles of	
		mathematics and engineering fundamentals.	
	PO 3	Understand the customer needs of functions, classes	5
		and objects use creativity in applying the methods of	
		class for innovative solutions, evaluate the outcomes	
		of the model for the performance of python	
		applications, and understand the economic context of	
		the python applications.	
	PSO 1	Make use of (apply) functions, classes and objects from	3
		those classes in design next-generation computer	
		systems, search engines, web browsers.	
	PSO 3	Make use of (apply) functions, classes and objects from	1
		those classes using industry standard tools and in IT	
		industry.	

	T	T	
CO 5	PO 1	Understand the concepts of inheritance and	2
		polymorphism, among them in <i>solving</i> (<i>complex</i>)	
		engineering problems by applying the principles of	
		mathematics and engineering fundamentals.	
	PO 3	Understand the customer needs of inheritance and	5
		polymorphism use creativity in applying the methods	
		of class for innovative solutions, evaluate the	
		outcomes of the model for the performance of	
		applications, and understand the economic context of	
		the real time applications.	
	PO 5	Understand the concepts of inheritance and	1
		polymorphism in Computer software (python).	
	PO 12	Build strong foundation of inheritance and polymorphism	4
		for career building by communicating effectively with	
		engineering community.	
	PSO 3	Understand the concepts of inheritance and	2
		polymorphism using industry standard tools and	
		collaboration techniques in IT industry.	
CO 6	PO 1	Write(apply) robust code using exception handling in	2
		solving (complex) engineering problems by applying the	
		principles of mathematics and engineering	
		fundamentals.	
	PO 2	Understand the given problem statement and formulate	5
		(complex) specific engineering problems related to the	
		exception handling from the information and data	
		collection, develop solutions based on the performance	
		in reaching substantiated conclusions by the	
		interpretation of results.	
	PSO 1	Write robust code using exception handling	2
		in design next-generation computer systems, soft	
		computing.	
CO 7	PO 1	Create and animate a variety of shapes and develop an	2
		application in <i>solving</i> (<i>complex</i>) <i>engineering problems</i> by	
		applying the principles of mathematics and engineering	
		fundamentals.	
	PO 3	Understand the customer needs of graphical user	5
		interface, use creativity in applying the methods of	
		animation for innovative solutions, evaluate the	
		outcomes of the model for the performance of GUI	
		applications, and understand the economic context of	
		the web applications.	
	PO 5	Create and animate a variety of shapes and develop an	1
		application in Computer software (python).	1
	PSO 1	Create and animate a variety of shapes and develop an	
		application in soft computing and intelligent systems,	2
		web browsers.	2
	PSO 3	Create a variety of shapes and develop an application	2
		using industry standard tools and collaboration	_
		techniques in IT industry.	
CO 8	PO 12	Build strong foundation of python programming for	4
-		successful career in software development by	
		communicating effectively with engineering	
		community.	

PSO 1	Extend the knowledge of python programming in design	4
	next-generation computer systems, search engines, soft	
	computing and intelligent systems, web browsers.	
PSO 3	Extend the knowledge of python programming using	2
	industry standard tools and collaboration techniques	
	in IT industry.	

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

Course		F	Progra	am Oı	itcom	es / N	umbe	r of V	ital F	eature	es			Os/ No Vital 'eatur	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	6	1	2
CO 1	2		5												
CO 2	2		5		1								4		2
CO 3	2	5			1										
CO 4	2		5										3		1
CO 5	2		5		1							4			2
CO 6	2	5											2		
CO 7	2		5		1								2		2
CO 8												4	4		2

XIII. PERCENTAGE FOR KEY COMPETENCIES FOR CO-PO MAPPING:

			Progr	am O	utcom	es / N	umbe	r of V	ital Fe	eature	S)s / No l Feat	
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	1	2
CO 1	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 2	66.7	0.0	50.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	0.0	100.0
CO 3	66.7	50.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 4	66.7	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	50.0
CO 5	66.7	0.0	50.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	100.0
CO 6	66.7	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0
CO 7	66.7	0.0	50.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0
CO 8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	66.7	0.0	100.0

XIV. COURSE ARTICULATION MATRIX (CO - PO / PSO MAPPING):

COs and POs and COs and PSOs on the scale of 0 to 3, **0** being **no correlation**, **1** being the **low correlation**, **2** being **medium correlation** and **3** being **high correlation**.

 $0-0 \le C \le 5\%$ —No correlation;

2 − 40 % <**C**< 60% –Moderate.

 $1 - 5 < C \le 40\%$ — Low/ Slight;

 $3 - 60\% \le C < 100\% - Substantial / High$

Course Outcomes		Program Outcomes									S	Program Specific Outcomes			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	1	1	1	1	-	-	-	-	-	-	-
CO 2	3	-	2	-	3	1	1	1	-	-	-	-	3	-	3
CO 3	3	2	-	-	3	1	1	1	-	-	-	-	-	-	-
CO 4	3	-	2	-	-	1	1	1	-	-	-	-	2	-	2
CO 5	3	-	2	-	3	1	1	1	-	-	-	2	-	-	3
CO 6	3	2	-	-	-	1	1	1	-	-	-	-	1	-	-
CO 7	3	-	2	-	3	1	1	1	-	-	-	-	1	-	3
CO 8	-	-	-	-	-	1	1	1	-	-	-	2	3	-	3
TOTAL	21	4	8		12							4	10		14
AVERAGE	3.0	2.0	2.0		3.0							2.0	2.0		2.8

XV. ASSESSMENT METHODOLOGY -DIRECT

CIE Exams	PO 1,PO 2, PO 3,PO 5	SEE Exams	PO 1,PO 2, PO 3, PO 5	Assignments	PO 3,PO 5	Seminars	PO 3,PO 5
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 5						

XVI. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

Module-I INTRODUCTION TO PYTHON AND OBJECT ORIENTED CONCEPTS

Introduction to Python: Features of Python, Data types, Operators, Input and output, Control Statements.

Introduction to Object Oriented Concepts: Features of Object oriented programming system (OOPS) - Classes and Objects, Encapsulation, Abstraction, Inheritance, Polymorphism.

Module-II PYTHON CLASSES AND OBJECTS

Classes and Objects: Creating a class, The Self variable, Constructor, Types of Variable, Namespaces, Types of Methods, Inheritance and Polymorphism – Constructors in inheritance, The super() method, Types of inheritance, Polymorphism, Abstract classes and Interfaces.

Module-III | STRINGS AND FUNCTIONS

Strings: Creating strings and basic operations on strings, String testing methods.

Functions: Defining a function, Calling a function, Returning multiple values from a function, Functions are first class objects, Formal and actual arguments, Positional arguments, Recursive functions.

Module-IV EXCEPTION HANDLING

Exception: Errors in a Python program, Exceptions, Exception handling, Types of exceptions, The Except block, The assert statement, user-defined exceptions.

Module-V GRAPHICAL USER INTERFACE

GUI in Python: The Root window, Fonts and colors, Working with containers, Canvas, Frames, Widgets Button widget, Label Widget, Message widget, Text widget, Radio button Widget, Entry widget.

Text Books:

- 1. R Nageswara Rao, Core Python Programming, Dreamtech press, 2017 Edition.
- 2. Dusty Philips, Python 3 Object Oriented Programming, PACKT Publishing, 2nd Edition 2015.

Reference Books:

1. Michael H.Goldwasser, David Letscher, Object Oriented Programming in Python, Prentice Hall; 1st dition, 2007.

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be Covered	COs	Reference
1	Describe the Features of Python, Data types.	CO 1	T1:1.2
2-3	Summarize the concept of Operators, Input and output, Control Statements.	CO 1	T1:4,5,6
4-5	Identify the features of Object Oriented Programming System (OOPS),	CO 2, CO 3	T12.3
6-7	Use the concept of Classes and Objects, Encapsulation.	CO 2, CO 3	T1:12.4,12.5
8-9	Describe Abstraction, Inheritance, and Polymorphism.	CO 2, CO 3	T1:12.6-12.8
10-11	Determine Creating a class, The Self variable.	CO 4	T1:13.1,13.2

Lecture No	Topics to be Covered	COs	Reference
12-13	Understand types of variable, Namespaces.	CO 4	T1:13.4,13.5
14-15	Determine types of Methods, Inheritance and Polymorphism.	CO 4, CO 5	T1:13.6,14
16-18	Use Constructors in inheritance, the super() method.	CO 5	T1:14.1,14.3
19-20	Illustrate types of inheritance, Polymorphism, Abstract classes and Interfaces.	CO 5	T1:14.4,14.6
21-22	Understand Creating strings and basic operations on strings.	CO 6	T1:8.1
23	Analyze the concept of String testing methods.	CO 6	T1:8.17
24-25	Defining a function.	CO 7	T1:9.2
26-27	Illustrate Calling a function.	CO 7	T1:9.3
28	Illustrate Returning multiple values from a function.	CO 7	T1:9.5
29	Contrast the Usage of Functions is first class objects.	CO 8	T1:9.6
30	Contrast the Usage of Formal and actual arguments.	CO 8	T1:9.8
31	Define Positional arguments, Recursive functions.	CO 8	T1:9.9,9.16
32-34	Discuss the concept of Errors in a Python program.	CO 9	T1:16.1
35	Understand Exceptions, Exception handling.	CO 9	T1:16.2,16.3
36	Summarize the concept of types of exceptions.	CO 9	T1:16.4
37	Discuss the Except block, the assert statement.	CO 9	T1:16.5,16.6
38	Understand the concept of user-defined exceptions.	CO 10	T1:16.7
39	Knowledge about the Root window, Fonts and colors.	CO 11	T1:22.2,22.3
40-41	Apply Working with containers, Canvas.	CO 11, CO 12	T1:22.4,22.5
42	Understand Widgets, Button widget, Label Widget.	CO 12	T1:22.7
43	Implement Message widget, Text widget.	CO 12	T1:22.11
44-45	Illustrate Radio button Widget, Entry widget.	CO 12	T1:22.8

Prepared by:

Ms. A. Lakshmi, Assistant Professor

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department COMPUTER SCIENCE AND ENGINEERING							
Course Title	BUSINI	BUSINESS ECONOMICS AND FINANCIAL ANALYSIS					
Course Code	AHSB14	AHSB14					
Program	B.Tech						
Semester	Ш	III					
Course Type	Core	Core					
Regulation R-18							
		Theory			ctical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	-	3	-	-		
Course Coordinator	Dr. S. Siv	Dr. S. Sivasankara Rao, Associate Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

II COURSE OVERVIEW:

The present course is designed in such a way that it gives an overview of concepts of Economics. Managerial Economics enables students to understand micro environment in which markets operate how price determination is done under different kinds of competitions. Financial Analysis gives clear idea about concepts, conventions and accounting procedures along with introducing students to fundamentals of ratio analysis and interpretation of financial statements. Break Even Analysis is very helpful to the Business Concern for Decision Making, controlling and forward Strategic Planning. Ratio analysis gives an idea about financial forecasting, financial planning, controlling the business and decision making.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
BEFA	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	Power Point Presentations	/	Chalk & Talk	>	Assignments	х	МООС
x	Open Ended Experiments	~	Seminars	x	Mini Project	✓	Videos
X	X Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
16%	Remember
17%	Understand
17%	Apply
50%	Analyze
0%	Evaluate
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Theory			
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks	
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

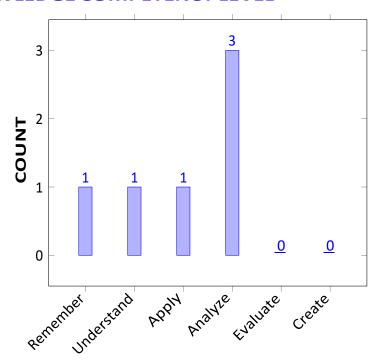
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The concepts of business economics and demand analysis helps in optimal decision making in business environment
П	The functional relationship between Production and factors of production and able to compute breakeven point to illustrate the various uses of breakeven analysis.
III	The features, merits and demerits of different forms of business organizations existing in the modern business environment and market structures.
IV	The concept of capital budgeting and allocations of the resources through capital budgeting methods and compute simple problems for project management.
V	Various accounting concepts and different types of financial ratios for knowing financial positions of business concern.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	List the basic concepts of managerial economics and analysis, measurement of demand and its forecasting to know the current status of goods and services.	Remember
CO 2	Examine to know the current status of goods and services. to know the economies and diseconomies of scale in manufacturing sector.	Analyze
CO 3	Summarize the four basic market models like perfect competition, monopoly, monopolistic competition, and oligopoly to know the price and quantity are determined in each model.	Understand
CO 4	Compare various types of business organizations and discuss their implications for resource allocation to strengthen the market environment.	Analyze
CO 5	Analyze different project proposals by applying capital budgeting techniques to interpret the solutions for real time problems in various business projects.	Analyze
CO 6	Develop the ability to use a basic accounting system along with the application of ratios to create (record, classify, and summarize) the data needed to know the financial position of the organization.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

	Program Outcomes
PO 9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	-	-
PSO 2	Focus on improving software reliability, network security or information retrieval systems	-	-
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	-	-

3 = High; 2 = Medium; 1 = Low

X MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\	/	-	-	-	-	-	/	/	-	/	-	-	ı	-
CO 2	/	~	-	-	-	-	-	/	~	-	~	-	-	-	-
CO 3	ı	ı	-	ı	-	-	ı	>	>	ı	ı	-	-	ı	-
CO 4	1	-	-	-	-	-	-	/	/	-	-	ı	-	ı	-
CO 5	>	ı	-	ı	-	-	ı	1	ı	ı	>	-	-	ı	-
CO 6	ı	>	ı	ı	-	-	ı	ı	ı	ı	>	ı	-	ı	-

XI JUSTIFICATIONS FOR CO - PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Recall (knowledge) the scientific fundamentals of economic activities performed by the businessmen in the business for profit earning.	2
	PO 2	Interpret and identify the demand and its analysis with the mathematical and natural principles of demand forecasting methods.	6
	PO 8	Define (knowledge) the responsibilities of the engineering practices by knowing the best economical practices.	1
	PO 9	Match (knowledge) the economical implication to effectively function as a team member, and as a member or leader in diverse teams.	5
	PO 11	Relate (knowledge) the knowledge and understanding of the economic principles and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	6
CO 2	PO 1	Recall (Knowledge) the knowledge of mathematics, science in the production function through Different Combination of variable inputs with Economies of Scale.	2
	PO 2	Demonstrate the different cost concepts and determine the significance of Break Even Analysis.	5
	PO 8	Relate (Knowledge) (Knowledge) the ethical principles and commit to professional ethics and responsibilities and norms of the production management	2
	PO 9	Show (Fundamentals) the production function implications for effective implementation of gang compositions in a team work and in multidisciplinary settings.	6
	PO 11	Define the economies of scale in production function and Break Even Analysis knowledge applied in one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	5
CO 3	PO 8	List (Knowledge) (Knowledge) different structures of market and how price is determined under different market structures commit to professional ethics and responsibilities and norms of the engineering practice.	2
	PO 9	Match the market structures and the market entry strategies as an individual, and as a member in diverse teams.	6
CO 4	PO 8	Categorize the ethical principles and commit to professional ethics and responsibilities belongs to different forms of business organizations existing in the modern business.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 9	Classify various business organizations and their functioning as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	6
CO 5	PO 1	Explain the ethical issues involved in the allocation of funds under the concept of capital budgeting.	1
	PO 11	Summarize the concept of capital budgeting and allocations of the resources through capital budgeting methods of the management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	8
CO 6	PO 2	Explain the GAAP principles and ratios to analyse complex engineering problems reaching substantiated conclusions using first principles of accounts and profitability and efficiency of the organization.	6
	PO 11	Illustrate the accounting methods and procedures and accounting principles to manage the financial aspects in a project.	8

XII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	6	ı	-	-	-	-	1	5	1	6	1	-	ı	-
CO 2	2	5	-	-	-	-	-	2	6	-	5	-	-	-	-
CO 3	-	-	-	-	-	-	-	2	6	-	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	2	6	-	-	-	-	-	-
CO 5	1	-	-	-	-	-	-	-	-	-	8	-	-	-	-
CO 6	-	2	-	-	-	-	-	-	-	-	8	-	-	-	-

XIII PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	60.0	1	-	-	-	ı	33.3	41.6	ı	50.0	1	-	ı	1
CO 2	66.7	50.0		-	-	-	-	66.7	50.0	-	41.6		-	-	-
CO 3	-	-	-	-	-	-	-	66.7	50.0	-	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	66.7	50.0	-	-	-	-	-	-
CO 5	33.3	-	-	-	-	-	-	-	-	-	75.0	-	=	-	-
CO 6	-	20.0	-	-	-	-	-	-	-	-	75.0	-	-	-	-

XIV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $0 0 \le C \le 5\%$ No correlation
- **1** -5 <C≤ 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- $3 60\% \le C < 100\% Substantial / High$

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	-	-	-	-	1	2	-	2	-	-	-	-
CO 2	3	2	ı	ı	-	-	ı	3	2	ı	2	-	-	ı	-
CO 3	ı	ı	ı	ı	-	-	ı	3	2	ı	ı	-	-	ı	-
CO 4		-	-	-	-	-	-	3	2	-	ı	-	-	-	-
CO 5	1	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO 6	ı	1	ı	ı	-	-	ı	1	ı	ı	3	-	-		-
TOTAL	7	7	-	-	-	-	-	10	8	-	ı	-	-	-	-
AVERAGE	2.3	2.3	-	-	-	-	-	2.5	2	-	2.5	-	-	-	-

XV ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	PO 1, PO 2, PO 8,PO 9 PO 11	SEE Exams	PO 1, PO 2, PO 8,PO 9 PO 11	Seminars	PO8
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	PO 1, PO 2, PO 8,PO 9 PO 11	Open Ended Experiments	-
Assignments	PO 9				

XVI ASSESSMENT METHODOLOGY-INDIRECT:

Х	Assessment of mini projects by experts	✓	End Semester OBE Feedback
---	--	----------	---------------------------

XVII SYLLABUS:

MODULE I	INTRODUCTION&DEMAND ANALYSIS
	Introduction to Business Economics: Definition, Nature and Scope of
	Managerial Economics – Demand Analysis: Demand Determinants, Law of
	Demand and its exceptions. Elasticity of Demand: Definition, Types,
	Measurement and Significance of Elasticity of Demand. Demand Forecasting,
	Factors governing demand forecasting, methods of demand forecasting

MODULE II	PRODUCTION & COST ANALYSIS
	Theory of Production and Cost Analysis: Production Function — Iso-quants and Iso-costs, MRTS, Least Cost Combination of Inputs, Cobb-Douglas Production function, Laws of Returns, Internal and External Economies of Scale. Cost Analysis: Cost concepts; Break-even analysis, Determination of Break — Even point (Simple Problems), Managerial Significance of BEA.
MODULE III	MARKETS & NEW ECONOMIC ENVIRONMENT
	LMarket structures: Types of competition, Features of perfect competition, Monopoly and monopolistic competition. Price determination & Price Statistics: Price Output determination in case of perfect competition and monopoly.
	Features and evaluation of different forms of Business organization: Sole proprietorship, partnership, Joint Stock Company, public enterprises and their types.
MODULE IV	CAPITAL BUDGETING
	Capital and its significance, types of capital, estimation of fixed and working capital requirements, methods and sources of raising capital- Trading Forecast, Capital budget, Cash Budget. Features of capital budgeting proposals, methods of capital budgeting – payback method, Accounting rate of return(ARR), Net Present Value Method (simple problems).
MODULE V	INTRODUCTION TO FINANCIAL ACCOUNTING AND FINANCIAL ANALYSIS
	Financial accounting objectives, functions, importance; Accounting concepts and accounting conventions - double-entry book keeping, journal, ledger, trial balance; Final accounts: Trading account, profit and loss account and balance sheet with simple adjustments; Financial analysis: Analysis and interpretation of liquidity ratios, activity ratios, capital structure ratios and profitability ratios (simple problems), Du Pont chart.

TEXTBOOKS

- 1. Aryasri, "Managerial Economics and Financial Analysis", TMH publications, 4thEdition,2012.
- 2. M. KasiReddy, Saraswathi, "Managerial Economics and Financial Analysis", PHI Publications, New Delhi, 2ndEdition,2012.
- 3. Varshney, Maheswari, "Managerial Economics", Sultan Chand Publications, 11thEdition, 2009.

REFERENCE BOOKS:

- 1. D.N. Dwivedi, "Managerial Economics", Vikas Publication House Pvt.Ltd, 2ndEdition,2012.
- 2. S.N. Maheshwari & S.K.Maheshwari, "Financial Accounting", Vikas Publication House Pvt.Ltd,4thEdition, 2012.
- 3. R.NarayanaSwamy, "Financial Accounting- A managerial Perspective", Pearson publications, 1stIndian Reprint Edition, 2012.

WEB REFERENCES:

- 1. https://courses.lumenlearning.com/boundless-marketing/chapter/demand-analysis/
- 2. https://theintactone.com/2019/10/01/me-u3-topic-2-cost-output-relationship-in-short-run-long-run-cost-curves/

- 3. https://corporatefinanceinstitute.com/resources/knowledge/modeling/break-even-analysis/
- 4. https://corporatefinanceinstitute.com/resources/knowledge/economics/market-structure/#::text=The%20four%20popular%20types%20of,monopoly%20market%2C%20and%20m
- 5. https://www.vedantu.com/commerce/various-forms-of-business-organisations
- https://courses.lumenlearning.com/boundless-finance/chapter/introduction-to-capitalbudgeting/
- 7. https://jkbhardwaj.com/20-transactions-with-their-journal-entries-ledger-and-trial-balance/
- 8. https://www.iedunote.com/write-accounting-ledger
- https://opentextbc.ca/principlesofaccountingv1openstax/chapter/prepare-a-trial-balance/
- 10. https://caknowledge.com/how-to-prepare-final-accounts/
- 11. https://corporatefinanceinstitute.com/resources/knowledge/finance/ratio-analysis/

COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=publicprofile&id=5201

XVIII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference					
	OBE DISCUSSION							
1	Discussion on Course Outcomes and how these COs m	napped with	POs and PSOs.					
	CONTENT DELIVERY (THEOR	RY)						
2-3	Explain about managerial economics according to the business	CO 1	T1- 1.3-1.8 R1-1.5-1.7					
4-5	Describe about demand analysis, the Law of Demand and Demand Function.	CO 1	T1-2.2-2.11 R1-3.3-3.20					
6-7	Understand elasticity of the demand of the product, different types, Measurement of Elasticity of Demand and Factors influencing on Elasticity of Demand.	CO 1	T1-3.3-3.20 R1- 5.29-6.8					
8	State different methods of Demand Forecasting and the factors governing Demand Forecasting.	CO 1	T1-4.6-4.19					
9-10	Demonstrate the Production function, features of Iso- Quants and Iso-Costs, different types of Internal Economies, External Economies and Law of Returns.	CO 2	T1- 5.3-5.18 R1- 5.29-6.8					
11-13	Different types of Internal Economies, External Economies ad Law of Returns with appropriate examples.	CO 2	T1- 5.3-5.18					
14-15	Illustrate different types of costs	CO 2	T1- 5.29-6.8					
16-17	Explain the Significance and Limitations of Break-Even Analysis	CO 2	T1- 7.13-7.14					
18-19	Calculate Break-Even Point (Simple Problems)	CO 2	T1- 7.1-7.12					

20-21	Illustrate the features, price-output determination under Perfect Competition, Monopoly and Monopolistic competition Markets.	CO 3	T1- 8.4-8.16 R2- 5.29-6.8
22-24	Demonstrate the Objectives, Policies and Methods of Pricing Strategies and Price Methods.	CO 3	T1- 8.21-8.25
25-26	Describe Features of business, Definitions of Various forms of Business Units.	CO 4	T1-9.3-9.15
27-30	State the Merits & Demerits of Different types of Public Enterprises and Changing Business Environment to Post Liberalization Scenario.	CO 4	T1-9.2-10.23 R1- 8.21-8.25
31-32	Explain the significance and classification of capital, Methods and Sources of Raising Finance.	CO 6	T1-9.2-10.23
33-34	Demonstrate the concept of capital budgeting and allocations of the resources through capital budgeting methods and compute simple problems.	CO 6	T1-11.3-11.5 R2-12.3-12.5
35-37	Illustrate the Significance of Financial Accounting, Double Entry, Accounts, Accounting Concepts and Conventions	CO 6	T1-12.1-12.26
38-40	Explain the meaning, advantages and Limitations of the Journal, Ledger and Trial Balance and Final Accounts and Solve simple Problems.	CO 6	T1-13.4-13.15 R2-11.3-11.5
41-42	Describe Meaning, Definitions and Limitations of Ratio Analysis	CO 6	T1-13.4-13.15 R2-11.7-11.8
43-45	Compute different types of Financial Ratios (Problems)	CO 6	T1-13.5-13.68
	PROBLEM SOLVING/ CASE STU	DIES	
46	Problems relating to Demand elasticty measurement and Forecasting	CO 1	T1: 1.1 - 2.8, R1:2.1
47	Problems relation to Break Even Point	CO 2	T2: 3.0 to 3.6, 5.0 to 5.5, R2:4.4
48	Problems in determining the price in different types of markets	CO 3,4	T3: 6.0 to 6.4, R1:5.1
49	Problems relating to Capital Budgeting Decisions	CO 5	R2:7.5
50	Problems relating to Final Accounts and Calculation of Ratios	CO 6	R3: 4.1
	DISCUSSION OF DEFINITION AND TER	MINOLO	3Y
51	Introduction and Demand Analysis	CO 1	T1: 1.1 - 2.8, R1:2.1
52	Production and Cost Analysis	CO 2	T2: 3.0 to 3.6, 5.0 to 5.5, R2:4.4
53	Markets and New Environment	CO 3,4	T3: 6.0 to 6.4, R1:5.1
54	Capital Budgeting	CO 5	R2:7.5
55	Introduciton to Financial Accounting and Financial Analysis	CO 6	R3: 4.1

	DISCUSSION OF QUESTION BANK						
56	Introduction and Demand Analysis	CO 1	T1: 1.1 - 2.8, R1:2.1				
57	Production and Cost Analysis	CO 2	T2: 3.0 to 3.6, 5.0 to 5.5, R2:4.4				
58	Markets and New Environment	CO 3,4	T3: 6.0 to 6.4, R1:5.1				
59	Capital Budgeting	CO 5	R2:7.5				
60	Introduciton to Financial Accounting and Financial Analysis	CO 6	R3: 4.1				

Signature of Course Coordinator Dr. S. Sivasankara Rao, Associate Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	ANALOG	ANALOG AND DIGITAL ELECTRONICS					
Course Code	AECB05						
Program	B.Tech						
Semester	THREE						
Course Type	Core						
Regulation	IARE - R1	8					
		Theory		Pra	ctical		
Course Structure	Lectures Tutorials Credits Laboratory Cred				Credits		
	3	1	4	-	-		
Course Coordinator	Ms. M Saritha, Assistant Professor						

I. COURSE OVERVIEW:

This course provides the basic knowledge over the construction and functionality of the basic electronic devices such as diodes and transistors. It also provides the information about the uncontrollable and controllable electronic switches and the flow of current through these switches in different biasing conditions and also will make them to learn the basic theory of switching circuits and their applications in specified relationship between signals at the input and output terminals. They will be able to design combinational and sequential circuits detail. Starting from a problem statement they will learn to design circuits of logic gates that have a. They will learn to design counters, adders, sequence detectors.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
В ТЕСН	AHSB13	II	Semiconductor Physics

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Analog And Digital Electronics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	>	Quiz	>	Assignments	×	MOOCs
✓	LCD / PPT	/	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. **There could be a maximum of two sub divisions in a question.**

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Table 1: The expected percentage of cognitive level of questions in SEE.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

Table 2: Assessment pattern for CIA

Component	Total Manks					
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks		
CIA Marks	20	05	05	30		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

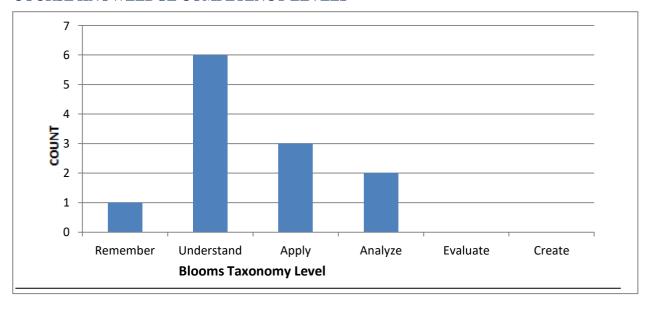
Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours / classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

Table 3: Assessment pattern for AAT

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
20%	30%	30%	10%	10%

VI. COURSE OBJECTIVES:


The students will try to learn:					
I	The Fundamental knowledge of the operational principles and characteristics of semiconductor devices and their applications.				
II	The basic concept of number systems, Boolean algebra and optimized implementation of combinational and sequential circuits.				
III	The perceive subsequent studies in the Area of microprocessors, microcontrollers, VLSI design and embedded systems effectively use of fundamentals of digital electronics.				

VII. COURSE OUTCOMES:

After suc	After successful completion of the course, students will be able to:					
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)				
CO 1	Recall the properties of semiconductor materials which form the basis for the formation of PN junction diode.	Remember				
CO 2	Illustrate the volt-ampere characteristics of semiconductor devices for finding cut-in voltage, resistance and capacitance.	Understand				
CO 3	Apply the pn junction characteristics for the diode applications such as switch and rectifiers.	Apply				
CO 4	Explain half wave and full wave rectifier circuits with filter and without filters for conversion of alternating current in to direct current.	Understand				

CO 5	Interpret DC and AC load line analysis of different amplifiers	Understand
	for optimal operating level regardless of input, load placed on the	
	device.	
CO 6	Analye the input and output characteristics of transistor configurations	Analyze
	and small signal h-parameter models for determining the input - output	
	resistances, current gain and voltage gain	

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics,	3	SEE/CIE/AAT/
	science, engineering fundamentals, and an engineering		QUIZ
	specialization to the solution of complex engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research literature,	3	SEE/CIE/AAT/
	and analyze complex engineering problems reaching substantiated		QUIZ
	conclusions using first principles of mathematics, natural		
	sciences, and engineering sciences		
PO3	Design/development of solutions : Design solutions for complex	3	SEE/CIE/AAT/
	engineering problems and design system components or processes		QUIZ

Program Outcomes	Strength	Proficiency Assessed by
that meet the specified needs with appropriate consideration for		
the public health and safety, and the cultural, societal, and		
environmental considerations.		

^{3 =} High; 2 = Medium; 1 = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	1	Seminar

^{3 =} High; 2 = Medium; 1 = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes					Pro	gram	Outco	omes					Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	V	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	V	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	V	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	√	-	V	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	V	-	V	-	-	-	-	-	-	-	-	-	V	-	-
	V	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	V	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	V	1	-	-	-	-	-	-	-	-	-	-	V	-	-
CO 10	V	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 11	V	-	V	-	-	-	-	-	-	-	-	-	-	-	-
CO 12	-	1	V	-	-	-	-	-	-	-	-	-	V	-	-

XI. JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING – DIRECT

Course Outcomes	POs/ PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO1	PO 1	Recall the semiconductor device properties (knowledge) for	1
		understanding conduction, Fermi-levels, barrier potentials	
		through energy band diagrams, diffusion and drift currents in the	
		device characteristics by applying the principles of science	

Course	POs/	Justification for mapping (Students will be able to)	No. of key
Outcomes	PSOs	Justification for mapping (Students win be able to)	competencies
CO2	PO 1	Illustrate the volt-ampere characteristics (knowledge) of	2
		semiconductor devices to derive mathematical model for	
		diode current, static and dynamic resistance by applying the	
		principles of mathematical model and science	
	PO 2	Understand the given problem statement and formulate the	5
		static and dynamic resistance from the volt-ampere	
		characteristics of the semiconductor devices using first	
		principles of mathematics, natural sciences, and	
		engineering sciences	-
CO3	PO 2	Apply (knowledge) the given the diode application problem	4
		statement and finding the solution implementation of	
	D 04	rectifier circuits	
CO4	PO1	Understand the pn junction characteristics for the diode	2
		applications of diode as switch, and rectifiers for complex	
		engineering problems by applying the principles of	
GO.	DO 1	mathematics, science.	
CO5	PO 1	Interpret (Understand) DC and AC load line analysis of different	2
		amplifiers for optimal operating level by applying Mathematics,	
	DO2	science engineering for complex engineering problems.	_
	PO3	Design an amplifier from the AC and DC load line analysis by	5
		applying solutions for complex engineering problems and	
CO6	PO 1	design system components.	2
000	PUI	Analyse (Understand) the input and output characteristics of transistor configurations and determine the input output	2
		resistance, current and voltage gains by applying the principles	
		of mathematics , science.	
	PO3	Design a transistor configuration and find input and output	3
	103	characteristics by applying in design system components.	3
	PSO1	Develop the capability to analyze and design simple circuits	2
		containing nonlinear elements such as transistors using the	
		concepts of load lines, operating points and incremental analysis.	

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

		Prog	ram C	Outcon	nes / N	No. of	Key C	ompe	tencie	s Mat	ched		PSO/ com	No. o peten	
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	5	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	2	-	3	-	-	-	-	-	-	-	-	-	1	-	-

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

			Progr	ram O	utcon	nes / N	o. of l	key co	mpete	ncies			PSO/ com	No. of peten	. •
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	1	2
CO 1	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 2	66.7	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 3	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 4	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 5	66.7	50.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0
CO 6	66.7	0.0	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

XIV. COURSE ARTICULATION MATRIX (PO – PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\begin{array}{ll} {\bf 0} - {\bf 0} \le {\it C} \le 5\% - \text{No correlation}; & {\bf 2} - 40 \ \% < {\it C} < 60\% - \text{Moderate}. \\ {\bf 1} - 5 < {\it C} \le 40\% & - \text{Low / Slight}; & {\bf 3} - 60\% \le {\it C} < 100\% - \text{Substantial / High} \\ \end{array}$

Course Outcomes												Program Specific Outcomes			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	2	-	-	-	-	-	-	-	-	-	3	-	-
CO 6	3	-	1	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	26	10	7	-	-	-	-	-	-	-	-	-	9	-	-
AVERAGE	2.6	1.6	1.7	-	-	-	-	-	-	-	-	-	3	-	-

XV. ASSESSMENT METHODOLOGY - DIRECT

CIE Exams	PO 1,PO 2	SEE Exams	PO 1,PO 2	Assignments	-	Seminars	PO 1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XVI. ASSESSMENT METHODOLOGY - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

DIODE AND APPLICATIONS							
nd Dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition							
Capacitances, Diode Applications: Switch-Switching times. Rectifier - Half Wave Rectifier, Full Wave							
Rectifier, Bridge Rectifier, Rectifiers with Capacitive Filter							

MODULE-II BIPOLAR JUNCTION TRANSISTOR (BJT)

Principle of Operation and characteristics - Common Emitter, Common Base, Common Collector Configurations, Operating point, DC & AC load lines, Transistor Hybrid parameter model, Determination of hparameters from transistor characteristics, Conversion of h-parameters.

MODULE-III NUMBER SYSTEMS

Number systems, Complements of Numbers, Codes- Weighted and Non-weighted codes and its Properties, Parity check code and Hamming code.

Boolean Algebra: Basic Theorems and Properties, Switching Functions- Canonical and Standard Form, Algebraic Simplification, Digital Logic Gates, EX-OR gates, Universal Gates, Multilevel NAND/NOR realizations.

MODULE-IV | MINIMIZATION OF BOOLEAN FUNCTIONS

Karnaugh Map Method - Up to five Variables, Don't Care Map Entries, Tabular Method, Combinational Logic Circuits: Adders, Subtractors, comparators, Multiplexers, Demultiplexers, Encoders, Decoders and Code converters, Hazards and Hazard Free Relations

MODULE-V SEQUENTIAL CIRCUITS FUNDAMENTALS

Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another. Registers and Counters: Shift Registers – Left, Right and Bidirectional Shift Registers, Applications of Shift Registers - Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters.

Text Books:

- 1. Electronic Devices and Circuits "Jacob Millman", McGraw Hill Education, 2017
- 2. Electronic Devices and Circuits theory "Robert L. Boylestead, Louis Nashelsky",11th Edition, Pearson, 2009.
- 3. Switching and Finite Automata Theory, "Zvi Kohavi & Niraj K. Jha, 3rd Edition", Cambridge, 2010.
- 4. Modern Digital Electronics, "R. P. Jain, 3rd Edition", Tata McGraw-Hill, 2007.

Reference Books:

- 1. Pulse, Digital and Switching Waveforms, "J. Millman, H. Taub and Mothiki S. Prakash Rao", 2 Ed., McGraw Hill, 2008.
- 2. Electronic Devices and Circuits, "S. Salivahanan, N.Suresh Kumar, A Vallvaraj, 2nd Edition", TMH.
- 3. Digital Design, "Morris Mano", PHI, 4th Edition,2006.
- 4. Introduction to Switching Theory and Logic Design, "Fredriac J. Hill, Gerald R. Peterson", 3rd Ed, John Wiley & Sons Inc.

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Outcomes	Reference
1-5	Introduction to semiconductors, Diode - Static and Dynamic resistances, Equivalent circuit, Load line analysis.	CO 1	T2:1.1-1.8, 2.2
6-7	Diffusion and Transition Capacitances, Diode Applications, Switch-Switching times	CO 1	T2:1.10
8	Design Rectifier - Half Wave Rectifier & problems	CO 2	T2:2.7
9-10	Design Full Wave Rectifier & problems	CO 3	T2:2.8
11-12	Design Bridge Rectifier, Rectifiers with Capacitive Filter	CO 4	T2:2.8
15-16	Understand the concepts of Transistor operation	CO 6	T2:3.1-3.2
17-18	Characteristics of CB,CE,CC	CO 8	T2:3.3-3.7
19-21	Operating point, DC & AC load line Analysis & problems	CO 7	T2:4.2,7.1-7.4
22-25	Transistor Hybrid parameter model, Determination of h- parameters from transistor characteristics, Conversion of h- parameters.	CO 9	T2: 7.6 7.7, 8.9- 8.10
26-27	Understand the need for digital systems, review of number systems, number base conversion	CO 10	T3:1.1 R3:1.1-1.4

28-30	Complements of numbers, Weighted codes & Non-weighted codes.	CO 11	T3:1.1-1.2 R3:1.5-1.7
31-32	error detecting and correcting codes, Digital Logic Gates	CO 12	T3:1.3 R3:1.7,7.4
33-35	Basic Theorems and Properties, Algebraic Simplification,	CO 13	T3:3.1-3.4 R3:2.1-2.4
36-37	Canonical and Standard Form	CO 14	T3:3.3-3.5 R3:2.6
38-39	Universal Gates, Multilevel NAND/NOR realizations.	CO 16	T3:5.1-5.3 R3:2.8,3.7-3.8
40-43	Identify basic building blocks of digital systems and Minimization using three variable; four variable; five variable K-Maps; Don't Care Conditions.	CO 15	T4:5.15.10 R3:3.6
44-45	Understand Tabular Method	CO 15	T3:4.4-4.6 T4: 5.11 R3:3.10
46-47	Design Combinational Logic Circuits adders, subtractors.	CO 17	T4:6.1,6.4 R3:4.1-4.5
48-49	Design different combinational logic circuits comparators Multiplexers, Demultiplexer.	CO 14	T4:6.2-6.3,6.7 R3:4.8,4.11
50-51	Demonstrate the Encoders, Decoders.	CO 18	T4:6.3,6.10 R3:4.9-4.10
52-54	Code converters, Hazards & Hazard Free Relations	CO 18	T4:6.9,5.12
55	Combinational and sequential circuits, the binary cell, the Fundamentals of sequential machine operation, SR-Latch	CO 19	T4:7.1 R3:5.2-5.3
56-58	Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops. Timing & Triggering	CO 19	T4:7.2-7.6 R3:5.4-5.5
59-60	Excitation tables of Flip-flops, Conversion from one type of Flip-Flop to another	CO 19	T4:7.7-7.10 R3:5.5
61	Draw and explain about Shift Registers	CO 20	T4:8.1-8.3 R3:6.1-6.2
62	Implement Synchronous, Asynchronous Counters using flip flops	CO 21	T4:8.4-8.7 R3:6.3-6.5

Prepared by: Ms M.Saritha, Assistant Professor

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	DATA STRUCTURES LABORATORY					
Course Code	ACSB05					
Program	B.Tech					
Semester	III CSE					
Course Type	CORE					
Regulation	IARE - R18					
		Theory		Practic	al	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	2	1	
Course Coordinator	Mr. P Ravinder, Assistant Professor, CSE					

I COURSE OVERVIEW:

A data structure is a particular way of organizing data in a computer so that it can be used effectively. It covers the design and analysis of fundamental data structures and engages learners to use data structures as tools to algorithmically design efficient computer programs that will cope with the complexity of actual applications. A Data Structure is a particular way of storing and organizing data in a computer so that it can be stored, retrieved, or updated efficiently. Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by anaddress. This course is essential for image viewer software, in this images are linked with each otherso, images uses a linked list to view the previous and the next images using the previous and next buttons. Web pages can be accessed using the previous and the next URL links which are linked using linked list. The music players also use the same technique to switch between music. To keep the trackof turns in a multi player game, a circular linked list is used.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	ACSB01	I	Programming for problem
			solving

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
DATA STRUCTURES LABORATORY	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video	7	Lab	~	Viva		Probing further Questions
С		С	Worksheets	С	Questions	С	

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of of internal assessment, continuouslab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based	
20 %	Objective	Purpose	
20 %	Analysis Algorithm		
20 %	Design	Programme	
20 %	Conclusion	Conclusion Conclusion	
20 %	Viva	Viva	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	1 Otal Warks	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

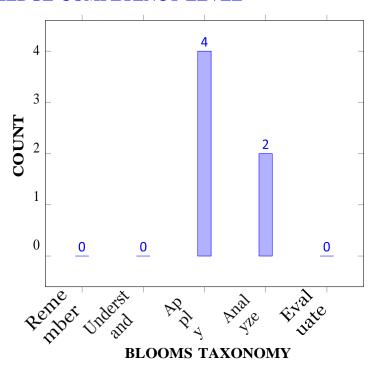
2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

I	The hands on experience in design, develop, implementation and evaluation byusing Asymptotic notation.
II	The demonstration knowledge of basic abstract data types (ADT) and associated algorithms for organizing programs into modules using criteria that are based on the data structures of the program
III	The practical implementation and usage of non linear data structures for solving problems of different domains.
IV	The knowledge of more sophisticated data structures to solve problems involving balanced binary search trees, AVL Trees, B-trees and B+ trees, hashing.
V	The graph traversals algorithms to solve real-world challenges such as findingshortest paths on huge maps and assembling genomes from millions of pieces.


VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Carryout the analysis of a range of algorithms in terms of algorithm analysis and express algorithm complexity using the Onotation.	Apply
CO 2	Implement techniques like searching, to find the most efficient solutions for underlying problems in different domains.	Apply
CO 3	Gain the knowledge of basic abstract data types (ADT) and associated algorithms for organizing programs into modules using criteria that are based on the data structures of the program.	Understand
CO 4	Interpret the recursive and non-recursive techniques to solve problems in DFS of Graph, Towers of Hanoi, Different Types of Tree Traversals, and others (Graphs and Tree traversals)	Apply
CO 5	Implement the sorting algorithm to order the elements of the array according to zip code before printing a set of mailing labels.	Analyze
CO 6	Apply appropriate data structures for solving computing problems with respect to performance.	Analyze
CO 7	Interpret Dynamic data structures like linked list considered efficient with respect to memory complexity of the code.	Analyze
CO 6	Apply appropriate data structures for solving computing problems with respect to performance.	Analyze
CO 8	Extend their knowledge of data structures to more sophisticated data structures to solve problems involving balanced binary searchtrees, AVL Trees, B-trees and B+ trees, hashing, and basic graphs.	Analyze
CO 9	Interpret the use of basic data structures such as arrays, stacks, queues and linked lists in program design.	Analyze
CO 10	Interpret the benefits of dynamic and static data structures withrespect to memory complexity of the code.	Analyze
CO 11	Apply appropriate data structures for solving computing problems with respect to performance.	Analyze

CO 12	Implement the hashing technique to triad's primary principles of	Analyze
	assuring the integrity of data	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an	1	LAB PROGRAMS /
	engineering specialization to the solution of complex engineering problems.		/ CIA/SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	LAB PROGRAMS / / CIA/SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate considerationfor the public health and safety, and the cultural, societal, and Environmental considerations	1	LAB PROGRAMS / / CIA/SEE

PO 5	Conduct investigations of complex problems: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	3	LAB PROGRAMS / / CIA/SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	LAB PROGRAMS / / CIA/SEE
PO 12	Life-long learning: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	2	LAB PROGRAMS / / CIA/SEE

^{3 =} High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Profi- ciency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, MachineLearning and Networking.	2	LAB PRO- GRAMS / CIA/SEE

^{3 =} High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
which proby any a estimates for effici		Understand (knowledge) the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insightinto reasonable directions of search for efficient algorithms by applying the principles of mathematics and science.	3
	PO 5	Understand the (knowledge) appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	3
CO 2	PO 1	Understand (knowledge) the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insightinto reasonable directions of search for efficient algorithms by applying the principles of mathematics and science.	3
	PO 5	Understand the (knowledge) appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	3
CO 3	PO 1	(Design) a Test Plan which helps us to validate the quality of the application for finding the solution of complex engineering	1
	PO 5	Understand the (knowledge) appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	3
	PO 10	Recognize the importance of efficient sorting techniques for optimizing the efficiency of other algorithms that require input data to be in sorted by communicating effectively with engineering community.	3
CO 5	PO 1	Understand (knowledge) the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insightinto reasonable directions of search for efficient algorithms by applying the principles of mathematics and science.	3
	PO 10	Recognize the importance of efficient sorting techniques for optimizing the efficiency of other algorithms that require input data to be in sorted by communicating effectively with engineering community.	3

CO 6	PO 1	Understand (knowledge) the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insightinto reasonable directions of search for efficient algorithms by applying the principles of mathematics and science.	3
	PO 10	Recognize the importance of efficient sorting techniques for optimizing the efficiency of other algorithms that require input data to be in sorted by communicating effectively with engineering community.	3
CO 7	PO 1	Understand (knowledge) the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insightinto reasonable directions of search for efficient algorithms by applying the principles of mathematics and science.	3
	PO 2	Build strong foundation of data Structures which tells the program how to store data in memory and forming some relations among the data and use them in design and development of new products.	3
	PO 3	Recognize the need of linear data structures such as linkedlist, array, stack and queue by designing solutions for complex Engineering problems in real-time.	2
	PSO 1	Acquire sufficient knowledge to develop real-time applications by making use of linear data structures in career building and higher studies.	3
CO 8	PO 1	(Design) a Test Plan which helps us to validate the quality of the application for finding the solution of complex engineering	3
	PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	7
	PO 3	Understand the applications of basic data structures suchas stacks, queues, linked lists in designing and developing solutions of complex engineering applications.	6
	PSO 1	Make use of modern computer tools for applying the basicdata structure concepts in building real-time applications for a successful career.	2
CO 9	PO 1	(Design) a Test Plan which helps us to validate the quality of the application for finding the solution of complex engineering	3
	PO 2	Make use of non-linear data structures such as balanced trees in by identifying, formulating and analyzing complex engineering problems such as databases, syntax tree in compilers and domain name servers etc. with the help of basic mathematics and engineering sciences.	6

	PO 3	Extend the concept of tree data structures to design and develop solutions for complex engineering problems.	6
	PSO 1	Make use of modern computer tools in implementing non- linear data structures for various applications to become a successful professional in the domain.	2
CO 10	PO 1	Demonstrate different tree structures in Python to implement real-time problems by applying basic knowledgeof science and engineering fundamentals.	3
	PO 2	Illustrate the importance of tree data structures used for various applications by identifying, formulating and analyzing complex engineering problems such as operating systems and compiler design.	6
	PO 3	Make use of tree data structures to design and develop solutions for complex engineering problems and which is the key organizing factor in software design. Data structures can be used to organize the storage and retrievalof information stored in both main memory and secondary memory.	6
	PSO 1	Acquire sufficient knowledge in field of data structures andits applications by using modern computer tools so that new product development can take place, which leads to become successful entrepreneur and or to obtain higher education.	2
CO 11	PO 1	Understand (knowledge) the benefits of dynamic and staticdata structures implementations and choose appropriate data structure for specified problem domain using knowledge of mathematics, science and engineering fundamentals.	3
	PO 2	Recognize the need of dynamic and static data structures in identifying, formulating and analyzing complex engineering problems.	4
	PO 3	Describe (knowledge) the usage of static and dynamic data structures in designing solutions for complex Engineering problems.	6
	PSO 1	Build sufficient knowledge of dynamic data structures by using modern tools so that new product can be developed, which leads to become successful entrepreneur in the present market.	2
CO 12	PO 1	Build strong foundation of quickly determining the efficiency of an algorithm or data structure for solving computing problems with respect to performance by usingknowledge of mathematics, science and engineering fundamentals.	3
	PO 2	Recognize the importance of suitable data structures in checking the efficiency of algorithms used for complex engineering problems.	4
	PO 3	Make use of broad usage of data structures in designing and developing of complex engineering applications.	6

	PSO 1	Extend the concept of data structures in solving complex	2	Ì
		engineering problems using modern engineering tools to		
		become a successful professional in the domain.		

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENTOF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course Outcomes	Program Outcomes				Progran	n Specific	Outcomes	
	PO1	PO2	PO3	PO4	PO12	PSO1	PSO2	PSO3
CO1	3							
CO2	3							
CO3	1							
CO4	1		3			3		
CO5						3		
CO6	3		2					

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO1,	SEE Exams	PO1,	Seminars	-
	PO2,PO4		PO2,PO4		
Laboratory	PO1,	Student Viva	PO1,	Certification	-
Practices	PO2,PO4		PO2,PO4		
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

C	Early Semester Feedback	C	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK I	SEARCHING TECHNIQUES
	Write python program for implementing the following searching techniques. a. Linear search. b. Binary search. c. Fibonacci search
WEEK II	SORTING TECHNIQUES
	a. Write Python programs for implementing the following sorting techniquesto arrange a list of integers in ascending order. a. Bubble sort. b. Insertion sort. c. Selection sort.
WEEK III	SORTING TECHNIQUES
	a. Write Python programs for implementing the following sorting techniquesto arrange a list of integers in ascending order. a. Quick sort. b. Merge sort.
WEEK IV	IMPLEMENTATION OF STACK AND QUEUE
	Write Python programs to a. Design and implement Stack and its operationsusing Lists. b. Design and implement Queue and its operations using Lists.
WEEK V	APPLICATIONS OF STACKL
	Write Python programs for the following: a. Uses Stack operations to convertinfix expression into postfix expression. b. Uses Stack operations for evaluating the postfix expression
WEEK VI	IMPLEMENTATION OF SINGLE LINKED LIST
	Write Python programs for the following: a. Uses functions to perform the following operations on single linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal b. To store a polynomial expression in memory usinglinked list.
WEEK VII	IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST
	Write Python programs for the following: Uses functions to perform the following operations on Circular linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal.
WEEK VIII	IMPLEMENTATION OF DOUBLE LINKED LIST
	Write Python programs for the following: Uses functions to perform the following operations on double linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways.
WEEK IX	IMPLEMENTATION OF STACK USING LINKED LIST
	Write Python programs to implement stack using linked list.
WEEK X	IMPLEMENTATION OF QUEUE USING LINKED LIST
	Write Python programs to implement queue using linked list.
WEEK XI	GRAPH TRAVERSAL TECHNIQUES
	Write Python programs to implement the following graph traversal algorithms: a. Depth first search. b. Breadth first search
WEEK XII	IMPLEMENTATION OF BINARY SEARCH TREE
	Write a Python program that uses functions to perform the following: a. Create a binary search tree. b. Traverse the above binary search tree recursively in preorder, post-order and in-order. Count the number of nodesin the binary search tree.

TEXTBOOKS

- 1. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley Student Edition.
- 2. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.

Reference Books:

- 1. S. Lipschutz, "Data Structures", Tata McGraw Hill Education, 1st Edition, 2008.
- 2. Samanta, "Classic Data Structures", PHI Learning, 2nd Edition, 2004. Gottfried Byron,
- 3. "Schaum's Outline of Programming with Python", Tata Mc Graw Hill, 1st Edition, 2010.
- 4. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley, John Wiley &Sons, INC., 2011.
- 5. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt PublishingLtd., 2017.

WEB REFERENCE:

- 1. https://docs.python.org/3/tutorial/datastructures.html
- 2. http://interactivepython.org/runestone/static/pythonds/index.html
- 3. http://www.tutorialspoint.com/data_structures_algorithms
- 4. http://www.geeksforgeeks.org/data-structures/
- 5. http://www.studytonight.com/data-structures/
- 6. http://www.coursera.org/specializations/data-structures-algorithms
- 7. http://cse01-iiith.vlabs.ac.in/

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer-
			ence
1	Searching Techniques	CO 1	T1
2	Sorting Techniques	CO 2	T1
3	Sorting Techniques	CO 3	T1, T2
4	Implementation of Stack and Queue	CO 3, CO 4	T1, T2
5	Applications of Stack	CO 5, CO4	T1, W1
6	Implementation of Single Linked List	CO1, CO3	T1, W2
7	Implementation of Circular Single Linked List	CO 5	T1, W3
8	Implementation of Double Linked List	CO 5	T2, W3
9	Implementation of Stack Using Linked List	CO 4	T2, W2

10	Implementation of Queue Using Linked List	CO5	T2, W5
11	11 Graph Traversal Techniques		T2, W2
12	Implementation of Binary Search Tree	CO1	T1, W5

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Design a Data Structure SpecialStack that supports all the stack operations like push(),pop(), isEmpty(), isFull() and an additional operation getMin() which should return minimum element from the SpecialStack. All these operations of SpecialStack must be O(1). To implement SpecialStack, you should only use standard Stack data structure and no other data structure like arrays, list, . etc.
2	In class, we studied binary search trees that do not allow us to insert duplicate elements. However, sometimes we do need to store duplicates. For example, a database of studentmarks might contain one record for every mark by every student; so if you've taken two courses, there will be two records with the same key (your student number) and differentdata (your two marks). To accomplish this, we might use a data structure called a "BSTwith duplicates", or BSTD.
3	The variable tos in the Stack class is the index of the array element that would be filled the next time push() is called. Modify the code so that tos is the index of the top elementactually in use. In other words, tos is to be the index of the top array element occupied by a value that has been "pushed" onto the stack. Write your changes on the code above.Don't forget to fix the comments. You do not need to add preconditions as in part-a.
4	Given an adjacency matrix representation of a graph, describe with pseudo code an algorithm that finds a single path, if one exists, between any two different vertices.
5	There is a garage where the access road can accommodate any number of trucks at one time. The garage is building such a way that only the last truck entered can be moved out. Each of the trucks is identified by a positive integer (a truck_id). Write a program to handle truck moves, allowing for the following commands: a) On_road (truck_id); b)Enter_garage (truck_id); c) Exit_garage (truck_id); d) Show_trucks (garage or road); If an attempt is made to get out a truck which is not the closest to the garage entry, theerror message Truck x not near garage door.
6	How many non-null links are there in a binary tree with N nodes?
7	How can we remove loops in a linked list? What are the functions of fast and slow pointers?
8	Which data structures are applied when dealing with a recursive function?

Signature of Course Coordinator Mr. P Ravinder Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING					
Course Title	OPERATING SYSTEMS					
Course Code	AITB04	AITB04				
Program	B.Tech	B.Tech				
Semester	IV					
Course Type	Core					
Regulation	R18					
		Theory		Pract	ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mr. Laxman Kumar, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB01	II	Programming for Problem Solving
B.Tech	ACSB03	III	Data Structures

II COURSE OVERVIEW:

This course emphasizes on basic knowledge of various types of operating systems, effective resource utilization by using systems and applications software. It is designed to provide in-depth critique on the problems of resource management, scheduling, concurrency, synchronization, memory management, file management, protection and security of used system. Learned knowledge will be implemented in design and development of hybrid operating systems, command control systems, and in real time environments.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Operating Systems	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	Power Point Presentations	✓	Chalk & Talk	~	Assignments	x	MOOC
\mathbf{x}	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level	
10%	Remember	
45 %	Understand	
18 %	Apply	
27 %	Analyze	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
CIA	AAT-1	5	30
	AAT-2	5	
SEE Semester End Examination (SEE)		70	70
	100		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

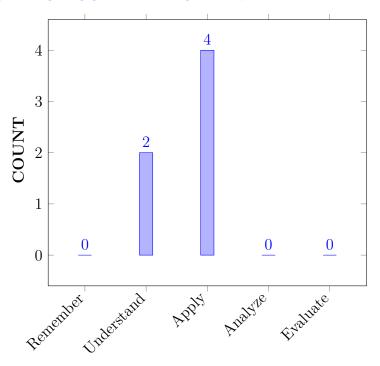
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving		
40%	40%	20%		

VI COURSE OBJECTIVES:

The students will try to learn:


I	The principles of operating systems, services and functionalities with its evolution.
II	The structures, functions and components of modern operating systems
III	The conventional hardware at different OS abstraction levels.
IV	The essential skills to examine issues and methods employed in design of operating
	systems with identification of various functionalities.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate different architectures used in design of modern	Understand
	operating systems.	
CO 2	Solve problems related to process scheduling, synchronization	Apply
	and deadlock handling in uni and multi-processing systems.	
CO 3	Choose memory allocation algorithms for effective utilization of	Apply
	resources.	
CO 4	Select various page replacement algorithms applied for	Apply
	allocation of frames.	
CO 5	Make use of different file allocation and disk scheduling	Apply
	algorithms applied for efficient utilization of storage.	
CO 6	Outline mechanisms used in protection of resources in real time	Understand
	environment	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE / CIE / AAT
	knowledge of mathematics, science, engineering fundamentals, and an engineering specialization		AAI
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	SEE / CIE / AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE / CIE / AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	SEE / CIE / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	SEE / CIE / AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	1	SEE / CIE / AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	SEE/AAT
PSO 2	Focus on improving software reliability, network security / information retrieval systems.	3	SEE/AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	3	SEE/AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S		
COURSE	РО	PO											PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	✓	-	-	-	-	-	1	ı	-	✓	-	\	✓	-	/		
CO 2	✓	✓	✓	✓	-	-	-	-	-	✓	-	✓	✓	✓	-		
CO 3	✓	✓	✓	-	-	-	-	-	-	✓	-	-	✓	-	-		
CO 4	✓	/	✓	✓	-	-	-	-	-	✓	-	-	✓	-	-		
CO 5	/	/	✓	-	-	-	-	-	-	✓	-	✓	✓	-	-		
CO 6	✓	-	-	-	-	-	-	-	-	✓	-	/	✓	✓	/		

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Understand the structure and evolution of operating system by understanding fundamentals of Computer engineering specialization and mathematical and scientific principles.	3
	PO 10	Communicate effectively on evolution of operating systems including deep subject knowledge.	1
	PO 12	By understanding different operating system architectures, one can personally continue understanding of different operating systems developed by the companies to stay up with new technology and for personal development.	2
	PSO 1	Identify the need, key issues and applications of the operating system in various real time environments.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 3	By understanding different operating system architectures, one can acquire knowledge on advanced operating systems for engineering practice and higher education and even can extend the knowledge to become an entrepreneur.	2
CO 2	PO 1	Understand the concept of Process, process scheduling, issues and their solutions related to process synchronization by using mathematical principles, fundamental of Computer engineering specialization and scientific principles.	3
	PO 2	Identify synchronization problem and understand the problem statement of classical synchronization problems collect the data needed for solving the problem then analyze different models of solutions for classical synchronization problems by semaphores and monitors and interpret the solutions	6
	PO 3	Define the process synchronization problem, understand the user needs then identify the resources required next manage the design process using banker's algorithm and evaluate outcomes.	4
	PO 4	By having the knowledge of characteristics of process and understanding the context in classical synchronization problems and the solutions provided using the technical constructs like semaphores and monitors with their working strategies, these can be applied for understanding of other synchronization problems.	5
	PO 10	Communicate effectively on process communication using process communication techniques and explaining each technique.	2
	PO 12	By understanding process management, one can personally continue understanding internal functioning of operating systems developed by the companies to stay up with new technology and for personal development.	2
	PSO 1	Identify the need for process scheduling and apply appropriate algorithms for scheduling of process arriving at various time intervals.	4
	PSO 2	By acquiring knowledge of process management one can design software applications with reliability and applications with fast information retrieval.	2
CO 3	PO 1	Describe the need and various techniques for memory management by understanding the limits of contiguous memory allocation through applying mathematical principles, fundamental of Computer engineering specialization and scientific principles	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Identify problem of memory management and understand the problem statement of contiguous memory management then analyze different models of non-contiguous memory management.	3
	PO 3	Define the problem related to contiguous memory management, understand the user needs then identify the memory requirements of each process next manage the design process by using non-contiguous memory management techniques and evaluate outcomes.	4
	PO 10	Communicate effectively on memory management techniques with clarity on contiguous and varied strategies and explaining each technique with appropriate terminology.	2
(PSO 1	Identify the need of efficient utilization of main memory and apply various contiguous and non-contiguous memory allocation techniques of memory management.	4
CO 4	PO 1	Understand the concept of virtual memory and various algorithms for effective usage of memory by applying the knowledge of computer engineering fundamentals, mathematical and scientific principles.	3
	PO 2	Identify the need for page replacement, understand the problem statement of allocation of pages to frames, then collect the data related to available pages and frames then analyze various models for solving problem based on the given sequence of pages and interpret their results accordingly.	6
	PO 3	Define the problem of mapping of large virtual memory to the existing physical memory, understand the user needs then manage the design process using page replacement algorithms and evaluate outcomes by identifying the number of page faults incurred.	4
	PO 4	By understanding characteristics of process, understanding the context in virtual memory management using demand paging and segmentation, this knowledge can be applied for virtualizing engineering process.	4
	PO 10	Communicate on utilization of main memory using pictorial representation of demand paging and segmentation and explaining them in detail.	2
	PSO 1	Identify the need of separation of logical memory from physical memory and apply appropriate algorithms for allocating given sequence of pages to frames.	4
CO 5	PO 1	Understand the concept of file system and analyze various file allocation methods by using the knowledge of computer engineering fundamentals, mathematical and scientific principles.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Identify the need for disk scheduling, understand the problem statement of disk scheduling, then collect the data related to location of data to be accessed in the disk structure then analyze different scheduling algorithm models used for solving problems related to finding total head movements and interpret their results.	6
	PO 3	Define the problem of file allocation to disk block, understand the user needs then identify the free disk space available next manage the design process by using appropriate file allocation methods.	4
	PO 10	Communicate on effective utilization of mass storage structures clearly using pictorial representation of disk structure.	2
	PO 12	By understanding mass storage structure, one can personally continue understanding of different storage devices developed by the companies to stay up with new technology.	2
	PSO 1	Identify the need of scheduling the service of disk I/O requests and apply appropriate algorithms for processing I/O requests.	4
CO 6	PO 1	Explain the importance of protection of objects and the protection provided for them by using domain concept in terms of access matrix implementation by applying knowledge of computer science fundamentals.	1
	PO 10	Communicate on protection of computer system components using protection strategies in detail.	1
	PO 12	By understanding the concept of protection, one can study and analyze various protection mechanisms developed recently for personal development.	2
	PSO 1	Identify the need of protection provided to the hardware and software components of the computer system and analyze the techniques provided for their protection.	1
	PSO 2	By acquiring knowledge of protection one can design software applications with high security and reliability.	1
	PSO 3	By understanding the concept of protection, one can acquire knowledge on advanced protection mechanisms for engineering practice and higher education and even can extend the knowledge to become an entrepreneur.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

	PROGRAM OUTCOMES													PSO'S		
COURSE	РО	PO												PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	-	-	-	-	-	-	-	-	1	-	2	1	-	2	
CO 2	3	6	4	5	-	-	-	-	-	2	_	2	4	2	-	
CO 3	3	3	4	-	-	-	-	-	-	2	-	-	4	-		
CO 4	3	6	4	4	-	-	-	-	-	2	-	-	4	-	-	
CO 5	3	6	4	-	-	-	-	-	-	2	-	2	4	-	-	
CO 6	1	-	-	-	-	-	-	-	-	1	-	2	1	1	2	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

				PSO'S											
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	-	-	-	-	-	-	-	-	20	-	25	17		100
CO 2	100	60	40	45	-	-	-	-	-	40	-	25	67	100	-
CO 3	100	30	40	-	-	-	-	-	-	40	-	-	67	-	-
CO 4	100	60	40	36	-	-	-	-	-	40	-	-	67	-	-
CO 5	100	60	40	-	-	-	-	-	-	40	-	25	67	-	-
CO 6	33	-	-	-	-	-	-	-	-	20	-	25	17	50	100

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C $\le 40\%$ – Low/ Slight

 $\boldsymbol{\mathcal{2}}$ - 40 % <C < 60% –Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

		PROGRAM OUTCOMES							PSO'S						
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	1	-	-	1	-	1	1	-	3
CO 2	3	3	2	2	-	-	-	-	-	2	-	1	3	3	-
CO 3	3	1	2	-	-	-	1	-	-	2	-	-	3	-	-
CO 4	3	3	2	2	-	-	-	-	-	2	-	-	3	-	-
CO 5	3	3	2	-	-	-	-	-	-	2	-	1	3	-	-
CO 6	1	-	-	-	-	-	-	-	-	1	-	1	1	2	3
TOTAL	16	10	8	4	-	-	-	-	-	10	-	4	14	5	6
AVER-	2.7	2.5	2	2	-	-	-	-	-	1.7	-	1	2.3	2.5	3
AGE															

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	✓
Laboratory	-	Student Viva	-	Certification	-
Practices					
Term Paper	-	5 Minutes Video	✓	Open Ended	-
				Experiments	
Assignments	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY-INDIRECT:

A	Assessment of mini projects by experts	✓	End Semester OBE Feedback
---	--	----------	---------------------------

XVIII SYLLABUS:

MODITE	INITED OF LICETON
MODULE I	INTRODUCTION
	Operating systems objectives and functions: Computer system architecture, operating systems structure, operating systems operations; Evolution of operating systems: Simple batch, multi programmed, time shared, personal computer, parallel distributed systems, real time systems, special purpose systems, operating system services, user operating systems interface; Systems calls: Types of systems calls, system programs, protection and security,
	operating system design and implementation, operating systems structure, virtual machines.
MODULE II	PROCESS AND CPU SCHEDULING, PROCESS COORDINATION
	Process concepts: The process, process state, process control block, threads; Process scheduling: Scheduling queues, schedulers, context switch, preemptive scheduling, dispatcher, scheduling criteria, scheduling algorithms, multiple processor scheduling; Real time scheduling; Thread scheduling; Case studies Linux windows; Process synchronization, the critical section problem; Peterson's solution, synchronization hardware, semaphores and classic problems of synchronization, monitors.
MODULE III	MEMORY MANAGEMENT AND VIRTUAL MEMORY
	Logical and physical address space: Swapping, contiguous memory allocation, paging, structure of page table. Segmentation: Segmentation with paging, virtual memory, demand paging; Performance of demand paging: Page replacement, page replacement algorithms, allocation of frames, thrashing
MODULE IV	FILE SYSTEM INTERFACE, MASS-STORAGE STRUCTURE
	The concept of a file, access methods, directory structure, file system mounting, file sharing, protection, file system structure, file system implementation, allocation methods, free space management, directory implementation, efficiency and performance; Overview of mass storage structure: Disk structure, disk attachment, disk scheduling, disk management, swap space management; Dynamic memory allocation: Basic concepts; Library functions.

MODULE V	DEADLOCKS, PROTECTION
	System model: Deadlock characterization, methods of handling deadlocks, deadlock prevention, dead lock avoidance, dead lock detection and recovery form deadlock system protection, goals of protection, principles of protection, domain of protection, access matrix, implementation of access matrix, access control, revocation of access rights, capability based systems, language based
	protection.

TEXTBOOKS

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Principles, Wiley Student Edition, 8th Edition, 2010.
- 2. . William Stallings, Operating System- Internals and Design Principles , Pearson Education, 6th Edition, 2002.

REFERENCE BOOKS:

- 1. Andrew S Tanenbaum, Modern Operating Systems, PHI, 3rd Edition, 2007.
- 2. D. M. Dhamdhere, Operating Systems a Concept based Approach, Tata McGraw-Hill, 2nd Edition, 2006.

WEB REFERENCES:

- 1. www.smartzworld.com/notes/operatingsystems
- 2. www.scoopworld.in
- 3. www.sxecw.edu.in
- 4. www.technofest2u.blogspot.com

COURSE WEB PAGE:

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer-				
			ence				
	OBE DISCUSSION						
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	-				
	CONTENT DELIVERY (THEORY)						
2	Computer system architecture, operating systems structure	CO 1	T1:1.1- 1.4				
3	operating systems operations	CO 1	T1:1.5				
4	Evolution of operating systems: Simple batch, multi programmed, time shared, personal computer	CO 1	T2:2.2				
5	parallel distributed systems, real time systems, special purpose systems,	CO 1	T2:2.2				

6	operating system services, user operating systems interface	CO 1	T2:2.1- 2.2
7	Systems calls: Types of systems calls, system programs	CO 1	T2:2.3- 2.5
8	protection and security, operating system design and implementation	CO 1	T1:2.6
9	operating systems structure, virtual machines.	CO 1	T1:2.7- 2.8
10	Process concepts: The process, process state	CO 2	T1:3.1- 3.2
11	process control block, threads;	CO 2	T1:3.2- 3.4
12	Process scheduling: Scheduling queues, schedulers, context switch	CO 2	T1:5.2
13	preemptive scheduling, dispatcher, scheduling criteria	CO 2	T1:5.3
14	scheduling algorithms	CO 2	T1:5.3
15	multiple processor scheduling	CO 2	T1:5.3
17	Real time scheduling; Thread scheduling;	CO 2	T1:5.4- 5.5
18	Case studies Linux windows	CO 2	T1:5.6, 21.4
19	Process synchronization, the critical section problem	CO 2	T1:6.1
20	Peterson's solution	CO 2	T1:6.2- 6.3
21	synchronization hardware	CO 2	T1:6.4
22	semaphores	CO 2	T1:6.5
23	classic problems of synchronization, monitors.	CO 2	T1:6.6- 6.7
24	Logical and physical address space: Swapping, contiguous memory allocation	CO 3	T1:8.1
26	paging, structure of page table	CO 3	T1:8.2
27	Segmentation: Segmentation with paging	CO 3	T1:8.3
29	virtual memory, demand paging	CO 3	T1:8.4- 8.5
30	Performance of demand paging	CO 3	T1:8.6
31	Page replacement, page replacement algorithms,	CO 4	T1:8.6
33	allocation of frames	CO 4	T1:9.5
34	Thrashing	CO 4	T1:9.6
35	The concept of a file, access methods	CO 4	T1:10.1- 10.2
36	directory structure	CO 4	T1:10.3
37	file system mounting	CO 4	T1:10.5
38	file sharing, protection	CO 4	T1:10.6
39	file system structure	CO 4	T1:10.6
40	file system implementation	CO 4	T1:11.3
41	allocation methods	CO 4	T1:11.4

43	free space management	CO 4	T1:11.5
44	directory implementation, efficiency and performance	CO 4	T1:11.6
45	Overview of mass storage structure: Disk structure, disk	CO 5	T1:12.1-
	attachment		12.3
46	disk scheduling, disk management, swap space management	CO 5	T1:12.4- 12.6
48	Dynamic memory allocation: Basic concepts; Library functions.	CO 5	T1:12.7- 12.8
49	System model: Deadlock characterization, methods of handling deadlocks	CO 2	T1:7.1- 7.2
50	deadlock prevention	CO 2	T1:8.1
51	deadlock avoidance	CO 2	T1:8.2
52	dead lock detection and recovery form deadlock system protection	CO 2	T1:8.3
55	goals of protection, principles of protection, domain of protection	CO 6	T2:27.8
56	access matrix, implementation of access matrix, access control, revocation of access rights	CO 6	T2:27.9
57	capability based systems, language based protection	CO 6	T1:8.2- 8.3
	PROBLEM SOLVING/ CASE STUDIE	\mathbf{S}	
16	Problems on CPU scheduling algorithms	CO 2	T1:5.3- 5.3
25	Problems on contiguous memory allocation	CO 3	T1:8.1- 8.3
28	Problems on paging and segmentation	CO 3	T1:8.4- 8.6 T1:9.1- 9.2
32	Problems on page replacement algorithms	CO 4	T1:9.4- 9.6
42	Problems on file allocation methods	CO 5	T1:11.3- 11.6
47	Problems on disk scheduling	CO 5	T1:12.1- 12.6
53	Problems on deadlock avoidance	CO 2	T1:8.1- 8.3
54	Problems on recovery from deadlocks	CO 2	T1:8.1- 8.3
	DISCUSSION OF DEFINITION AND TERMIN	NOLOGY	
58	Definitions on operating systems fundamentals	CO 1	T1:1.2
59	Definitions on process, CPU scheduling and process coordination	CO 2	T1:1.5
	Coordination		

61	Definitions on file system interface and mass storage	CO 5	T1:10,11		
	structure				
62	Definitions on deadlocks and protection	CO 2,	T1:9.1		
		CO 6			
	DISCUSSION OF QUESTION BANK				
1	Introduction	CO 1	T1:1.2		
2	Process and CPU Scheduling, Process Coordination	CO 2	T1:1.5		
3	Memory Management and Virtual Memory	CO 3,4	T1:8,9		
4	File System Interface, Mass Storage Structure	CO 5	T1:10,11		
5	Deadlocks, Protection	CO 2,6	T1: 9.1		

Signature of Course Coordinator

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	INFOR	INFORMATION TECHNOLOGY						
Course Title	THEOR	THEORY OF COMPUTATION						
Course Code	AITB03	AITB03						
Program	B.Tech	B.Tech						
Semester	IV	IV						
Course Type	Core	Core						
Regulation	R-18	R-18						
		Theory		Pract	ical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	3	1	4	-	-			
Course Coordinator	Mr. U Si	vaji, Assistant	Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AHSC010	II	Probability and Statistics.
UG	ACS002	II	Data Structures
UG	AHS013	III	Discrete Mathematical Structures

II COURSE OVERVIEW:

This course focuses on infinite languages in finite ways, and classifies machines by their power to recognize. It includes finite automata, regular grammar, push down automata, context free grammars, and Turing machines It is applicable in designing phrasing and lexical analysis of a compiler, genetic programming and recursively enumerable languages

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Theory of Computation	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	Power Point Presentations	✓ Chalk & Talk		x	Assignments		MOOC
/	Open Ended Experiments	x	Seminars	x	Mini Project	~	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
60%	Understand
20%	Apply
10 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz	AAT	10tal Walks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

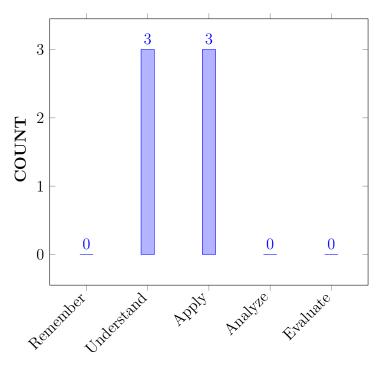
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The fundamental knowledge of automata theory which is used to solve computational problems
II	The reorganization of context free language for processing infinite information using push down automata.
III	The computer based algorithms with the help of an abstract machine to solve recursively Enumerable problems

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of deterministic finite automata and non deterministic finite automata for modeling lexical analysis and text editors.	Apply
CO 2	Extend regular expressions and regular grammars for parsing and designing programming languages.	Understand
CO 3	Illusrate the pumping lemma on regular and context free languages for perform negative test .	Understand
CO 4	Demonstarte context free grammars, normal forms for generating patterns of strings and minimize the ambiguity in parsing the given strings.	Understand
CO 5	Construct push down automata for context free languages for developing parsing phase of a compiler.	Apply
CO 6	Apply Turing machines and Linear bounded automata for recognizing the languages, complex problems.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes							
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.							
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations							

	Program Outcomes
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering commMODULEy and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by		
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering	3	CIE / SEE		
	fundamentals, and an engineering specialization				
	to the solution of complex engineering problems.				
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2.5	AAT		
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2.5	SEE / AAT		

PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.	′	CIE / Quiz / AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Design next-generation computer systems,	2.3	Group
	networking devices, search engines, soft		discussion/
	computing and intelligent systems, web browsers,		Short term
	and knowledge discovery tools.		courses
PSO 3	Practical experience in shipping real world	2.0	Research
	software, using industry standard tools and		papers/
	collaboration techniques will equip to secure and		Industry
	succeed in first job upon graduation in IT		exposure
	industry.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	~	-	-	-	-	-	-	-	-	-	-		-	-	✓
CO 2	✓	-	-	-	-	-	-	-	-	-	-	-	/	-	-
CO 3	✓	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	✓	✓	-	-	-	-	-	-	-	-	-	-	✓	-	-
CO 5	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	✓
CO 6	✓	✓	✓	✓		ı	ı	ı	-	ı	ı	-	✓	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Solve the lexical analysis and text editor's using deterministic finite automata and non- deterministic finite automata using the principles of mathematical principles and scientific principles.	2
	PSO 3	Demonstrate the basic text editors in real world software, using industry standard tools and collaboration techniques in the field of computational programming.	1
CO 2	PO 1	Understand the basics of regular expressions and regular grammars, its types and properties for applying mathematical principles and scientific principles.	2
	PSO 1	Make use of the concept of regular expressions and regular grammars for developing algorithms of machine learning and networking concepts.	3
CO 3	PO 1	Find an optimized solution for the given problem using pumping lemma by applying the knowledge of mathematical principles and computer engineering methodologies.	2
	PO 2	Understand the given problem and develop the solution using pumping lemma from the provided information and interpret of results for validation.	5
	PO 3	Explain and demonstrate the pumping lemma, by investigate and define a problem and identify constraints, Understand customer and user needs, Manage the design process and evaluate outcomes.	5
CO 4	PO 1	Describe the role of Ambiguity in construction of context free grammars by understanding mathematical principles and scientific principles.	2
	PO 2	Understand the given problem and analyze the grammar and eliminate ambiguity using derivation trees by model, design, document the results for interpretation.	6
	PSO 1	Understand the normalization techniques in the area related to parsing desire for higher studies in field of compiler design, machine Learning and data science.	3
CO 5	PO 1	Describe acceptance of context free language by final state and by empty stack problems by understanding mathematical principles, engineering methodologies and scientific principles.	3
	PO 2	Understand equivalence of context free language and pushdown automata for validation, model, design of inter conversion for solving the given problem related to engineering from the provided information, data and documentation.	6

Course Outcomes			No. of Key competencies matched.
	PSO 3	Understand the principle of languages, grammars for computational programming to achieve engineering objectives.	1
CO 6	PO 1	Describe the recursively enumerable languages and churchs hypothesis using mathematical principles and scientific principles.	3
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems in the Design and Model of Turing machine in reaching substantiated conclusions by the interpretation of results.	5
	PO 3	Make Use of Turing machines to develop programs (define problem) for identify the solution (innovative) of complex engineering problems which satisfy the user constraints.	6
	PO 4	Ability to identify ,classify and describe the performance of turing machine by using analytical methods and modeling techniques.	4
	PSO 1	Analyze computable functions in the areas related to simulation of Turing machine, software testing, high performance computing, machine learning, software engineering and computer networks	6

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-		-	-	1
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 3	2	5	5	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	6	-	-		-	-	-	-	-	-	-	3	-	-
CO 5	3	6	-	-	-	-	-	-	-	-	-	-	-	-	1
CO 6	3	5	6	5	-	-	-	-	-	-	-		6	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO / PSO:

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	-	-	-	1	-	-	-	-	-	-		-	-	50.0
CO 2	66.7	-	-	-	-	-	-	-	-	-	-	-	50.0	-	-
CO 3	66.7	50.0	50.0	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.7	60.0	-	-		-	-	-	-	-	-	-	50.0	-	-
CO 5	100.0	60.0	-	-	-	-	-	-	-	_	-	-	-	-	50.0
CO 6	100.0	50.0	60.0	55.0		-	-	-	-	-	-		100.0	-	-

XV COURSE ARTICULATION MATRIX (PO - PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ 0< C< 5% No correlation
- $\boldsymbol{2}$ 40 % <C < 60% –Moderate
- **1-5** <C≤ 40% Low/ Slight
- $3 60\% \le C < 100\% Substantial / High$

COURSE		PROGRAM OUTCOMES								PSO'S					
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	2
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 3	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	2
CO 6	3	2	3	2	-	-	-	-	-	-	-	-	3	-	-
TOTAL	18	10	5	2	-	-	-	_	-	-	-	-	7	-	4
AVERAGE	3.0	2.5	2.5	2.0	-	-	-	_	-	-	-	-	2.3	0	2.0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	_
Term Paper	-	5 Minutes Video	✓	Open Ended Ex- periments	✓
Assignments	-				

XVII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	~	End Semester OBE Feedback					
X	Assessment of Mini Projects by Experts							

XVIII SYLLABUS:

MODULE I	FINITE AUTOMATA
	Fundamentals: Alphabet, strings, language, operations; Introduction to finite automata: The central concepts of automata theory, deterministic finite automata, nondeterministic finite automata, an application of finite automata, finite automata with and without epsilon transitions, Conversion of NFA to DFA Machines.
MODULE II	REGULAR LANGUAGES
	Regular sets, regular expressions, identity rules, constructing finite automata for a given regular expressions, conversion of finite automata to regular expressions, pumping lemma of regular sets, closure properties of regular sets (proofs not required), regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and finite automata, inter conversion.

MODULE III	CONTEXT FREE GRAMMARS
	Context free grammars and languages: Context free grammar, derivation trees, sentential forms, right most and leftmost derivation of strings, applications. Ambiguity in context free grammars, minimization of context free grammars, Chomsky normal form, Greibach normal form, pumping lemma for context free languages, enumeration of properties of context free language (proofs omitted)
MODULE IV	PUSHDOWN AUTOMATA
	Pushdown automata, definition, model, acceptance of context free language, acceptance by final state and acceptance by empty stack and its equivalence, equivalence of context free language and pushdown automata, inter conversion; (Proofs not required); Introduction to deterministic context free languages and deterministic pushdown automata.
MODULE V	TURING MACHINE
	Turing machine: Turing machine, definition, model, design of Turing machine, computable functions, recursivey enumerable languages, Church's hypothesis, counter machine, types of Turing machines (proofs not required), linear bounded automata and context sensitive language, Chomsky hierarchy of languages.

TEXT BOOKS

1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, —Introduction to Automata, Theory, Languages and Computation, Pearson Education, 3rd Edition, 2007.

REFERENCE BOOKS:

- 1. John C Martin, —Introduction to Languages and Automata Theory, Tata McGraw Hill, 3rd Edition, 2017
- 2. Daniel I.A. Cohen, Introduction to Computer Theory, John Wiley Sons, 2nd Edition, 2004.

COURSE WEB PAGE:

https://nptel.ac.in/courses/106103070

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference							
	OBE DISCUSSION									
1	In Outcome-Based Education (OBE), we discussed about course delivery assessment that									
	are planned to achieve stated objectives and outcomes. We will focuses on measuring									
	student performance i.e. outcomes at different levels. Course outcomes(CO),Program									
	Outcomes(PO) and Program Specific Outcomes(PSO) and also mapping of CO's to PO's									
	PSO's and their attainments are discussed.									
	CONTENT DELIVER	RY (THEOI	RY)							
1	Alphabet, strings, language and operations	CO1	T1:1.5-1.6							
2	finite automata and concepts of automata	CO1	T1:2.1-2.2, R2:38-64							
	theory									

3	Demonstrate the behavior of deterministic finite automata	CO 1	T1:2.2-2.3
4-6	Understand the functionality of non- deterministic finite automata and Finite automata with epsilon transitions.	CO 1	T1:2.3-2.4, R1:3.1-3.3, R2:142-148
7	application of finite automata, Conversion of NFA to DFA, Moore and Melay Machines.	CO 1	T1:2.3-2.4, R1:3.1-3.3, R2:142-148
8-10	understand the Regular sets, regular expressions, identity rules	CO 2	T1: 3.1-3.2
11-13	finite automata for a given regular expressions, finite automata to regular expressions	CO 2	T1: 3.1-3.2
14-15	find the pumping lemma of regular sets, regular grammars, right linear and left linear grammars	CO 3	T1: 4.1-4.2
16-19	Regular grammars-right linear and left linear grammars	CO 4	T1: 4.4-4.5
20-22	regular linear grammar and finite automata, inter conversion.	CO 2	T1: 4.4-4.5
23-24	Apply Context free grammar on derivation trees	CO 4	T1: 5.1-5.5, R1:4.2-4.4
25-27	sentential forms, right most and leftmost derivation of strings	CO 4	T1: 5.1-5.5, R1:4.2-4.4
28-29	Ambiguity in context free grammars	CO 4	T1: 5.1-5.5, R1:4.2-4.4
30-32	Understand Minimization of context free grammars, Chomsky normal form, Greibach normal form	CO 4	T1: 7.4-7.5, R1:6.1-6.2
33-34	Pumping lemma for context free languages, properties	CO 3	T1: 7.4-7.5, R1:6.1-6.2
35-37	Apply the push down automata for acceptance of context free Languages	CO 5	T1: 6.1-6.2, R1:5.2-5.4
38-41	push down automata for given context free languages	CO 5	T1: 6.1-6.2, R1:5.2-5.4
42-43	acceptance by empty stack and its Equivalence.	CO 5	T1: 6.1-6.2, R1:5.2-5.4
44-45	Describe Equivalence of context free language and pushdown automata	CO 5	T1: 6.3-6.4
46-47	inter conversion, deterministic push down automata.	CO 5	T1: 6.3-6.4
48-53	Describe Turing machine, definition, model, computable functions	CO 6	T1: 8.1-8.2, R1:7.2-7.4
54-56	Apply Recursively enumerable languages	CO 6	T1: 8.2-8.6, R1:7.5-7.6
57-58	Types of Turing machines and Church's hypothesis.	CO 6	T1: 8.2-8.6, R1:7.5-7.6
59-60	Linear bounded automata and context sensitive language.	CO 6	T1:9.1-9.8, R2:551-560
61-62	Chomsky hierarchy of languages.	CO 6	T1:9.1-9.8, R2:551-560

	PROBLEM SOLVING/	CASE STU	DIES
1	Describe a DFA for the following language $L=\{w/ w \mid mod5=0, w \text{ belongs to } (a,b)^*\}$ $L=\{w/ w \mid mod5=1, w \text{ belongs to } (a,b)^*\}$	CO 1	T1:2.3-2.4, R1:3.1-3.3
2	Convert NFA with ϵ to equivalent NFA M=({q0,q1,q2},{0,1,2}, δ , q0, {q2}) where δ is given by [δ (q0,0)={q0}, δ (q0,1)= ϕ , δ (q0,2)= ϕ , δ (q0, ϵ)=q1] [δ (q1,0)= ϕ , δ (q1,1)=q1, δ (q1,2)= ϕ , δ (q1, ϵ)=q2] [δ (q2,0)= ϕ , δ (q2,1)= ϕ , δ (q2,2)= {q2}, δ (q2, ϵ)= ϕ]	CO1	T1:2.3-2.4, R1:3.1-3.3
3	Convert NFA with ϵ to equivalent DFA	CO 1	T1:2.3-2.4, R1:3.1-3.3
4	Describe Pumping Lemma for Regular Languages. Prove that the language $L = \{a^n / n \text{ is a } n^5\}$ is not regular	CO 3	T1: 7.4-7.5, R1:6.1-6.2
5	Convert the following automata into Regular expression $M=(\{q1,q2,q3\},\{0,1\}, \delta, q1, \{q2,q3\})$ where δ is given by $[\delta (q1,0)=\{q2\}, \delta (q1,1)=\{q3\}]$ $[\delta (q2,0)=\{q1\}, \delta (q2,1)=\{q3\}]$ $[\delta (q3,0)=\{q2\}, \delta (q3,1)=\{q2\}]$	CO 2	T1: 3.1-3.2
6	Describe the DFA Transition diagram for equivalent Regular expression (ab+a) *(aa+b)	CO 1	T1:3.1-3.2
7	Convert the following grammar into GNF $S\rightarrow ABA/AB/BA/AA/B$ $A\rightarrow aA/a$, $B\rightarrow bB/b$	CO 4	T1: 7.4-7.5, R1:6.1-6.2
8	Describe the context free grammars in the four tuple form.(V,T,P,S) for the given languages on ∑={a,b} i. All strings having at least two a's ii. All possible strings not containing triple b's	CO 4	T1: 7.4-7.5, R1:6.1-6.2
9	Describe the steps to show the following is not CFG. $\{a^mb^nc^p \mid m < n \text{ or } n < p\}$	CO 4	T1: 7.4-7.5, R1:6.1-6.2
10	Construct PDA for equal number of x's and y's. eg: xyyxxy	CO 5	T1: 6.1-6.2, R1:5.2-5.4
11	Construct NDPDA for L = { W $\neq W^R$ /W $\in (X + Y)^*$ }	CO 5	T1: 6.1-6.2, R1:5.2-5.4
12	Construct DPDA for L = { W \neq W ^R /W \in (X + Y)*}	CO 5	T1: 6.1-6.2, R1:5.2-5.4

13	Construct a Turing Machine that accepts the language $L = \{ a^{2n}b^n \mid n \geq 0 \}$. Give the transition diagram for the Turing Machine obtained.	CO 6	T1: 8.2-8.6, R1:7.5-7.6
14	Construct a Turing Machine to accept the following languages $L = \{w^n x^n y^n z^n \mid n \ge 1\}$	CO 6	T1:8.2-8.6, R1:7.5-7.6
15	Design a Turing Machine that accepts the language denoted by regular expression (000)*	CO 6	T1:8.2-8.6, R1:7.5-7.6
	DISCUSSION ON DEFINITION	AND TEI	RMINOLOGY
1	Alphabet, strings, language and operations	CO 1	T1:1.5-1.6
2	understand the Regular sets, regular expressions, identity rules	CO 2	T1:3.1-3.2
3	Understand Minimization of context free grammars, Chomsky normal form, Greibach normal form	CO 4	T1:7.4-7.5, R1:6.1-6.2
4	push down automata for given context free languages	CO 5	T1:6.1-6.2, R1:5.2-5.4
5	Types of Turing machines and Church's hypothesis.	CO 6	T1:8.2-8.6, R1:7.5-7.6
	DISCUSSION ON QUI	ESTION BA	ANK
1	Describe the DFA with the set of strings having "aaa as a substring over an alphabet $\sum =\{a,b\}.$	CO 1	T1:1.5-1.6
2	Convert Regular Expression $(11+0)*(00+1)*$ to Finite Automata.	CO 2	T1:3.1-3.2
3	Describe a CFG for the languages L= $\{a^ib^j \mid i \le 2j\}$	CO 4	T1:7.4-7.5, R1:6.1-6.2
4	Define the NPDA(Nondeterministic PDA) and DPDA(deterministic PDA) equivalent? Illustrate with an example.	CO 5	T1:6.1-6.2, R1:5.2-5.4
5	Describe a Turing Machine. With a neat diagram explain the working of a Turing Machine.	CO 6	T1: 8.2-8.6, R1:7.5-7.6

Signature of Course Coordinator

HOD,IT

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING				
Course Title	DESIGN AND ANALYSIS OF ALGORITHMS					
Course Code	AITB05					
Program	B.Tech					
Semester	IV	IV				
Course Type	Core	Core				
Regulation	R-18					
		Theory			Practical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	3	1.5	
Course Coordinator	Dr. K.Su	Dr. K.Suvarchala, Associate Professor, CSE				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS001	I	Computer Programming
B.Tech	ACS002	II	Data Structures

II COURSE OVERVIEW:

The primary objective of this course is to introduce the concept of algorithm as a precise mathematical concept, and study how to design algorithms, establish their correctness, study their efficiency and memory needs. The course consists of a strong mathematical component in addition to the design of various algorithms.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Design And Analysis	70 Marks	30 Marks	100
Of Algorithms			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point Presentations	X	Chalk & Talk	X	Assignments	X	MOOC
/	Open Ended Experiments	X	Seminars	X	Mini Project	/	Videos
X	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
70%	Understand
10%	Remember
20%	Apply
0%	Analyze
0%	Evaluate
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Alternative Assessment Tool (AAT).

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	AAT	Total Warks	
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part—A shall have five compulsory questions of one mark each. In part—B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

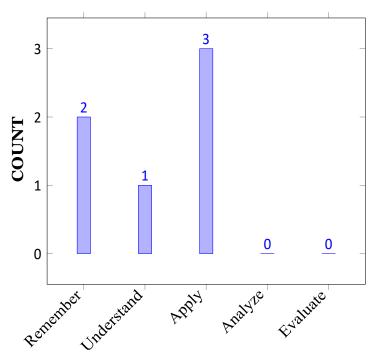
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	Calculate performance of algorithms with respect to time and space complexity.
II	Illustrate the graph traversals and tree traversals to solve the problems
III	Demonstrate the concepts greedy method and dynamic programming for several applications like knapsack problem, job sequencing with deadlines, and optimal binary search tree, TSP.
IV	Illustrating the methods of backtracking and branch bound techniques to solve the problems like n-queens problem, graph colouring and TSP respectively

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Find the (worst case, randomized, amortized) running time and space complexity of given algorithms using techniques such as recurrences and properties of probability.	Remember
CO 2	Apply divide and conquer algorithms for solving sorting, searching and matrix multiplication.	Apply
CO 3	Make Use of appropriate tree traversal techniques for finding shortest path.	Apply
CO 4	Identify suitable problem solving techniques for a given problem and finding optimized solutions using Greedy and Dynamic Programming techniques	Remember
CO 5	Utilize backtracking and branch and bound techniques to deal with traceable and in-traceable problems.	Apply
CO 6	Describe the classes P, NP, NP-Hard, NP-complete for solving deterministic and non deterministic problems.	Under- stand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution
	of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and
	analyze complex engineering problems reaching substantiated conclusions
	using first principles of mathematics, natural sciences, and engineering
	sciences.
PO 3	Design/Development of Solutions: Design solutions for complex
	Engineering problems and design system components or processes that meet
	the specified needs with appropriate consideration for the public health and
	safety, and the cultural, societal, and Environmental considerations

	Program Outcomes			
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.			
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations			
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.			
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.			
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.			
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.			
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.			
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.			
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change			

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/SEE
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	1	SEE/AAT
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	CIE/SEE/AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	SEE/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PRO)GR	AM	OUT	CON	IES				PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\	-	-	-	-	-	-		-	-	-		\	-	-
CO 2	/	✓	-	-	-	1	-	-	-	-	-	-	/	-	-
CO 3	/	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	✓	✓	✓	-	-	-	-	-	-	-	-	✓	-	-	-
CO 5	✓	-	-	✓	-	-	-	-	-	-	-	✓	-	-	-
CO 6	✓	-	-	✓	-	-	-	-	-	-	-	/	✓	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Analyze the running time and space complexity of given algorithms using techniques such as recurrences, potential functions, properties of probability by applying the mathematical principles, engineering principles and scientific principles	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO1	Understand the basic properties of asymptotic notations, probability analysis for designing algorithms, system software and Networking.	3
CO 2	PO 1	Apply divide and conquer algorithms for solving sorting, searching and matrix multiplication problems to integrate mathematical principles, engineering Principles, and Scientific Principles.	3
	PO 2	Understand the given problem and develop the solution for solving sorting, searching and matrix multiplication problems complex engineering problems and Interpretation of results.	4
	PSO1	Build divide and conquer algorithms for solving sorting, searching, Big data analysis and matrix multiplication problems through system software.	2
CO 3	PO 1	Utilize appropriate tree traversal techniques for solving graph problems to integrate mathematical principles , scientific Methodology , and engineering principles .	3
	PO 2	Understand the given problem traversal techniques to develop the solution for graph problems complex engineering problems and interpretation of results.	4
CO 4	PO 1	Choose (Pick) greedy algorithms for finding solutions of minimization and maximization problems to support study of their own engineering discipline and methodologies.	2
	PO 2	Understand the given problem and develop the solution using greedy methods in reaching substantiated conclusions from the provided problem identification , information , interpret of results , complex engineering problems and Experimental design .	7
	PO 3	Select appropriate technique from the greedy techniques for given problem and apply chosen method for finding the solutions of given problem define problem , Evaluate outcomes, innovative solutions, engineering activities and engineering processes	7
	PO 12	make use of greedy and dynamic programming techniques for beginning works on advances degree , current trends in computer science , efforts for personal continue education , personal development and on going learning .	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 5	PO 1	Identify backtracking and branch and bound techniques to compact with traceable and in -traceable problems by applying the knowledge of mathematics , Engineering fundamentals and to find the solution of complex engineering problems .	3
	PO 4	Understand the given set of problems from the provided information , to identify , classify and describe the performance of systems approach and textbfengineering problems and principles.	6
	PO 12	Utilize branch and bound techniques to learn for solving problems incurrent trends of computer science, on going learning, continuum education, beginning works for advance degree and personal development.	4
CO 6	PO 1	Understanding the concepts of classes P, NP, NP-Hard, NP- complete for solving deterministic and non-deterministic problems in attainment of mathematical principles , engineering methodologies and scientific principles .	3
	PO 4	Identify the given complex problem and choose the deterministic algorithms for solving the given decision problems from the provided information in accomplishment of engineering problems , performance of systems , to identify , classify and principles .	6
	PO 12	Describe P,NP,NP-Hard, NP-complete for solving deterministic and non deterministic problems which are useful for personal development , on going learning , continuum education and current trends in computer science.	3
	PSO 1	Understand the basic properties of deterministic algorithms in the areas related to computer programs, Big data, Machine Learning and Networking.	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES												PSO'S		
COURSE	РО	PO										PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	1		1	ı	ı	-		1	ı	-	1	3	1	-	
CO 2	3	4		-	-	-	-		1	-	-	1	2	-	-	
CO 3	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	2	7	7	-		-	-	-	-	-	-	4	-	-	-	

CO 5	3	-	-	6	-	-	-	-	-	-	-	4	-	-	-
CO 6	3	-	-	6	-	-	-	-	-	-	-	3	3	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

				PRO	GRA	M (OUT	COM	IES				PSO'S		
COURSE	РО	PO	РО	РО	PO	РО	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	1	-	-	-	-	-	1	-	ı	-		50.0	-	-
CO 2	100	40	-	-	-	-	-	-	-	-	-	-	33.33	-	-
CO 3	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	100	70	70	-		-	-	-	-	-	-	50.0	100	100	-
CO 5	100	-	-	54.54	-	-	-	-	-	-	-	50.0	-	-	-
CO 6	100	-	-	54.54	-	-	-	-	-	-	-	37.5	50.0	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $0 0 \le C \le 5\%$ No correlation
- **1** -5 < C≤ 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- $3 60\% \le C < 100\% Substantial / High$

				PRO)GR	AM	OUT	CON	IES					PSO'S	,
COURSE	PO	PO	РО	PO	PO	РО	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	1	ı	-	ı	ı	1	ı	ı	1	-	-	2	1	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	3	3	-	-	1	-	-	1	-	-	2	-	-	-
CO 5	3	-	1	2	-	-	-	-	1	-	-	2	-	-	-
CO 6	3	-	-	2	-	-	-	-	-	-	-	1	2	-	-
TOTAL	18	7	3	4	-	-	-	-	-	-	-	5	5	-	-
AVER- AGE	3.0	2.3	1.0	1.0	-	-	-	-	-	-	-	1.7	1.7	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	PO 1, PO 2,	SEE Exams	PO 1, PO	Seminars	PO 2
	PO 3,PO 4		2, PO		
			3,PO 4		
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	PO 4	Open Ended Experiments	-
Assignments	PO1				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

X	Assessment of mini projects by experts	✓	End Semester OBE Feedback
---	--	----------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	Algorithm: Pseudo code for expressing algorithms; Performance analysis: Space complexity, time complexity; Asymptotic notations: Big O notation, omega notation, theta notation and little o notation, amortized complexity; Divide and Conquer: General method, binary search, quick sort, merge sort, Strassen's matrix multiplication.
MODULE II	SEARCHING AND TRAVERSAL TECHNIQUES
	Disjoint set operations, union and find algorithms; Efficient non recursive binary tree traversal algorithms, spanning trees; Graph traversals: Breadth first search, depth first search, connected components, bi-connected components.
MODULE III	GREEDY METHOD AND DYNAMIC PROGRAMMING
MODINE IV	Greedy method: The general method, job sequencing with deadlines, knapsack problem, minimum cost spanning trees, single source shortest paths. Dynamic programming: The general method, matrix chain multiplication optimal binary search trees, 0/1 knapsack problem, single source shortest paths, all pairs shortest paths problem, the travelling salesperson problem.
MODULE IV	BACKTRACKING AND BRANCH AND BOUND
	Backtracking: The general method, the 8 queens problem, sum of subsets problem, graph coloring, Hamiltonian cycles; Branch and bound: The general method, 0/1 knapsack problem, least cost branch and bound solution, first in first out branch and bound solution, travelling salesperson problem.
MODULE V	NP-HARD AND NP-COMPLETE PROBLEM
	Basic concepts: Non-deterministic algorithms, the classes NP - Hard and NP, NP Hard problems, clique decision problem, chromatic number decision problem, Cook's theorem.

TEXTBOOKS

- 1. Ellis Horowitz, Satraj Sahni, Sanguthevar Rajasekharan, Fundamentals of Computer Algorithms, Universities Press, 2nd Edition, 2015.
- 2. Alfred V. Aho, John E. Hopcroft, Jeffrey D, The Design And Analysis Of Computer Algorithms, Pearson India, 1st Edition, 2013.

REFERENCE BOOKS:

- 1. Levitin A, Introduction to the Design and Analysis of Algorithms, Pearson Education, 3rd Edition, 2012.
- 2. Goodrich, M. T. R Tamassia, Algorithm Design Foundations Analysis and Internet Examples, John Wileyn and Sons, 1st Edition, 2001.
- 3. Base Sara Allen Vangelder, Computer Algorithms Introduction to Design and Analysis, Pearson, 3rd Edition, 1999.

WEB REFERENCES:

1. https://www.coursera.org/learn/algorithm-design-analysis

- $2. \ http://openclassroom.stanford.edu/MainFolder/CoursePage.php?\\ course=IntroToAlgorithms$
- 3. http://www.facweb.iitkgp.ernet.in/sourav/daa.html

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1:					
	OBE DISCUSSION							
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-						
	CONTENT DELIVERY (THEORY)							
2	Introduction: Algorithm, Pseudo code for expressing algorithms, Performance Analysis- Space complexity, Time complexity.	CO 1	T1:1.1- 1.3.2					
3	Asymptotic Notation-Big oh notation, Omega notation, Theta notation and Little oh notation	CO 1	T1:1.3.3					
4	Amortized complexity.	CO 1	T2:2.3					
5	Divide and conquer: General method.	CO 2	T1:3.1					
6	Divide and conquer: Binary search, Quick sort	CO 2	T1:3.2- 3.5					
7	Divide and conquer: Merge sort, Strassen'smatrix multiplication.	CO 2	T1:3.4- 3.7					
8	Disjoint set operations.,	CO 3	T1:2.5					
9	Union and find algorithms.	CO 1	T1:2.5.2					
10	Non-recursive binary tree traversal algorithms,	CO 3	T1:6.1					
11	Spanning tree.	CO 3	T1:6.3					
12	Graph traversals: Breadth first search.	CO 3	T1:6.2.1					
13	Graph traversals:Depth first search.	CO 3	T1:62.2					
14	Connected components, Bi-connected components.	CO 3	T1:6.3- 6.4					
15	Greedy general method.	CO 4	T1:4.1					
16	Greedy method: Job sequencing with deadlines.	CO 4	T1:4.4					
17	Greedy method: 0/1 knapsack problem, Minimum cost spanning trees.	CO 4	T1:4.2- 4.5					
18	Greedy method: Single source shortest path problem	CO 4	T1:4.8					
19	Dynamic Programming: General method.	CO 4	T1:5.1					
20	Dynamic Programming: Matrix chain multiplication.	CO 4	T1:5.2					
21	aDynamic Programming: Optimal binary search trees.	CO 4	T1:5.5					
22	Dynamic Programming:0/1 knapsack problem.	CO 4	T1:5.7					
23	Dynamic Programming:All pairs shortest path problem.	CO 4	T1:5.5					
24	Dynamic Programming: Single source shortest path problem.	CO 4	T1:5.4					

25	Dynamic Programming: Travelling sales person problem.	CO 4	T1:5.9
26	Backtracking: General method.	CO 5	T1:7.1
27	Backtracking: 8-queens problem.		T1:7.2
28	Backtracking: Sum of subsets problem.,	CO 5	T1:7.3
29	Backtracking: Graph coloring	CO 5	T1:7.4
30	Backtracking :Hamiltonian cycles	CO 5	T1:7.5
31	Branch and Bound: General method.	CO 5	T1:8.1
32	Branch and Bound :0/1 knapsack problem	CO 5	T1:8.2
33	Branch and Bound: Least Cost Branch and Bound.	CO 5	T1:8.2.1
34	Branch and Bound: FIFO Branch and Bound.	CO 5	T1:8.2.2
35	Branch and Bound :Travelling sales person problem	CO 5	T1:8.3
36	NP-Hard and NP-Complete problems: Basic concepts.	CO 6	T1:11.1
37	Non-deterministic algorithms.	CO 6	T1:11.1.1
38	The classes NP -Hard and NP, NP Hard	CO 6	T1:11.1.2
39	Clique decision problem	CO 6	T1:11.3.1
40	Chromatic number decision problem.	CO 6	T1:11.3.3
41	Cook's theorem.	CO 6	T1:11.2
	PROBLEM SOLVING/ CASE STUDIES	3	
42	Write a program to implement quick sort.	CO 2	T1:3.5
43	Write a program to implement Merge sort	CO 2	T1:3.4
44	Write a program to implement Warshall's algorithm	CO 3	t1:3.5.5
45	Write a program to implement Knapsack Problem	CO 4	T1:4.2
46	Write a program to implement Graph Traversals	CO 4	T1:6.2
47	Write a program to implement Shortest Paths Algorithm	CO 4	T1:5.3
47	Write a program to implement Minimum Cost Spanning Tree	CO 4	T1:4.5
48	Write a program to implement Tree Travesrsals	CO 4	T1:6.1
49	Write a program to implement Sum Of Sub Sets Problem	CO 5	T1:7.3
50	Write a program to implement Travelling Sales Person Problem	CO 5	T1:5.9
51	Write a program to implement Minimum Cost Spanning Tree	CO 5	T1:4.5
52	Write a program to implement All Pairs Shortest Paths	CO 5	T1:5.3
53	Write a program to implement N Queens Problem	CO 5	T1:7.2
	DISCUSSION OF DEFINITION AND TERMIN		
54	Discuss definitions and terminology on introduction to algorithms, divide and conquer.	CO 1,2	T1:3.0
55	Discuss definitions and terminology on greedy method.	CO 1,2, 3	T:4.0
56	Discuss definitions and terminology on dynamic programming.	CO 4	T:5.0
57	Discuss definitions and terminology on bracktracking, branch and bound.	CO 5	T1:7-8
58	Discuss definitions and terminology on NP-Hard and NP-Complete.	CO 6	T1:11.0

	DISCUSSION OF QUESTION BANK						
59	Discuss questions on introduction to algorithms, divide and conquer.	CO 1,2	T1:3.0				
60	Discuss questions on greedy algorithm, dynamic programming.	CO 4	T1:3,4				
61	Discuss questions on bracktracking, branch and bound and NP-hard and NP-Complete.	CO 5,6	T1:7,8,11				

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING (AI & ML)					
Course Title	COMPUTER ORGANIZATION AND ARCHITECTURE					
Course Code	ACS004	ACS004				
Program	B.Tech	B.Tech				
Semester	IV					
Course Type	Core					
Regulation	R-18					
	Theory Practical				tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator	Dr. P Cahandana, Associate Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSOO4	II	PROGRAMING FOR PROBLEM
			SOLVING

II COURSE OVERVIEW:

This course introduces the principles of basic computer organization, CPU organization, and the basic architecture concepts. The course emphasizes performance and cost analysis, instruction set design, register transfer languages, arithmetic, logic and shift micro-operations, pipelining, memory technology, memory hierarchy, virtual memory management, and I/O organization of computer, parallel processing and inter process communication and synchronization.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Computer Organization and Architecture	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point	✓	Chalk & Talk	✓	Assignments	X	MOOC
	Presentations						
X	Open Ended Experiments	✓	Seminars	X	Mini Project	✓	Videos
X	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
45 %	Understand
18 %	Apply
27 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks		
	Continuous Internal Examination – 1 (Mid-term)	10			
CIA	Continuous Internal Examination – 2 (Mid-term)	10	20		
	AAT-1	5	30		
	AAT-2	5			
SEE	Semester End Examination (SEE)	70	70		
	Total Marks				

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

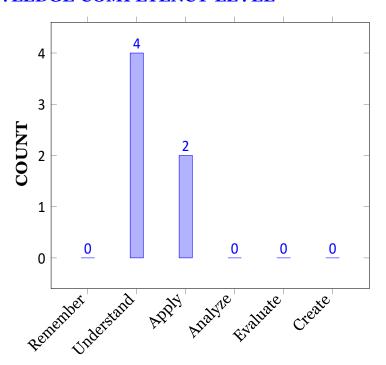
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	Understand the organization and architecture of computer systems and electronic computers.
II	Study the assembly language program execution, instruction format and instruction cycle.
III	Design a simple computer using hardwired and micro-programmed control methods.
IV	Study the basic components of computer systems besides the computer arithmetic .
V	Understand input-output organization, memory organization and management, and pipelining.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate interaction of components in a computer system with functional units and levels of programming languages.	Understand
CO 2	Demonstrate the implementation of micro-operations with the help of register transfer language and electronic circuits.	Understand
СО 3	Identify appropriate addressing modes for specifying the location of an operand.	Apply
CO 4	Make use of number system for data representation and binary arithmetic in digital computers.	Apply
CO 5	Interpret the design of hardwired and micro-programmed control unit for execution of micro programs.	Understand
CO 6	Summarize the concepts of pipelining and interprocess communication for advanced processor design.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	SEE / CIE / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	1	SEE / CIE / AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE / CIE / AAT
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	SEE / CIE / AAT
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineeringactivities with an understanding of the limitations.	3	SEE / CIE / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	SEE / CIE / AAT
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	SEE / CIE / AAT

^{3 =} High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Build skills to develop software applications in specialized areas of Computer Science and Engineering such as Artificial Intelligence, Machine Learning, Data Science, Web Development, Gaming, Augmented Reality / Virtual Reality (AR/VR).	3	CIE/Quiz/ AAT
PSO 2	Focus on exploring supervised, unsupervised and reinforcement learning and apply them to a range of AI problems.	2	CIE/Quiz/ AAT
PSO 3	Make use of AI and ML techniques for industrial applications in the areas of Autonomous Systems, IOT, Cloud Computing, Robotics, Natural Language Processing and emerging areas.	3	CIE/Quiz /AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s),PSO(s):

				PRO	GR/	M	OUT	CON	MES				PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\	\	\	-	-	-	1	1	-	-	1		\	<	-	
CO 2	/	-	-	-	-	-	-	-	-	-	-	-	\	/	-	
CO 3	✓	✓	✓	✓	-	-	-	-	-	✓	-	-	\	-	-	
CO 4	✓	✓	-	✓	-	-	-	-	-	✓	-	✓	\	-	-	
CO 5	/	/	/	✓	-	-	-	-	-	✓	-	/	✓	-	/	
CO 6	✓	-	-	-	-	-	-	-	-	✓	-	✓	\	-	✓	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the various functional units of Computer with computer science principles.	1
	PO 2	Explore the types of programming languages for problem identification and to formulate computer science and Engineering Problems.	2
	РО 3	Evaluate the instruction set architecture based on the cost drivers, integration, manage design process and understand customer needs	4
	PSO 1	Understand levels of programming languages related to Software.	1
	PSO 2	Develop micro programs using instruction set architecture with a major focus on improving software reliability and information retrieval systems.	1

CO 2	PO1	Explore taxonomy of microoperations and RTL for micro program development by using the mathematical and computer science principles.	2
	PSO 1	Understand the notations of RTL related to Software.	4
	PSO 2	Develop assembly language programs with a major focus on improving software reliability and information retrieval systems.	3
CO 3	PO 1	Select appropriate addressing mode for finding effective address of operand using mathematical and computer science principles	2
	PO 2	Choose appropriate addressing mode for information and data collected from various sources memory locations or registers and perform microoperations and validation the results for interpretation	1
	PO 3	Classify the addressing modes in terms of defining various problems and understanding appropriate codes of practice.	3
	PO 4	Utilize Instruction set architecture of processors for designing assembly language programs through laboratory skills and technical literature.	2
	PO 10	Make use of variety of addressing modes to fetch operands for the development of assembly language program with clarity and semantics or grammar of the assembly language.	2
	PSO 1	Develop applications for specific problems by including huge volume of data and related to Software.	1
CO 4	PO 1	Explain the concept of data representation by applying mathematical and computer science principles.	3
	PO 2	Understand the data representation and computer arithmetic for understanding of appropriate codes to formulate, solve problem, document and interpretation of results.	6
	РО 3	Identify the appropriate representation of data suitable for customer needs, investigation of a problem, identify and manage architecture design process.	4
	PO 4	Communicate effectively in orally and written by comprehend and write effective reports and design documentation with the engineering community by having major focus on clarity on content, Grammar/Punctuation, appropriate References, good Speaking style and depth in subject matter.	2
	PO 10	Recognize the need for advanced concepts in binary arithmetic and algorithms for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change	3
	PSO 1	Explain the technologies used to represent data and computer arithmetic related to Algorithms and architecture.	1

CO 5	PO 1	Design control unit by considering various issues and types risk assessment and analysis activity to identify and analyze root causes using computer science principles.	1
	PO 2	Design and develop hardwired and micro programmed control units with knowledge and uncertainty of commercial engineering process and management.	2
	PO 3	Design a control memory of system by investigating and defining various problems, understanding user needs.	3
	PO 4	Utilize micro instructions for designing assembly language programs through laboratory skills, technical literature, technical uncertainty and quality issues.	3
	PO 5	Experiment the design of control unit with Computer software or simulation packages.	2
	PO 10	Recognize the need for advanced concepts of control memory design and micro instructions based on micro architecture for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change.	4
	PSO 1	Explain the design issues of control memory and micro instruction format used to develop micro program related to Algorithms and architecture.	1
	PSO 3	Develop micro programs and support design of control memory by using modern computer software and simulation tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1
CO 6	PO 1	Understand the concept of pipelining to improve performance of the system by applying mathematical principles and computer science methodologies.	2
	PO 10	Communicate in written form by comprehending and writing effective reports and design documentation advanced micro architectures with the engineering community by having major focus on clarity on content, Grammar/Punctuation, good Speaking style	2
	PO 12	Recognize the need for advanced concepts for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change.	4
	PSO 1	Develop MIMD architecture for optimizing the performance related to Algorithms, Software and Networking.	1
	PSO 3	Recognize importance of pipelining, inter process communication of advanced micro processors for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

				PRO)GR	AM	OUT	CON	MES				PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	1	2	4	-	-	-	-	1	-	1	ı	-	1	1	1	
CO 2	2	-	-	-	-	-	-	1	-	-	-	1	1	2	-	
CO 3	2	2	1	3	-	-	-	-	-	2	-	2	1	-	-	
CO 4	3	6	ı	4	-	ı	ı	ı	ı	2	ı	3	1	-	ı	
CO 5	1	2	3	3	-	-	-	-	ı	2	ı	4	1	-	1	
CO 6	2	-	-	-	-	-	-	-	-	2	-	4	1		1	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

				PRO)GR	AM	OUI	CON	MES				PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	33.4	20	40	1	1	-	-	1	1	1	1	-	16.6	50	1	
CO 2	66.6	-	-	-	-	-	-	-	-	-	1	-	16.6	100	1	
СО 3	66.6	20	10	27.3	-	-	-	-	-	20	-	16.6	16.6	-	-	
CO 4	100.	60	-	36.4	-	-	-	-	-	20	-	25	16.6	-	-	
CO 5	33.4	20	30	27.3	-	-	-	1	-	20	1	33.4	16.6	-	50	
CO 6	66.	-	-	-	-	-	-	-	-	20	-	33.4	66.7	-	50	
	6															

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of o to 3, o being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $0 - 0 \le C \le 5\%$ – No correlation

1 -5 <C≤ 40% - Low/ Slight

2 - 40 % <C < 60% –Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

				PRO)GR	AM	OUT	CON	IES				PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	1	1	2	-	-	-	1	1	1	ı	-		1	-	3	
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	1	-	3	
CO 3	3	1	1	1	-	-	-	-	-	1	-	1	1	-	-	
CO 4	3	3	-	1	-	-	-	-	-	1	-	1	3	-	-	
CO 5	1	1	1	1	-	-	-	-	-	1	-	1	1	-	3	
CO 6	3	-	-	-	-	-	-	-	-	1	-	1	1	-	3	
TOTAL	14	6	4	3	-	-	-	-	-	4	-	4	8	-	12	
AVER- AGE	2.3	1.5	2.6	1	-	ı	ı	ı	1	1	-	1	1.33	-	3	

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	✓	SEE Exams	✓	Assignments	✓
Seminars	✓	Student Viva	-	Certification	-
Laboratory Practices	1	Student viva	-	Mini projects	-
Term Paper	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback	
X	Assessment of Mini Projects by Experts			

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO COMPUTER ORGANIZATION
	Basic computer organization, CPU organization, memory subsystem organization and interfacing, input or output subsystem organization and interfacing, a simple computer levels of programming languages, assembly language instructions, instruction set architecture design, a simple instruction set
MODULE II	ORGANIZATION OF A COMPUTER
	Register transfer: Register transfer language, register transfer, bus and memory transfers, arithmetic micro operations, logic micro-operations, shift micro-operations; Control unit: Control memory, address sequencing, micro program example, and design of control unit.
MODULE III	CPU AND COMPUTER ARITHMETIC
	CPU design: Instruction cycle, data representation, memory reference instructions, input-output, and interrupt, addressing modes, data transfer and manipulation, program control. Computer arithmetic: Addition and subtraction, floating point arithmetic operations, decimal arithmetic unit.
MODULE IV	INPUT-OUTPUT ORGANIZATION AND MEMORY ORGANIZATION
	Memory organization: Memory hierarchy, main memory, auxiliary memory, associative memory, cache memory, virtual memory; Input or output organization: Input or output Interface, asynchronous data transfer, modes of transfer, priority interrupt, direct memory access.
MODULE V	MULTIPROCESSORS
	Pipeline: Parallel processing, pipelining-arithmetic pipeline, instruction pipeline; Multiprocessors: Characteristics of multiprocessors, inter connection structures, inter processor arbitration, inter processor communication and synchronization.

TEXTBOOKS

- 1. 1. M. Morris Mano, "Computer Systems Architecture", Pearson, 3 rd Edition, 2015.
- 2. 2.John D. Carpinelli, "Computer Systems Organization and Architecture", Pearson, 1 st Edition, 2001.
- 3. 3. Patterson, Hennessy, "Computer Organization and Design: The Hardware/Software Interface", Morgan Kaufmann, 5 th Edition, 2013.

REFERENCE BOOKS:

- 1. 1. John. P. Hayes, "Computer System Architecture", McGraw-Hill, 3 rd Edition, 1998.
- 2. 2. Carl Hamacher, Zvonko G Vranesic, Safwat G Zaky, "Computer Organization", McGraw-Hill, 5 th Edition, 2002.
- 3. 3. William Stallings, "Computer Organization and Architecture", Pearson Edition, 8 th Edition, 2010

WEB REFERENCES:

1. http://www.web.stanford.edu/class/cs103x

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details & course_id=528

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference						
	OBE DISCUSSION								
1	In Outcome-Based Education (OBE), we discussed about course delivery assessment that								
	are planned to achieve stated objectives and outcomes. We will focuses on measuring								
	student performance i.e. outcomes at different levels. Course outcomes(CO),Program								
	Outcomes(PO)and Program Specific Outcom	nes(PSO) and a	lso mapping of CO's to PO's						
	PSO's and their attainments are discussed.								
	CONTENT DELIVER	<u> </u>)						
1-2	Outline the basic computer organization	CO1	T1: 4.1-4.2,T1: 4.1						
2-3	Understand the CPU organization, memory subsystem organization and interfacing	CO 1	T1: 4.3-4.4						
4-5	Analyze the input or output subsystem organization and interfacing	CO 1,CO6	T1: 3.1-3.2						
5-6	Understand a simple computer levels of CO 1 T2: 2.5-2.6, programming languages								
7-8	Explain assembly language instructions	CO 2, CO 3	T1:1.5, 1.4.2,1.4.3						
9	Determine the simple instruction set architecture	CO 2	T2: 7.4						
10-11	Understand the register transfer language, register transfer.	CO 2	T2: 5.6-5.7						
12	Analyze bus and memory transfers	CO 2	T1: 6.7-6.8						
13-15	Explain the arithmetic micro-operations, logic micro-operations, shift micro-operations	T2: 8.5-8.7							
16	Understand the control memory	CO 5	T2: 8.6						
17-18	Explain the instruction cycle	CO 2	T2: 10.1-10.5						
19-20	Outline the data representation, memory reference instructions	СО 3	T2: 12.1						
20-21	Analyze input-output, and interrupt, addressing modes	СО 3	T2: 11.2						

22	Discuss the data transfer and manipulation, program control	CO 3	T2: 11.3-11.4
23-25	Determine the Addition and subtraction, floating point arithmetic operations, decimal arithmetic unit	CO 4	T2: 11.5
26	Need of Input or output organization	CO ₅	R1: .3.1
27-29	Discuss the Input or output Interface	CO ₅	R1: 3.3-9.5
30-31	Understand the asynchronous data transfer, modes of transfer	CO ₅	T2: 9.4
32-33	Analyze the priority interrupt, direct memory access	CO ₅	T2:13.1
34	Understand the memory organization	CO ₅	T2:13.2
35-36	Discuss Memory hierarchy, main memory, auxiliary memory, associative memory, cache memory, virtual memory	CO 5	T2: 13.3
37-38	Understand the Pipeline: Parallel processing, Instruction pipeline	CO6	T2: 13.
39	Characteristics of multiprocessors	CO6	T2: 13.1
40	Inter connection structures	CO6	T2: 13.2
41	Inter processor arbitration	CO 3,CO6	T2: 13.3
42	Inter processor communication and synchronization	CO 6	T2: 13.4
	PROBLEM SOLVING/	CASE STUD	IES
1	Problems on BCD conversions	CO1	T2:2.1
2	Problems on BCD conversions	CO1	T2:2.3
3	Problems on Addition and substraction	CO ₃	T2:2.3.1
4	Problems on Multiplication	CO ₃	T2:7.2,7.3
5	Problems on Booths multiplication	CO ₃	T2:10.3.1
6	Problems on Booths Algorithm	CO ₃	T2:13.3.2, 13.4.1
7	Problems on Division	CO ₃	T2:17.1.1, 17.1.3
8	Problems on Data presentation	CO ₃	T2:18.3.4, 18.3.4.1
9	Problems on Data presentation	CO ₃	T2:22.12, 19.1.2
10	Problems on Data presentation	CO ₃	T2:18.4, 18.4.3
11	Problems on floating point arithmetic operations	CO3	T2:19.2, 18.4.4
12	Problems on Decimal arithmatic unit	CO ₃	T2:23.1.1, 23.1.3
	DISCUSSION ON DEFINITION	N AND TERM	IINOLOGY
1	Define register transfer language, fixed point number, instruction format, data Processing instruction, data Processing instruction	CO 1	T2:18.3.4, 18.3.4.1
2	Define miscellaneous Instructions, addressing mode, micro operation.	CO 2	T2:22.12, 19.1.2
3	Define arithmetic micro operations, arithmetic micro operations, logical shift operation	CO 3	T2:18.4, 18.4.3

4	Define data bus,metropolitan area network,network topology,star topology,bus tropology	CO4, CO 5	T2:19.2, 18.4.4
5	define vecto,pipeline cycle time, arithmetic pipeline,optimal number of pipeline stages	CO 6	T2:23.1.1, 23.1.3
	DISCUSSION ON QUI	ESTION BAN	IK
1	Illustrate the input and output operations with a neat diagram.	CO 1	T2:18.3.4, 18.3.4.1
2	List the various instruction formats and illustrate with an example.	CO 2	T2:22.12, 19.1.2
3	Identify micro programexample and build a computer hardware configuration	CO ₃ ,CO ₄	T2:18.4, 18.4.3
4	Illustrate the belowaddressing modes withexamples a. Implied Modeb. Immediate Mode c. Autoincrement and Auto,decrement Mode d. Direct and Indirect Address Mode.	CO ₅	T2:19.2, 18.4.4
5	Define parallel processing and explain the flynn's classification of computer with suitable diagram	CO 6	T2:23.1.1, 23.1.3

Course Coordinator Dr. P Cahandana, Associate Professor HOD,CSE (AI & ML)

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	DATABAS	DATABASE MANAGEMENT SYSTEMS LABORATORY				
Course Code	ACSB09	ACSB09				
Program	B.Tech	B.Tech				
Semester	IV	IV CSE/IT				
Course Type	Core	Core				
Regulation	IARE - R18	IARE - R18				
		Theory		I	Practical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	1.5	
Course Coordinator	Ms B Geetavani, Assistant Professor					

I COURSE OVERVIEW:

This Laboratory course introduces the query language for design and development of a database by using various software's such as SQL, ORACLE, and MS – Access etc. It provides practice on built-in SQL functions using languages like DDL, DCL, DML and TCL to create and manage database systems and perform Set operations, Sub Queries, Joins; and PL/SQL programs to implement Exceptions, Cursors, Stored Functions, Views, Sequences, Locks and Triggers. This is essential for mobile and web application development for business, scientific and engineering applications.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB03	III	Data Structures

III MARKS DISTRIBUTION:

SEE Examination	CIE Examination	Total Marks
70 Marks	30 Marks	100
		SEE Examination CIE Examination 70 Marks 30 Marks

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab Worksheets		Viva		Probing further
✓		\checkmark		✓	Questions	✓	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of of of the final assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	Total Warks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

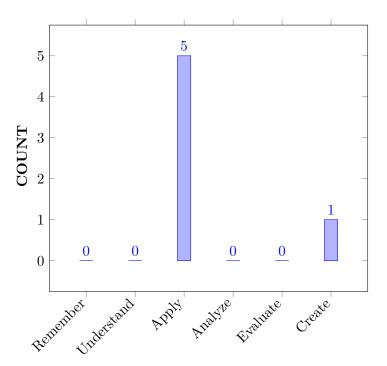
Objective	Analysis	Design	Conclusion	Viva	Total
_	-	-	-	-	-

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	The SQL commands for data definition, manipulation, control and perform transactions in database systems.
II	The procedural language for implementation of functions, procedures, cursors and triggers using PL/SQL programs.
III	The logical design of a real time database system with the help of Entity Relationship diagrams.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate database creation and manipulation concepts with the	Apply
	help of SQL queries	
CO 2	Make use of inbuilt functions of SQL queries to perform data	Apply
	aggregations, subqueries, embedded queries and views.	
CO 3	Apply key constraints on database for maintaining integrity and	Apply
	quality of data.	
CO 4	Demonstrate normalization by using referential key constraint.	Apply
CO 5	Implement PL/SQL programs on procedures, cursors and triggers	Apply
	for enhancing the features of database system to handle exceptions.	
CO 6	Design database model with the help of Entity Relationship diagrams	Create
	for a real time system or scenario.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab Exercises,CIE,SEE
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	3	Lab Exercises,CIE,SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Lab Exer- cises,CIE,SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Lab Exer- cises,CIE,SEE
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Lab Exercises,CIE,SEE

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Profi-
			ciency
			Assessed
			by
PSO 2	Problem-Solving Skills: The ability to apply	3	Lab
	standard practices and strategies in software project		Exercises
	development using open-ended programming		
	environments to deliver a quality product for		
	business success.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COLIDGE	PO'S		No of Vo.
COURSE OUTCOMES	PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 2	Demonstrate the use of SQL for database creation and maintenance with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	3
	PO 3	Demonstrate the use of SQL for database creation and maintenance with the help of Investigate and define a problem and identify constraints Manage the design process and evaluate outcomes,	4
	PO 5	Demonstrate the use of SQL for database creation and maintenance by Understanding of contexts in which engineering knowledge can be applied, understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	3
	PSO 2	Demonstrate the use of SQL for database creation and maintenance by using a set of instructions	1
CO 2	PO 2	Make Use of SQL queries for data aggregation, calculations, views, sub-queries, embedded queries manipulation with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	4
	PO 3	Make Use of SQL queries for data aggregation, calculations, views, sub-queries, embedded queries manipulation with the help of Investigate and define a problem and identify constraints, Manage the design process and evaluate outcomes.	3
	PO 5	Make Use of SQL queries for data aggregation, calculations, views, sub-queries, embedded queries manipulation by Understanding of contexts in which engineering knowledge can be applied, understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	3
	PO 10	Build strong foundation on SQL queries for career building by communicating effectively with engineering community.	2
	PSO 2	Make Use of SQL queries for data aggregation, calculations, views, sub-queries, embedded queries manipulation by using a set of steps.	3
CO 3	PO 2	Define the relational data model, its constraints and keys to maintain integrity of data with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	4

	PO 10	Build strong foundation on relational model and keys for career building by communicating effectively with engineering community.	2
CO 4	PO 2	Apply normalization techniques to normalize a database with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	4
	PO 3	Apply normalization techniques to normalize a database Investigate and define a problem and identify constraints, understand customer and user needs, Manage the design process and evaluate outcomes, Investigate and define a problem and identify constraints, understand customer and user needsManage the design process and evaluate outcomes	4
	PO 5	Apply normalization techniques to normalize a database by Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	3
	PSO 2	Apply normalization techniques to normalize a database by using sequence of steps	1
CO 5	PO 2	Define PL/SQL programs on procedures, cursors and triggers for enhancing the features of database system to handle exceptions. with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	4
CO 6	PO 2	Model the real-world database systems using Entity Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	4
	PO 3	Model the real-world database systems using Entity Relationship Diagrams from the requirement specification through Investigate and define a problem and identify constraints, Understand customer and user needs, Manage the design process and evaluate outcomes.	4
	PO 5	Model the real- world database systems using Entity Relationship Diagrams from the requirement specification Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	3
	PO 12	Build strong foundation on SQL and ER diagrams for career building by communicating effectively with engineering community.	2
	PSO 2	Model the real-world database systems using Entity Relationship Diagrams from the requirement specification by using sequence of steps	1

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Table 10:

				tore ro.		
Course Outcomes		Prog	ram Ou	itcomes	Program Specific Outcomes	
	PO2	PO3	PO5	PO10	PO12	PSO2
CO1	2	3	3			3
CO2	2	3	3	2		3
CO3	2			3		
CO4	2	3	3			2
CO5	2					
CO6	2	3	3		2	3

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 2, PO 3,	SEE Exams	PO 2,PO 3,	Seminars	-
	PO 5		PO 5, PO		
			10,PO 12		
Laboratory	PO 2,PO 3,	Student Viva	PO 2, PO	Certification	-
Practices	PO 5		3,PO 10		
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

✓	✓ Early Semester Feedback		End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK I	CREATION OF TABLES				
	1. Create a table called Employee with the following structure.				
	Name Type				
	Emp no Number				
	E name Varchar2(20)				
	Job $Varchar2(20)$				
	Mgr Number				
	Sal Number				

- Add a column commission with domain to the Employee table
- Insert any five records into the table.
- Update the column details of job
- Rename the column of Employ table using alter command.
- Delete the employee whose empno is 19.

2. Create department table with the following structure.

Name Type

Dept no Number

Dept name Varchar2(20)

location Varchar2(20)

- Add column designation to the department table.
- Insert values into the table.
- List the records of emp table grouped by dept no. Update the record where dept no is 9.
- Delete any column data from the table.

3. Create a table called Customer table

Name Type

Cust Name Varchar2(20)

Cust city Varchar2(20)

Cust city Varchar2(20)

- Insert records into the table.
- Add salary column to the table.
- Alter the table column domain.
- Drop salary column of the customer table.
- Delete the rows of customer table whose cust city is hyd.

4. Create a table called branch table.

Name Type

Branch Name Varchar2(20)

Branch city Varchar2(20)

Asserts Number

- Increase the size of data type for asserts to the branch.
- Add and drop a column to the branch table.
- Insert values to the table.
- Update the branch name column
- Delete any two columns from the table

5. Create a table called sailor table

Name Type

S Name Varchar2(20)

Rating Varchar2(20)

Sid Number

- Add column age to the sailor table.
- Insert values into the sailor table.
- Delete the row with rating>8.
- Update the column details of sailor.
- Insert null values into the table.

6. Create a table called reserves table.

Name Type

Boat Id Number

Day Number

Sid Number

- Insert values into the reserves table.
- Add column time to the reserves table.
- Alter the column day data type to date.
- Drop the column time in the table.
- Delete the row of the tall agwish some condition.

WEEK II	QUERIES USING DDL AND DML
	 a. Create a user and grant all permissions to the user. b. Insert the any three records in the employee table and use rollback. Check the result. c. Add primary key constraint and not null constraint to the employee table. d. Insert null values to the employee table and verify the result. 2.
	 a. Create a user and grant all permissions to the user. b. Insert values in the department table and use commit. c. Add constraints like unique and not null to the department table. d. Insert repeated values and null values into the table. 3.
	 a. Create a user and grant all permissions to the user. b. Insert values into the table and use commit. c. Delete any three records in the department table and use rollback. d. Add constraint primary key and foreign key to the table. 4.
	 a. Create a user and grant all permissions to the user. b. Insert records in the sailor table and use commit. c. Add save point after insertion of records and verify savepoint. d. Add constraints not null and primary key to the sailor table. 5.
	 a. Create a user and grant all permissions to the user. b. Use revoke command to remove user permissions. c. Change password of the user created. d. Add constraint foreign key and not null. 6.
	a. Create a user and grant all permissions to the user.b. Update the table reserves and use savepoint and rollback.c. Add constraint primary key , foreign key and not null to the reserves table
WEEK III	QUERIES USING AGGREGATE FUNCTIONS 1. a. By using the group by clause, display the enames who belongs to
	deptno 10, whose salary is same as respective departments average salary. b. Display lowest paid employee details under each department. c. Display number of employees working in each department and their department number. d. Using builtin functions, display number of employees working in each department and their department name from dept table. Insert deptname to dept table and insert deptname for each row, do the required thing specified above.
	e. List all employees which start with either B or C. f. Display only these ename of employees where the maximum salary is greater than or equal to 5000.

a. Calculate the average salary for each different job. b. Show the average salary of each job excluding manager. c. Show the average salary for all departments employing more than three people. d. Display employees who earn more than the lowest salary in department 30 e. Show that value returned by sign (n)function. f. How many days between day of birth to current date. 3. a. Show that two substring as single string. b. List all employee names, salary and 15% rise in salary. c. Display lowest paid emp details under each manager d. Display the average monthly salary bill for each deptno. e. Show the average salary for all departments employing more than two f. By using the group by clause, display the eid who belongs to deptno 05 along with average salary. a. Count the number of employees in department 20 b. Find the minimum salary earned by clerk. c. Find minimum, maximum, average salary of all employees. d. List the minimum and maximum salaries for each job type. e. List the employee names in descending order. f. List the employee id, names in ascending order by empid. a. Find the sids ,names of sailors who have reserved all boats called "INTERLAKE Find the age of youngest sailor who is eligible to vote for each rating level with at least two such sailors. b. Find the sname, bid and reservation date for each reservation. c. Find the ages of sailors whose name begin and end with B and has at least 3 characters. d. List in alphabetic order all sailors who have reserved red boat. e. Find the age of youngest sailor for each rating level. a. List the Vendors who have delivered products within 6 months from order b. Display the Vendor details who have supplied both Assembled and Subparts.

- c. Display the Sub parts by grouping the Vendor type (Local or NonLocal).
- d. Display the Vendor details in ascending order.

PROGRAMS ON PL/SQL WEEK IV

- a. Write a PL/SQL program to swap two numbers.
- b. Write a PL/SQL program to find the largest of three numbers.

- a. Write a PL/SQL program to find the total and average of 6 subjects and display the grade.
- b. Write a PL/SQL program to find the sum of digits in a given number.

	 a. Write a PL/SQL program to display the number in reverse order. b. Write a PL / SQL program to check whether the given number is prime or not. 4.
	a. Write a PL/SQL program to find the factorial of a given number. b. Write a PL/SQL code block to calculate the area of a circle for a value of radius varying from 3 to 7. Store the radius and the corresponding values of calculated area in an empty table named areas, consisting of two columns radius and area. 5.
	a. Write a PL/SQL program to accept a string and remove the vowels from the string. (When "hello passed to the program it should display "Hll removing e and o from the world Hello).
	b. Write a PL/SQL program to accept a number and a divisor. Make sure the divisor is less than or equal to 10. Else display an error message. Otherwise Display the remainder in words.
WEEK V	PROCEDURES AND FUNCTIONS
WEEK VI	 Write a function to accept employee number as parameter and return Basic +HRA together as single column. Accept year as parameter and write a Function to return the total net salary spent for a given year. Create a function to find the factorial of a given number and hence find NCR. Write a PL/SQL block o pint prime Fibonacci series using local functions. Create a procedure to find the lucky number of a given birthdate. Create function to the reverse of given number. TRIGGERS
WEEK VI	
	1. Create a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the salary difference between the old values and new values: CUSTOMERS table. 2. Creation of insert trigger, delete trigger, update trigger practice triggers using the passenger database. Passenger (Passport id INTEGER PRIMARY KEY, Name VARCHAR (50) Not NULL, Age Integer Not NULL, Sex Char, Address VARCHAR (50) Not NULL); a. Write a Insert Trigger to check the Passport id is exactly six digits or not. b. Write a trigger on passenger to display messages "1 Record is inserted, "1 record is deleted, "1 record is updated when insertion, deletion and updation are done on passenger respectively.

3. Insert row in employee table using Triggers. Every trigger is created with name any trigger have same name must be replaced by new name. These triggers can raised before insert, update or delete rows on data base. The main difference between a trigger and a stored procedure is that the former is attached to a table and is only fired when an INSERT, UPDATE or DELETE occurs. 4. Convert employee name into uppercase whenever an employee record is inserted or updated. Trigger to fire before the insert or update. 5. Trigger before deleting a record from emp table. Trigger will insert the row to be deleted into table called delete emp and also record user who has deleted the record and date and time of delete. 6. Create a transparent audit system for a table CUST MSTR. The system must keep track of the records that are being deleted or updated WEEK VII **PROCEDURES** 1. Create the procedure for palindrome of given number. 2. Create the procedure for GCD: Program should load two registers with two Numbers and then apply the logic for GCD of two numbers. GCD of two numbers is performed by dividing the greater number by the smaller number till the remainder is zero. If it is zero, the divisor is the GCD if not the remainder and the divisors of the previous division are the new set of two numbers. The process is repeated by dividing greater of the two numbers by the smaller number till the remainder is zero and GCD is found. 3. Write the PL/SQL programs to create the procedure for factorial of given number. 4. Write the PL/SQL programs to create the procedure to find sum of N natural number. 5. Write the PL/SQL programs to create the procedure to find Fibonacci series. 6. Write the PL/SQL programs to create the procedure to check the given number is perfect or not. WEEK VIII **CURSORS** 1. Write a PL/SQL block that will display the name, dept no, salary of fist highest paid employees. 2. Update the balance stock in the item master table each time a transaction takes place in the item transaction table. The change in item master table depends on the item id is already present in the item master then update operation is performed to decrease the balance stock by the quantity specified in the item transaction in case the item id is not present in the item master table then the record is inserted in the item master table. 3. Write a PL/SQL block that will display the employee details along with salary using cursors. 4. To write a Cursor to display the list of employees who are working as a Managers or Analyst.

5. To write a Cursor to find employee with given job and deptho. 6. Write a PL/SQL block using implicit cursor that will display message, the salaries of all the employees in the "employee table are updated. If none of the employee salary are updated we get a message 'None of the salaries were updated'. Else we get a message like for example, 'Salaries for 1000 employees are updated' if there are 1000 rows in "employee table. WEEK IX CASE STUDY: BOOK PUBLISHING COMPANY A publishing company produces scientific books on various subjects. The books are written by authors who specialize in one particular subject. The company employs editors who, not necessarily being specialists in a particular area, each take sole responsibility for editing one or more publications. A publication covers essentially one of the specialist subjects and is normally written by a single author. When writing a particular book, each author works with on editor, but may submit another work for publication to be supervised by other editors. To improve their competitiveness, the company tries to employ a variety of authors, more than one author being a specialist in a particular subject for the above case study, do the following: 1. Analyze the data required. 2. Normalize the attributes. Create the logical data model using E-R diagrams. WEEK X CASE STUDY GENERAL HOSPITAL A General Hospital consists of a number of specialized wards (such as Maternity, Pediatric, Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation of their own GP and confirmed by a consultant employed by the Hospital. On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient is assigned to one leading consultants for a number of patients, not necessarily from the same ward. For the above case study, do the following. 1. Analyze th		
A publishing company produces scientific books on various subjects. The books are written by authors who specialize in one particular subject. The company employs editors who, not necessarily being specialists in a particular area, each take sole responsibility for editing one or more publications. A publication covers essentially one of the specialist subjects and is normally written by a single author. When writing a particular book, each author works with on editor, but may submit another work for publication to be supervised by other editors. To improve their competitiveness, the company tries to employ a variety of authors, more than one author being a specialist in a particular subject for the above case study, do the following: 1. Analyze the data required. 2. Normalize the attributes. Create the logical data model using E-R diagrams. WEEK X CASE STUDY GENERAL HOSPITAL A General Hospital consists of a number of specialized wards (such as Maternity, Pediatric, Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation of their own GP and confirmed by a consultant employed by the Hospital. On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are specialists in some branch of medicine and may be leading consultants for a number of patients, not necessarily from the same ward. For the above case study, do the following. 1. Analyze the data required. 2. Normalize the attributes. 3. Create the logical data model using E-R diagrams.		6. Write a PL/SQL block using implicit cursor that will display message, the salaries of all the employees in the "employee table are updated. If none of the employees salary are updated we get a message 'None of the salaries were updated'. Else we get a message like for example, 'Salaries for 1000 employees are updated' if there
subjects. The books are written by authors who specialize in one particular subject. The company employs editors who, not necessarily being specialists in a particular area, each take sole responsibility for editing one or more publications. A publication covers essentially one of the specialist subjects and is normally written by a single author. When writing a particular book, each author works with on editor, but may submit another work for publication to be supervised by other editors. To improve their competitiveness, the company tries to employ a variety of authors, more than one author being a specialist in a particular subject for the above case study, do the following: 1. Analyze the data required. 2. Normalize the attributes. Create the logical data model using E-R diagrams. WEEK X CASE STUDY GENERAL HOSPITAL A General Hospital consists of a number of specialized wards (such as Maternity, Pediatric, Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation of their own GP and confirmed by a consultant employed by the Hospital. On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are specialists in some branch of medicine and may be leading consultants for a number of patients, not necessarily from the same ward. For the above case study, do the following. 1. Analyze the data required. 2. Normalize the attributes. 3. Create the logical data model using E-R diagrams.	WEEK IX	CASE STUDY: BOOK PUBLISHING COMPANY
A General Hospital consists of a number of specialized wards (such as Maternity, Pediatric, Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation of their own GP and confirmed by a consultant employed by the Hospital. On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are specialists in some branch of medicine and may be leading consultants for a number of patients, not necessarily from the same ward. For the above case study, do the following. 1. Analyze the data required. 2. Normalize the attributes. 3. Create the logical data model using E-R diagrams.		subjects. The books are written by authors who specialize in one particular subject. The company employs editors who, not necessarily being specialists in a particular area, each take sole responsibility for editing one or more publications. A publication covers essentially one of the specialist subjects and is normally written by a single author. When writing a particular book, each author works with on editor, but may submit another work for publication to be supervised by other editors. To improve their competitiveness, the company tries to employ a variety of authors, more than one author being a specialist in a particular subject for the above case study, do the following: 1. Analyze the data required. 2. Normalize the attributes.
as Maternity, Pediatric, Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation of their own GP and confirmed by a consultant employed by the Hospital. On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are specialists in some branch of medicine and may be leading consultants for a number of patients, not necessarily from the same ward. For the above case study, do the following. 1. Analyze the data required. 2. Normalize the attributes. 3. Create the logical data model using E-R diagrams.	WEEK X	CASE STUDY GENERAL HOSPITAL
WEEK AT CASE STODI. CAR RENTAL COMPANI	WEEK VI	as Maternity, Pediatric, Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation of their own GP and confirmed by a consultant employed by the Hospital. On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are specialists in some branch of medicine and may be leading consultants for a number of patients, not necessarily from the same ward. For the above case study, do the following. 1. Analyze the data required. 2. Normalize the attributes. 3. Create the logical data model using E-R diagrams.
	WEEK XI	CASE STUDY: CAR RENTAL COMPANY

A database is to be designed for a car rental company. The information required includes a description of cars, subcontractors (i.e. garages), company expenditures, company revenues and customers. Cars are to be described by such data as: make, model, year of production, engine size, fuel type, number of passengers, registration number, purchase price, purchase date, rent price and insurance details. It is the company policy not to keep any car for a period exceeding one year. All major repairs and maintenance are done by subcontractors (i.e. franchised garages), with whom CRC has long-term agreements. Therefore the data about garages to be kept in the database includes garage names, addresses, range of services and the like. Some garages require payments immediately after a repair has been made; with others CRC has made arrangements for credit facilities. Company expenditures are to be registered for all outgoings connected with purchases, repairs, maintenance, insurance etc. Similarly the cash inflow coming from all sources: Car hire, car sales, insurance claims must be kept of file. CRC maintains a reasonably stable client base. For this privileged category of customers special credit card facilities are provided. These customers may also book in advance a particular car. These reservations can be made for any period of time up to one month. Casual customers must pay a deposit for an estimated time of rental, unless they wish to pay by credit card. All major credit cards are accepted. Personal details such as name, address, telephone number, driving license, number about each customer are kept in the database. For the above case study, do the following:

- 1. Analyze the data required.
- 2. Normalize the attributes.

WEEK XII

CASE STUDY: STUDENT PROGRESS MONITORING SYSTEM

A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc) within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre-requisites modules and some degree programme have compulsory modules. The database is also to contain some information about students including their numbers, names, addresses, degrees they read for, and their past performance i.e. modules taken and examination results. For the above case study, do the following:

- 1. Analyze the data required.
- 2. Normalize the attributes.
- 3. Create the logical data model i.e., ER diagrams.
- 4. Comprehend the data given in the case study by creating respective tables with primary keys and foreign keys wherever required.
- 5. Insert values into the tables created (Be vigilant about Master- Slave tables).
- 6. Display the Students who have taken M.Sc course.
- 7. Display the Module code and Number of Modules taught by each Lecturer.
- 8. Retrieve the Lecturer names who are not Module Leaders.
- 9. Display the Department name which offers "English" module.
- 10. Retrieve the Prerequisite Courses offered by every Department(with department names).
- 11. Present the Lecturer ID and Name who teaches "Mathematics .
- 12. Discover the number of years a Module is taught.
- 13. List out all the Faculties who work for "Statistics Department.
- 14. List out the number of Modules taught by each Module Leader.
- 15. List out the number of Modules taught by a particular Lecturer.
- 16. Create a view which contains the fields of both Department and Module tables. (Hint The fields like Module code, title, credit, Department code and its name).
- 17. Update the credits of all the prerequisite courses to 5. Delete the Module ":History from the Module table.

TEXTBOOKS

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", Mcraw-Hill, 4th Edition, 2002.
- 2. Ivan Bayross, "SQL, PL/SQL The programming language of oracle", BPB publications, 4th Revised Edition, 2010.

REFERENCE BOOKS:

- 1. Ramez Elmasri, Shamkant, B. Navathe, "Database Systems", Pearson Education, 6th Edition, 2013.
- 2. Peter Rob, Carles Coronel, "Database System Concepts", Cengage Learning, 7th Edition, 2008.
- 3. M L Gillenson, "Introduction to Database Management", Wiley Student Edition, 2012.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	$\mathbf{CO's}$	Reference
1	Introduction to database management system environments	CO 1	T1:4.1, T2:1.1
2	Creation of tables using DDL and DML commands.	CO 2	T1:4.9,4.11, T2:7
3	Working with integrity constraints	CO 3,CO 4	T1:3, T2:8
4	Working with DCL and TCL commands	CO 1,CO 2	T1:6.6, T2:12
5	Queries using aggregate functions.	CO 3	T1:4.4, T2:10

6	Nested queries using comparison keywords and	CO 3	T1:4.6, T2:10
	logical operators.		
7	Working with Programs on pl/sql.	CO 6	T2:15
8	Working with Procedures.	CO 3,CO 6	T2:18
9	Working with Triggers.	CO 6	T2:18
10	Working with functions.	CO 5	T2:18
11	Working with Cursors.	CO 6	T2:10
12	Case study	CO 7	T1:2, T2:1

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Implementation of views using SQL.
2	Practical Implementation of assertions using PL/SQL.

Signature of Course Coordinator Ms B Geetavani, Assistant Professor $_{
m HOD,CSE}$

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING				
Course Title	СОМР	COMPILER DESIGN			
Course Code	AIT004				
Program	B.Tech				
Semester	V				
Course Type	Core				
Regulation	R16				
	Theory Practical			tical	
Course Structure	Lecture Tutorials Credits Laboratory Credits			Credits	
	2	1	3	-	-
Course Coordinator	Ms. K.Sreeveda , Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	ACS01	I	Computer Programming
UG	ACS02	П	Data Structures
UG	AHS013	Ш	Discrete Mathematical Structures
UG	AIT002	IV	Theory of Computation

II COURSE OVERVIEW:

This course describes the basic techniques for compiler construction and tools that can be used to perform syntax-directed translation of a high-level programming language into an executable code. It will provide deeper insights into the more advanced semantics aspects of programming languages, machine independent optimizations and code generation.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Compiler Design	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Chalk & Talk		Quiz		Assignments	х	MOOCs
✓		>		>			
	PPT		Seminars	х	Mini Project		Videos
√		√			, and the second	✓	
х	open Ended Experiments						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
7.69%	Remember
53.84 %	Understand
38.46 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz	AAT	Total Ivial KS
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

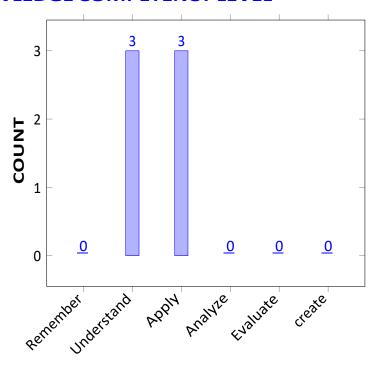
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The process of translating a high-level language to machine code required for compiler construction.
Ш	The Software tools and techniques used in compiler construction such as lexical analyser and parser generators.
Ш	The data structures used in compiler construction such as abstract syntax trees, symbol tables, three-address code, and stack machines.
IV	The deeper insights into the syntax and semantic aspects of programming languages, dynamic memory allocation and code generation.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize phases of a compiler in the construction of language	Understand
	processors.	
CO 2	Make use of finite automata for designing a lexical analyzer for	Apply
	a specific programming language constructs.	
CO 3	Choose top down, bottom up parsing methods for developing a	Apply
	parser with representation of a parse table or tree.	
CO 4	Outline syntax directed translations, intermediate forms for	Understand
	performing semantic analysis along with code generation.	
CO 5	Relate symbol table, type checking and storage allocation	Understand
	strategies used in run-time environment.	
CO 6	Select code optimization techniques on intermediate code form	Apply
	for generating target code.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	Program Outcomes
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE / Quiz / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	1	CIE / Quiz / AAT
PO 3	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	CIE / Quiz / AAT
PO 5	Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	3	CIE / Quiz / AAT

PO 10	Communication: Communicate effectively on	2	CIE / Quiz /	
	complex Engineering activities with the		AAT/Tech-	
	Engineering community and with society at		Talk	
	large, such as, being able to comprehend and			
	write effective reports and design			
	documentation, make effective presentations,			
	and give and receive clear instructions.			

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyse computer programs in the areas related to Algorithms, System Software, Web design, Bigdata, Artificial Intelligence, Machine Learning and Networking.	3	Group dis- cussion/ Short term courses
PSO 2	Focus on improving software reliability, network security and information retrieval systems.	3	Industry expo- sure/AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	Group dis- cussion/ Short term courses/AA

3 = High; **2** = Medium; **1** = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO 1	✓	-	-	-	✓	-	-	-	-	-		-	✓	-	-			
CO 2	✓	-	-	-	-	-	-	-	-	-	-	-	✓	-	-			
CO 3	✓	✓	-	-	-	-	-	-	-	-	-	-	-	✓	-			
CO 4	✓	-	✓	-	✓	-	-	-	-	-	-	-	-	-	-			
CO 5	-	1	1	-	=	=	-	-	-	-	-	-	=	-	-			
CO 6	1	1	-	-	✓	-	-	-	-	1	-	-	-	-	/			

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Describe the role of lexical analyzer and recognition of tokens, from regular expressions to finite automataby applying engineering fundamentals and provide solutions to engineering problems.	2
	PO 5	Understand the phases of compiler in optimizing regular Expressions by using the mathematical principles and computer science methodologies.	1
	PSO 1	Understand pass and phases of translation for specific problems with lexical analyzer generator.	1
CO2	PO 1	Understand the significant phases of translation, bootstrapping, LEX-lexical analyzer generator in lexical analysis using mathematical principles, fundamental of Computer engineering specialization and scientific principles.	3
	PSO 1	Understand the finite automata, regular Expressions in the area related to lexical analysis.	1
CO 3	PO 1	Understand the different types of parsing methods including the backtracking by apply the knowledge of computer engineering fundamentals and mathematical principles	2
	PO 2	Understand the problem statement and choose appropriate techniques by analyzing various grammars including stack implementation of parser by the interpretation of results.	3
	PSO 2	Understand the basic difference between top down parsing and bottom up parsing with reference to grammars and parser generator.	2
CO 4	PO 1	Describe Intermediate forms using syntax tree and three address code using mathematical principles and scientific principles.	2
	PO 3	Explain and demonstrate the translation of simple statements, Boolean expression and flow of control statements with three address code.	2
	PO 5	Understand the concepts of three address statements and its implementation in the intermediate code generation.	1
CO 5	PO 2	Analyze the process of symbol tables in runtime environment.	1
	PO 3	Understand the concepts of runtime environment evaluate the Source languageissues.	2

CO 6	PO 1	Demonstrate the code optimization by applying the principles of mathematics and engineering fundamentals.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems in the Design of a Code Generator and addresses in the target Code in reaching substantiated conclusions by the interpretation of results.	3
	PO 5	Create the addresses for Design of a Code Generator (complex) Engineering activities in Computer software.	1
	PO 10	Understand code optimization techniques on intermediate code forms such as syntax trees and design documentation, for improving the performance of a program.	1
	PSO 3	Demonstrate the basic optimization in real world software, using industry standard tools and collaboration techniques in the field of application programming.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

		PROGRAM OUTCOMES												PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	2				1								1				
CO 2	3												1				
CO 3	2	3												2			
CO 4	2		2		1												
CO 5		1	2														
CO6	2	3			1					1					1		

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

		PROGRAM OUTCOMES													PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO 1	66.7	0.0	0.0	0.0	100.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0			
CO 2	100.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0			
CO 3	66.7	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0			
CO 4	66.7	0.0	20.0	0.0	100.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
CO 5	0.0	10.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

		PROGRAM OUTCOMES										PSO'S	;		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	1 2 3 4 5 6 7 8 9 10 11 12								12	1	2	3		
CO 6	66.7	30.0	0.0	0.0	100.	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	50.0

XV COURSE ARTICULATION MATRIX (PO - PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\mathbf{0}$ 0≤ C≤ 5% No correlation
- 2 40 % <C < 60% -Moderate
- **1-5** <C≤ 40% Low/ Slight
- **3** 60% ≤ C < 100% Substantial /High

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	3	-	ı	1	-	-	-	-	3	-	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 3	3	1	-	-	-	-	-	-	-	-	-	-	-	3	
CO 4	3	-	1	-	3	-	-	-	-	-	-	-	-	-	-
CO 5	1	1	1	-	-	-	-	-	-	-	-	-	-	-	
CO 6	3	1	-	-	3	-	-	-	-	2	-	-	-	-	2
TOTAL	15	3	2		9					2			6	3	2
AVERAGE	3	1	1		3			·		2			3	3	2

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	V	SEE Exams	V	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Ex- periments	-
Assignments	√				

XVII ASSESSMENT METHODOLOGY INDIRECT:

√	Early Semester Feedback		End Semester OBE Feedback
X	Assessment of Mini Projects by Exp	perts	

XVIII SYLLABUS:

_	
MODULE I	INTRODUCTION TO COMPILERS AND PARSING
	Introduction to compilers: Definition of compiler, interpreter and its differences, the phases of a compiler; Lexical Analysis: Role of lexical analyzer, input buffering, recognition of tokens, finite automata, regular Expressions, from regular expressions to finite automata, pass and phases of translation, bootstrapping, LEX-lexical analyzer generator. Parsing: Parsing, role of parser, context free grammar, derivations, parse trees, ambiguity, elimination of left recursion, left factoring, eliminating ambiguity from dangling-else grammar, classes of parsing, topdown parsing: backtracking, recursive-descent parsing, predictive parsers, LL(1) grammars.
MODULE II	BOTTOM-UP PARSING
	Bottom-up parsing: Definition of bottom-up parsing, handles, handle pruning, stack implementation of shift- reduce parsing, conflicts during shift-reduce parsing, LR grammars, LR parsers-simple LR, canonical LR and Look Ahead LR parsers, error recovery in parsing, parsing ambiguous grammars, YACC-automatic parser generator.
MODULE III	SYNTAX-DIRECTED TRANSLATION AND INTERMEDIATE CODE GENERATION
	Syntax-directed translation: Syntax directed definition, construction of syntax trees, S-attributed and L- attributed definitions, translation schemes, emitting a translation. Intermediate code generation: Intermediate forms of source programs— abstract syntax tree, polish notation and three address code, types of three address statements and its implementation, syntax directed translation into three-address code, translation of simple statements, Boolean expressions and flow-of control statements
MODULE IV	TYPE CHECKING ANDRUN TIME ENVIRONMENT
	Type checking: Definition of type checking, type expressions, type systems, static and dynamic checking of types, specification of a simple type checker, equivalence of type expressions, type conversions, overloading of functions and operators; Run time environments: Source language issues, Storage organization, storage- allocation strategies, access to nonlocal names, parameter passing, symbol tables, and language facilities for dynamic storage allocation.
MODULE V	CODE OPTIMIZATION AND CODE GENERATION
	Code optimization: The principle sources of optimization, optimization of basic blocks, loops in flow graphs, peephole optimization; Code generator: Issues in the design of a code generator, the target machine, runtime storage management, basic blocks and flow graphs, a simple code generator, register allocation and assignment, DAG representation of basic blocks.

TEXTBOOKS

1. Alfred V.Aho, RaviSethi, Jeffrey D, Ullman, —Compilers—Principles, Techniques and Tools, Pearson Education, 2nd Edition, 2006.

REFERENCE BOOKS:

- 1. Kenneth C.Louden, Thomson, —Compiler Construction—Principles and Practice, PWS Publishing, 1st Edition, 1997.
- 2. Andrew W. Appel, —Modern Compiler Implementation C, Cambridge University Press, Revised Edition, 2004.

COURSE WEB PAGE:

- 1. http://csenote.weebly.com/principles-of-compiler-design.html
- 2. http://www.faadooengineers.com/threads/32857-Compiler-Design-Notes-full-book-pdf-download
- 3. http://www.e-booksdirectory.com/details.php?ebook=10166
- 4. http://www.e-booksdirectory.com/details.php?ebook=7400re

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference				
	OBE DISCUS	SION					
1	In Outcome-Based Education (OBE), we discussed about course delivery assessment that						
	are planned to achieve stated objectives and	outcomes. W	e will focuses on measuring				
	student performance i.e. outcomes at differen	nt levels. Coເ	urse outcomes(CO),Program				
	Outcomes(PO)and Program Specific Outcome	es(PSO) and	also mapping of CO's to PO's				
	PSO's and their attainments are discussed.						
	CONTENT DELIVER	Y (THEO	RY)				
1	Introduction to compilers: Definition of compiler, interpreter and its differences	CO 1	T1:1.1-1.5 R1:1.1				
2	The phases of a compiler	CO 1	T1:3.6-3.7 R1:2.2-2.4				
3	Lexical Analysis: Role of lexical analyzer, input buffering	CO 1	T1: 1.5				
4	recognition of tokens, finite automata.	CO 2	T1:1.1 R1:1.6				
5	regular Expressions	CO 2	T1:3.8-4.3 R1:3.1-3.3				
6	from regular expressions to finite automata.	CO 2	T1: 4.3-4.4 R1:4.1				
7-8	pass and phases of translation, bootstrapping, LEX-lexical analyzer generator.	CO 2	T1:4.5-4.7 R1:4.3-4.5				
9	Syntax Analysis: Parsing, role of parser, context free grammar.	CO 3	T1:4.5-4.7 R1:5.1-5.2				
10	derivations, parse trees, ambiguity	CO 3	T1:4.7 R1:5.3				
11	elimination of left recursion, left factoring	CO 3	T1: 4.7 R1:5.4-5.5				
12	eliminating ambiguity from dangling-else grammar	CO 3	T1:4.7 R1:5.6				
13	Types of parsing: Top-down parsing	CO 3	T1:4.9 R1:5.5				

14	backtracking, recursive-descent parsing,	CO 3	T1: 4.9
	predictive parsers,		
15	LL (1) grammars	CO 3	T1: 5.1-5.4 R1:6.1
16	Bottom-up parsing: Definition of bottom-up parsing,.	CO 3	T1:8.4-8.6
17	handles, handle pruning, stack implementation of shift-reduce parsing,	CO 3	T1: 6.1 R1:6.4-6.5
18	conflicts during shift-reduce parsing,	CO 3	T1: 7.1-7.5 R1:7.1
19	LR grammars, LR parsers-simple LR,	CO 3	T1: 7.6-7.7
20	canonical LR and Look Ahead LR parsers,	CO 3	T1: 10.2
21	YACC-automatic parser generator.	CO 3	T1:10.1-10.2 T1:10.4,9.9
22	Syntax-Directed Translation: Syntax directed definitions, construction of syntax trees	CO 4	T1: 9.1-9.2
23	S-attributed and L- attributed definitions; Syntax Directed Translation schemes.	CO 4	T1: 9.3 R1:7.6
24	Intermediate code generation: Intermediate forms of source	CO 4	T1: 9.4
25	programs— abstract syntax tree, polish notation and three address code,	CO 4	T1:9.6-9.7 R1:8.1-8.8
26	Types of three address statements and its implementation	CO 4	T1: 9.8
27	syntax directed translation into three-address code	CO 4	T1: 9.1-9.2
28	translation of simple statements, Boolean expressions	CO 4	T1: 9.1-9.2
29	Flow-of- Control statements.	CO 4	R1:8.1-8.8
30	Type checking: Definition of type checking,	CO 5	R1:8.1-8.8
31	type expressions, type systems, static and dynamic checking of	CO 5	T1: 9.4
32	specification of a simple type checker	CO 5	T1: 9.1-9.2
33	Run time environments: Source language issues,	CO 5	T1: 9.1-9.2
34	Types Storage organization	CO 5	T1: 9.1-9.2
35	storage-allocation strategies,	CO 5	T1: 9.1-9.2
36	access to nonlocal data on the stack,	CO 5	T1: 9.1-9.2
37	Garbage collection, symbol tables.	CO 5	T1: 9.1-9.2
38	Code optimization: The principle sources of optimization	CO 6	T1: 9.1-9.2
39	optimization of blocks	CO 6	T1:10.1-10.2 T1:10.4,9.9
40	loops in flow graphs	CO 6	T1: 10.2
41	peephole optimization	CO 6	T1: 9.1-9.2

42	Code Generation: Issues in the Design of a Code Generator	CO 6	T1: 9.1-9.2
43-44	The Target Language, addresses in the Target Code,	CO 6	T1:10.1-10.4
45-46	Basic Blocks and Flow Graphs	CO 6	T1: 9.1-9.2
47	Optimization of Basic Blocks	CO 6	T1: 9.1-9.2
48	A Simple Code Generator	CO 6	T1:9.6-9.7 R1:8.1-8.8
49	register allocation and assignment	CO 6	T1:9.6-9.7
50-52	DAG representation of basic blocks.	CO 6	R1:8.1-8.8
	PROBLEM SOLVING/	CASE STU	IDIES
1	Consider the following fragment of C code: float i, j; i = i*70+j+2; Construct the output at all phases of the compiler for above C code	CO 1	T1:1.1-1.5 R1:1.1
2	For the following expression total = count + rate * 5 Construct the output after each phase of compiler?	CO 1	T1:1.1-1.5 R1:1.1
3	Convert NFA with ϵ to equivalent NFA M=({q0,q1,q2},{0,1,2}, δ , q0, {q2}) where δ is given by [δ (q0,0)={q0}, δ (q0,1)= ϕ , δ (q0,2)= ϕ , δ (q0, ϵ)=q1] [δ (q1,0)= ϕ , δ (q1,1)=q1 , δ (q1,2)= ϕ , δ (q1, ϵ)=q2] [δ (q2,0)= ϕ , δ (q2,1)= ϕ , δ (q2,2)= {q2}, δ (q2, ϵ)= ϕ]	CO 2	T1:1.1 R1:1.6
4	Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*} L={w/ w mod5=1,w belongs to (a,b)*}	CO 2	T1:1.1 R1:1.6
5	Describe the DFA Transition diagram for equivalent Regular expression (ab+a) *(aa+b)	CO 2	T1:3.8-4.3 R1:3.1-3.3
6	Construct the FIRST and FOLLOW sets for following grammar S aBDh , B cC , C bC / ϵ , D EF , E g / ϵ , F f / ϵ	CO 3	T1: 4.9
7	Construct SLR parsing table for the below grammar? E E+T /T T T*F / F F (E) /id.	CO 3	T1: 7.6-7.7
8	Outline the CLR Parsing model and write the CLR parsing algorithm for constructing the parsing table	CO 3	T1: 10.2

9	Construct production rules and semantic actions for the following grammar along with annotated parse tree for the expression: "int a, b, c"? D T L T int T float; L L1,id L id	CO 4	T1: 9.1-9.2
10	Construct the three address code and draw the abstract tree for the following expressions? a) (x-y)*z+m-n b) a+(b-c)+(b+c)*(a*e)	CO 4	T1: 9.1-9.2
11	Translate the expression – (a + b) * (c + d) + (a + b +c) into a) quadruples b) triples	CO 4	T1: 9.8
12	Explain briefly about Activation record with block diagram	CO 5	T1: 9.1-9.2
13	Explain the specification of a simple type checker	CO 5	R1:8.1-8.8
14	Construct the code sequence generated by the simple code generation algorithm for x*y+(m-k)-(g+b)	CO 6	T1:9.6-9.7 R1:8.1-8.8
15	Explain the concept of Function-Preserving Transformations	CO 6	T1:10.1-10.2 T1:10.4,9.9
	DISCUSSION ON DEFINITION	AND TE	RMINOLOGY
1	Definition of compiler, interpreter and its differences, the phases of a compiler	CO 1	T1:1.1-1.5 R1:1.1
2	LR grammars, LR parsers-simple LR,CLR ,LALR	CO 3	T1: 7.6-7.7
3	Syntax directed definition, construction of syntax trees, S-attributed and L- attributed definitions	CO 4	T1: 9.1-9.2
4	Storage organization, storage- allocation strategies, access to nonlocal names	CO 5	T1: 9.1-9.2
5	optimization of basic blocks, loops in flow graphs, peephole optimization; Code generator	CO 6	T1:10.1-10.2 T1:10.4,9.9
	DISCUSSION ON QUI	ESTION B	ANK
1	Describe how various phases could be combined as a pass in compiler	CO 1	T1:1.1-1.5 R1:1.1
2	Identify whether the following grammar is CLR or not with reasons? S AA, A aA / b	CO 3	T1: 7.6-7.7

3	Construct production rules and semantic actions for S-attributed grammar for the following grammar along with syntax tree and annotated parse tree for the given string a*b-c/d+e? L E E E+T / E-T/T T T*F / T/F /F F P-F / P P (E) P ID	CO 4	T1: 9.1-9.2
4	Explain briefly about stack storage allocation with block diagram.	CO 5	T1: 9.1-9.2
5	Identify the register descriptor target code for the source language Statement and its cost. (a-b) + (a-c) + (a-c)	CO 6	T1:10.1-10.2 T1:10.4,9.9

Prepared by Mr. U Sivaji, Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Course Title	MACHINE LEARNING							
Course Code	ACSB21	ACSB21						
Program	B.Tech							
Semester	V CSE							
Course Type	Elective							
Regulation	IARE-R18							
		Theory		Pract	tical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	3	-	3	-	-			
Course Coordinator	Dr. Chukka Santhaiah, Associate Professor							

I COURSE OVERVIEW:

The main emphasis of this course is toprovide systems the ability to automatically learn and improve from experience without being explicitly programmed. The course includes the fundamental concepts to build, train, and predict data models using machine learning (ML) algorithms. This course provides a clear understanding on concepts of supervised learning through decision trees, advanced techniques like neural networks, Naive Bayes and k-nearest neighbor algorithmandintroduction tounsupervised and reinforcement learning. Machine Learning has revolutionized industries like medicine, healthcare, manufacturing, banking, and several other industries.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSB12	II	Probability and statistics

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Machine Learning	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	PPT		Chalk & Talk		Assignments	x	MOOC
✓		✓		✓			
x	Open Ended Experiments	х	Seminars	x	Mini Project	х	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

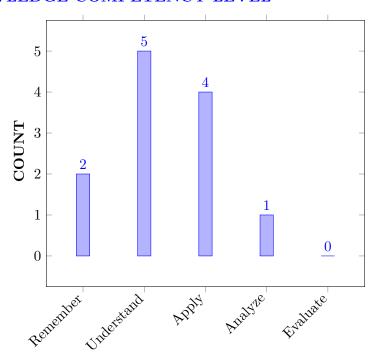
The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
70 %	Understand
20 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

VI COURSE OBJECTIVES:

The students will try to learn:

I	The fundamental concepts, issues and challenges of machine learning associated to data for model selection.
II	The supervised learning methods such as decision trees, Naïve Bayes classifier, k-nearest neighbor learning for building data models and basics of unsupervised learning methods.
III	The knowledge used for making predictions or decisions without human intervention on real-world problems.


VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Recall the thermodynamic properties and discern the path and point	Remember
	functions through exact differentials.	
CO 2	Summarize working principles of energy conversions in physical	Understand
	systems systems by fundamental laws of thermodynamics.	
CO 3	Explain the various energy transfer mechanisms which leads to the	Understand
	ascertaining of properties involving thermodynamic cycles.	
CO 4	Identify the laws of conservation of energy to yield the relationship	Apply
	between heat, work and change in internal energy.	

CO 5	Contrast between various statements of purpose in heat to work conversion and notice that thermodynamic direction laws defining them are mutually complementary.	Understand
CO 6	Relate various relations involving pressure, temperature and volume to discern the change in entropy generation in universe.	Understand
CO 7	Interpret the properties of pure substances and steam to emit relevant inlet and exit conditions of thermodynamic work bearing systems	Understand
CO 8	Outline fundamental relationship between intensive properties in form of partial derivatives implemented for perfect gases.	Understand
CO 9	Show the significance of partial pressure and temperature to table the performance parameters of gaseous mixtures.	Understand
CO 10	List the properties of air conditioning systems by practicing psychrometry chart and gas property tables.	Analyze
CO 11	Illustrate the working of various air standard cycles and work out to get the performance characteristics.	Understand
CO 12	Infer the performance of power and refrigerant cycles, and their significance and in real world systems.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE / Quiz / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	CIE / Quiz / AAT
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Seminar/ AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	CIE / Quiz / AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.	2	CIE / Quiz / AAT
PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	AAT
PO 12	Life - Long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	2	Research papers/ Group discussion
PSO 3	Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	2	Research papers/ Group discussion / Short term courses

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X MAPPING OF EACH CO WITH PO(s),PSO(s):

COURSE				\mathbf{PR}	OGR	\mathbf{AM}	OUT	CON	1ES				PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	-	-	✓	-	-	-	-	-	-	-	-	-	✓	-	-
CO 3	✓	-	-	✓	-	-	-	-	-	✓	-	-	-	-	-
CO 4	✓	-	-	✓	✓	-	-	-	-	-	-	✓	-	-	-
CO 5	-	✓	-	✓	-	-	-	-	-	✓	-	✓	-	-	-
CO 6	✓	✓	-	-	-	-	-	-	-	-	-	-	✓	-	-
CO 7	✓	✓	-	-	✓	-	-	-	-	-	-	-	✓	-	-
CO 8	✓	-	✓	✓	-	-	-	-	-	-	-	-	-	-	-
CO 9	✓	-	-	-	-	-	-	-	-	-	-	-	✓	-	-
CO 10	✓	-	✓	-	-	-	-	-	-	-	-	-	✓	-	-
CO 11	-	✓	-	-	-	-	-	-	-	-	-	-	✓	-	✓
CO 12	✓	-	-	-	✓	-	-	-	-	√	-	✓	√	-	✓

XI JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE	PO'S	Justification for mapping (Students will be able to)	No. of Key
OUTCOMES	PSO'S		Competencies
CO 1	PO2	Characteristics of machine learning that make it useful to identify real-world data and analyze complex engineering problems using principles of mathematics and engineering sciences.	4

CO 2	PO3	Design a learning system involving various steps to meet the specified needs of information to provide valid conclusions for complex engineering problems.	3
	PSO1	Discuss the steps involved in designing a learning system for next generation computer systems , intelligent systems and knowledge discovery tools.	4
CO 3	PO1	Apply the knowledge of mathematics to analyze the underlying mathematical relationships within and across machine learning algorithms to find solutions for complex engineering problems.	3
	PO4	Interpretation of data, and synthesis of the information to be done to provide valid conclusions across machine learning algorithms.	4
	PO10	Communicate effectively the underlying mathematical relationships within and across machine learning algorithms and write effective reports.	2
CO 4	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals to relate the hypothesis space search for an application using decision tree learning.	3
	PO 4	Relate the hypothesis space search for an application by analyzing and interpretation of data to provide valid conclusions.	3
	PO 5	Select appropriate techniques for hypothesis space search for an application using decision tree learning.	1
	PO12	In the broadest context of technological change relate the hypothesis space search for different applications using various machine learning algorithms for life-long learning.	2
CO 5	PO2	Identify best models using algorithms for reasoning with uncertainty as well as the use of unreliable information using natural sciences and engineering sciences.	5
	PO4	Use research-based knowledge and methods for reasoning models with uncertainty as well as the use of unreliable information.	3
	PO10	Communicate effectively on real world problems reasoning with uncertainty as well as the use of unreliable information by writing effective reports discussing with the engineering community.	3
	PO12	Recognize models for reasoning with uncertainty as well as the use of unreliable information used in life-long learning in the broadest context of technological change.	3

CO 6	PO1	Apply the knowledge of mathematics and engineering fundamentals to identify appropriate learning functions as activation function for neural network design.	3
	PO2	Identify appropriate activation function to solve complex engineering problems using single or multilayer neural networks.	3
	PSO1	Identify appropriate learning functions as activation function for designing next generation computer systems, intelligent systems and knowledge discovery tools.	4
CO 7	PO1	Make use of knowledge of mathematics, engineering fundamentals in optimizing the error in prediction model.	2
	PO2	Identify and formulate the optimizing function for reducing the error in prediction model using first principles of mathematics.	5
	PO5	Select appropriate techniques of optimizing function for reducing the error in prediction modelling to complex engineering activities.	1
	PSO1	In designing next-generation computer systems, intelligent systems and knowledge discovery tools select suitable optimizing function for reducing the error.	4
CO 8	PO1	Apply the knowledge of mathematics and engineering fundamentals in back propagation algorithm for designing artificial neural network for complex engineering problems.	3
	PO3	Design solutions for complex engineering problems using back propagation algorithm that meet the specified needs of given data.	2
	PO4	Use research-based knowledge to analyze the back propagation algorithm for designing artificial neural network applications to provide valid conclusions.	3
CO 9	PO1	Apply the knowledge of mathematics and engineering fundamentals to demonstrate Naïve Bayes algorithm based on Bayes theorem for classification problem.	3
	PSO1	Design next-generation computer systems, intelligent systems and knowledge discovery tools for classification problem using Naïve Bayes algorithm based on Bayes theorem.	4
CO 10	PO1	Apply the knowledge of mathematics and engineering fundamentals for solving both classification and regression problems.	3
	PO3	Design solutions for complex classification and regression problems using k-nearest neighbor algorithm.	2

	PSO1	Design next-generation computer systems, intelligent systems and knowledge discovery tools for solving both classification and regression problems using algorithms.	5
CO 11	PO2	Formulate reinforcement learning by observing the current environment state for complex engineering problems using principles of mathematics and engineering sciences.	4
	PSO1	Understand reinforcement learning used in next-generation computer systems and knowledge discovery tools based on observing the current environment state.	2
	PSO3	Analyze how reinforcement learning is done when practical experience in shipping real world software by observing the current environment state.	1
CO 12	PO1	Identify appropriate machine learning techniques and computing environment considering engineering specialization to the solution of complex engineering problems.	3
	PO5	Apply machine learning techniques modelling to complex engineering activities with an understanding of the limitations.	1
	PO10	Communicate effectively on machine learning techniques performing complex engineering activities by effective presentations.	3
	PO12	Recognize the need for life-long machine learning techniques suitable for the applications in the broadest context of technological change.	3
	PSO1	Identify appropriate machine learning techniques and computing environment suitable for designing next-generation computer systems, intelligent systems and knowledge discovery tools.	3
	PSO3	Gain practical experience in identifying appropriate machine learning techniques and computing environment suitable for the applications in shipping real world software.	2

XII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE	Pro	gram	Out	come	es/N	o. of	Key	Con	pete	ncies	Mat	ched]	PSO'S	8
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	-	-	3	-	-	-	-	-	-	-	-	-	4	-	-
CO 3	3	-	-	4	-	-	-	-	-	2	-	-	-	-	-
CO 4	3	-	-	3	1	-	-	-	-	-	-	2	-	-	-
CO 5	-	5	-	3	-	-	-	-	-	3	-	3	-	-	-
CO 6	3	3	-	-	-	-	-	-	-	-	-	-	4	-	-
CO 7	2	5	-	-	1	-	-	-	-	-	-	-	4	-	-
CO 8	3	-	2	3	-	-	-	-	-	-	-	-	-	-	-
CO 9	3	-	-	-	-	-	-	-	-	-	-	-	4	-	-
CO 10	3	-	2	-	-	-	-	-	-	-	-	-	5	-	-
CO 11	-	4	-	-	-	-	-	-	-	-	-	-	2	-	1
CO 12	3	-	-	-	1	-	-	-	_	3	-	3	3	-	2

XIII PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE				PR	OGR	$\overline{\mathbf{A}\mathbf{M}}$	OUT	CON	IES				1	PSO'S	S
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	-	-	30	-	-	-	-	-	-	-	-	-	66.6	-	-
CO 3	100	-	-	36.3	-	-	-	-	-	40	-	-	-	-	-
CO 4	100	-	-	27.2	100	-	-	-	-	-	-	16.0	-	-	-
CO 5	-	50	-	27.2	-	-	-	-	-	60	-	25.0	-	-	-
CO 6	100	30	-	-	-	ı	-	-	-	-	ı	-	66.6	-	-
CO 7	66.7	50	-	-	100	ı	-	-	-	-	-	-	66.6	-	-
CO 8	100	-	20	27.2	-	-	-	-	-	-	-	-	-	-	-
CO 9	100	-	-	-	-	ı	-	-	-	-	ı	-	66.6	-	-
CO 10	100	-	20	-	-	ı	-	-	-	-	-	-	83.3	-	-
CO 11	-	40	-	-	-	1	-	-	-	-	-	-	33.3	-	50
CO 12	100	-	-	-	100	-	-	-	-	60	-	25.0	50	-	100

XIV COURSE ARTICULATION MATRIX (PO - PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\textit{0}}$ - 0 \leq C \leq 5% - No correlation

 $\boldsymbol{2}$ - 40 % <C < 60% –Moderate

1-5 <C $\leq 40\%$ – Low/ Slight

3 - $60\% \leq C < 100\%$ – Substantial /High

COURSE		PROGRAM OUTCOMES]	PSO'S	S				
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	-	-	1	-	-	-	-	-	-	-	-	-	3	-	-
CO 3	3	-	-	1	-	-	-	-	-	1	-	-	-	-	-
CO 4	3	-	-	1	3	-	-	-	-	-	-	1	-	-	-
CO 5	-	2	-	1	-	-	-	-	-	2	-	1	-	-	-
CO 6	3	1	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 7	3	2	-	-	3	-	-	-	-	-	-	-	3	-	-
CO 8	3	-	1	1	-	-	-	-	-	-	-	-	-	-	-
CO 9	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 10	3	-	1	-	-	-	-	-	-	-	-	-	3	-	-
CO 11	-	1	-	-	-	-	-	-	-	-	-	-	1	-	2
CO 12	3	-	-	-	3	-	-	-	-	2	-	1	2	-	3
TOTAL	24	8	3	4	6	-	-	-	-	5	-	3	18	-	5
AVERAGE	3.0	1.6	1.0	1.0	3.0	-	-	-	-	1.6	-	1.0	2.5	-	2.5

XV ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO1, PO2,	SEE Exams	PO1, PO2,	Seminars	PO3, PO5
	PO4		PO		
Laboratory	-	Student Viva	_	Certification	_
Practices					
Term Paper	PO5	5 Minutes	PO1, PO2	Open Ended	-
		Video		Experiments	
Assignments	PO3, PO5				

XVI ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback		
X	Assessment of Mini Projects by Experts				

XVII SYLLABUS:

MODULE I	TYPES OF MACHINE LEARNING
MOBOBET	Introduction: Well posed learning problems, Designing a Learning system, Perspective and Issues in Machine Learning. Concept Learning: Concept learning task, Concept learning as search, Find-S algorithm, Version space, Candidate Elimination algorithm, Inductive Bias.
MODULE II	DECISION TREE LEARNINGS
	Decision Tree Learning: Decision tree representation, Appropriate problems for decision tree learning, Basic decision tree learning algorithm, hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning.
MODULE III	ARTIFICIAL NEURAL NETWORKS
	Artificial Neural Networks: Introduction, Neural Network representation, Appropriate problems, Perceptrons, Back propagation algorithm. Evaluating Hypothesis: Motivation, Estimating hypothesis accuracy, Basics of sampling theorem, Generalapproach for deriving confidence intervals, Difference in error of two hypothesis, Comparing learning algorithms.
MODULE IV	BAYESIAN LEARNING
	Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept learning, ML and LS error hypothesis, ML for predicting probabilities, MDL principle, Naive Bayes classifier, Bayesian belief networks, EM algorithm.
MODULE V	INSTANCE BASED AND REINFORMENT LEARNING
	Instance Based Learning: Introduction, k-nearest neighbor learning, locally weighted regression, radial basis function, cased-based reasoning. Reinforcement Learning: Introduction, Learning Task, Q Learning.

TEXTBOOKS

- 1. Tom M. Mitchell, "Machine Learning", McGraw-Hill, 1st Edition, 2013.
- 2. Stephen Marsland, "Machine Learning An Algorithmic Perspective", CRC Press, 1st Edition,2009.

REFERENCE BOOKS:

1. RajjalShinghal, "Pattern Recognition and Machine Learning", Springer-Verlag, New York, 1st Edition, 2006..

XVIII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
1	Introduction to machine Learning	CO1	T1:1
2	Understanding Well posed learning problems	CO1, CO2	T1:1.1
3-4	Discuss the steps involved in Designing a Learning system	CO2	T1:1.2

5	Interpreting Issues in MachineLearning.	CO1	T1:1.3
6	Explain Concept learning task and Concept learning as search	CO3	T1:2.1,2.2,2.3
7	Explain Find-S algorithm	CO3	T1:2.4
8-9	Construct Version space using Candidate Elimination algorithm	CO3	T1:2.5,2.6
10	How to use Inductive Bias for different algorithms	CO1, CO3	T1:2.7
11	Decision tree representationsing attributes and values	CO4	T1:3.1,3.2
12	Appropriate problems for decision tree learning	CO4	T1:3.3
13	Basic decision tree learning algorithm advantages and disadvantages	CO4	T1:3.4
14-15	Construct decision tree by finding best attribute using ID3 Algorithm	CO4	T1:3.4
16	Explain how Hypothesis space search is used for prediction in decision tree learning	CO4	T1:3.5
17	How Inductive bias helps in reducing hypotheses space searching indecision tree learning	CO5	T1:3.6
18	Discussing Issues like overfitting in decision tree learning	CO5	T1:3.1
19	Introduction to Artificial Neural Networks	CO6	T1:4.1
20	Neural Network representation using inputs, output, weights and perceptron.	CO6	T1:4.2
21	Appropriate problems for neural network learning with different characteristics	CO6	T1:4.3
22-23	Representing single layer neural network and multilayer neural network using perceptrons	CO6	T1:4.4,4.5
24-25	Demonstration of Back propagation algorithm to update the weights.	CO7, CO8	T1:4.5,4.6
26	Evaluating accuracy of Hypothesis.	CO 3	T1:5.1
27	Finding sample error and true error to estimating hypothesis accuracy.	CO4, CO6	T1:5.2
28	Using basics of sampling theory to find the probability of predicting using binomial distribution.	CO4	T1:5.3
29	Understand the general approach for deriving confidence intervals used in finding true error.	CO4, CO7	T1:5.4
30	Observing the difference in error of two hypothesis so that prediction is accurate based on hypotheses.	CO4, CO7	T1:5.5
31	Comparing learning algorithms based on target functions considering the same training examples.	CO12	T1:5.6
32	Introduction to Bayesian Learning	CO9	T1:6.1
33	Design a concept learning algorithm based on Bayes theorem.	CO9	T1:6.2,6.3
34	Learning methods to minimize Least Squared error and maximize likelihood hypothesis.	CO9	T1:6.4

35	Using maximum likelihood hypotheses for predicting probabilities.	CO9	T1:6.5
36-37	Discussing Minimum Description Length principle and Bayesian learning method Naive Bayes classifier.	CO9	T1:6.6,6.7,6.9
38	Understand EM algorithm to train Bayesian belief networks used to describe the probability distribution.	CO9	T1:6.11,6.12
39	Introduction to Instance Based Learning	CO1	T1:8.1
40	k-nearest neighbor learning	CO5	T1:8.2
41	Locally weighted regression	CO12	T1:8.3
42	Radial basis function	CO12	T1:8.4
43	43 Cased-based reasoning		T1:8.5
44	44 Introduction to Reinforcement Learning		T1:13.1
45	Learning Task and Q Learning	CO11	T1:13.2,13.3

Signature of Course Coordinator Dr. Chukka Santhaiah, Associate Professor HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	СОМР	COMPUTER SCIENCE AND ENGINEERING					
Course Title	DIGITA	DIGITAL IMAGE PROCESSING					
Course Code	AECB35						
Program	B.Tech	B.Tech					
Semester	V	V					
Course Type	PROFES	PROFESSIONAL ELECTIVE - II					
Regulation	R-18						
		Theory		Pra	ctical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
Course Coordinator	Dr. B. Su	Dr. B. Surekha Reddy, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AEC003	III	Probability Theory and Stochastic Process
UG	AEC009	V	Digital Communications

II COURSE OVERVIEW:

The course is intended to provide image processing fundamentals, representation, sampling, quantization, image acquisition and imaging geometry. Transform techniques including two dimensional Fourier transforms, Walsh, Hotelling, Haar and Slant transforms. Analyze image processing filters and techniques for the applications of enhancement, segmentation and compression.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks	
Image Processing	70 Marks	30 Marks	100	

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point Presentations	✓	Chalk & Talk	>	Assignments	х	МООС
x	Open Ended Experiments	х	Seminars	x	Mini Project	x	Videos
x	x Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level	
10%	Remember	
70%	Understand	
20%	Apply	
0 %	Analyze	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component	Theory			Total Marks	
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks	
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

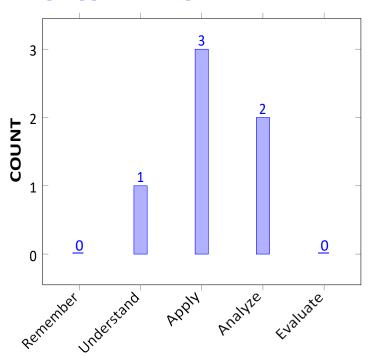
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The fundamental concepts of digital image processing methods and techniques.
П	The image enhancement, image segmentation and compression techniques in spatial and frequency domains.
III	The algorithms to solve image processing problems to meet design specifications of various applications of image processing in industry, medicine and defense.
IV	Fundamentals of image representation and processing in MATLAB.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Interpret the principles and terminology of digital image processing for describing the features of image.	Understand
CO 2	Make use of image transform techniques for analyzing images in transformation domain for image pre-processing.	Apply
CO 3	Construct image intensity transformation and filtering techniques for image enhancement in the spatial and frequency domain.	Apply
CO 4	Analyze the image restoration in the spatial and frequency domains to deal with noise models for removing degradation from given image.	Analyze
CO 5	Apply region-based morphological operations and edge-based image segmentation techniques for detection of objects in images to remove the imperfections in the structure of the image.	Apply
CO 6	Compare the lossy and lossless compression models for achieving image compression.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	SEE/CIE/ Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	SEE/CIE, Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	SEE/CIE, Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	SEE /CIE, Quiz/AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	TECH TALK/ CONCEPT VIDEOS
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		

3 = High; **2** = Medium; **1** = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

F	PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	SEE, PROJECTS

3 = High; **2** = Medium; **1** = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PRC)GR	AM	OUT	COL	MES				PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	✓	-	-	-	-	-	-	-	-	✓	1	-	-		-	
CO 2	✓	~	-	-	-	-	-	-	-	~	1	-	\		-	
CO 3	✓	~	~	~	-	-	-	-	-	/	-	✓	\	-	-	
CO 4	✓	~	~	~	-	-	-	-	-	/	-	-	\	-	-	
CO 5	✓	~	-	-	-	-	-	-	-	/	-	✓	\	-	-	
CO 6	~	~	-	-	-	-	-	-	-	✓	-	/	-	-	-	

XII JUSTIFICATIONS FOR CO - PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Illustrate the principles of the Digital Image Processing terminology (knowledge) for understanding image and its representation, pixel, intensity, gray level, relationship between the pixels by applying the principles of engineering science to complex engineering problems	2
	PO 10	Effective presentation and Speaking Style on sampling and quantization and write Subject Matter Effectively the difference between analog and digital images.	4
CO 2	PO 1	Develop a image with various image transform properties types and its types using Scientific principles and methodology fundamental mathematics.	З
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for image transforms using first principles of mathematics and Engineering sciences.	5
	PO 10	Effective presentation and Speaking Style on properties of transforms and write Subject Matter Effectively on types of transforms.	4
	PSO 1	Design of experiments on image transforms with project development and execution process of modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 3	PO 1	Illustrate the principles of an image find by using engineering techniques for image enhancement by using mathematical methods.	2
	PO 2	Illustrate the filter processing model translation for spatial domain and formulate the time domain filter.	2
	PO 3	Develop a histogram techniques complex engineering problem with appropriate considerations and environmental considerations for image enhancement.	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Demonstrate the Use image enhancement analyze and interpretation and Ability to apply quantitative methods in frequency domain processing technique to provide valid digital image.	7
	PO 10	Effective presentation and Speaking Style on histogram processing Write Subject Matter Effectively on manipulation technique of an digital image.	4
	PO 12	Recognize the need for the image segmentation in different image applications and ability to improve the enhancement algorithms in the broadest context of technological advancements.	6
	PSO 1	Design of experiments with project development and execution modern tools such as MATLAB with image processing tool box, python, CV2.	6
CO 4	PO 1	Distinguish the image restoration in the spatial and frequency domains (knowledge) to remove the noise present the image by applying the principles of (mathematics, engineering science for complex engineering problems.	2
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for image restoration using first principles of mathematics and Engineering sciences	5
	PO 3	(Develop spatial and frequency domain techniques complex engineering problem with appropriate considerations and environmental considerations for image restoration.	4
	PO 4	Understand the image restoration in the spatial and frequency domains (knowledge) methods including design of experiments, analysis of complex problems.	4
	PO 10	Effective presentation and Speaking Style and write on degradation models and noise sources for image restoration of digital images	3
	PSO 1	Design of experiments with project development and execution image restoration with modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 5	PO 1	Interpret Image Segmentation and formulate representation techniques to apply Mathematical principles fundamental mathematics.	3
	PO 2	Apply Problem statement the segmentation techniques for edge linking and boundaries by using principles of mathematics and formulate segmentation techniques.	3
	PO 10	Effective presentation and Speaking Style and write on image segmentation techniques.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	Recognize the need for image Segmentation technique, and broadest context of technological change in digital image and advanced engineering concepts.	6
	PSO1	Design of experiments with project development and execution image segmentation with modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO6	PO 1	Understand the various source coding techniques and Interpret Image Compression standards using engineering science and mathematical models.	3
	PO 2	Identify and analyze fidelity criteria, image compression models implement using engineering science, design system components for source Encoder and decoder, error free compression and model translation using principal of mathematics.	5
	PO 10	Present effectively and Clarity source encoder and write effectively subject matter on decoder techniques.	4
	PO 12	Recognize the ability of image restoration algorithms for life-long learning in the broadest context of image processing.	4

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-PING:

				PRC)GR	AM	OUT	COL	MES				PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	-	-	-	-	-	-	-	-	2	-	1	-	ı	-	
CO 2	3	5	-	-	-	-	-	-	-	2	-	-	2	-	-	
CO 3	2	2	5	7	-	-	-	-	-	2	-	6	2	-	-	
CO 4	2	5	5	4	-	-	-	-	-	2	-	-	2	-	-	
CO 5	3	3	-	-	-	-	-	-	-	2	-	6	2	-	-	
CO 6	3	5	-	-	-	-	-	-	-	2	ı	4			-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

				PSO'S											
COURSE	РО	PO											PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0
CO 2	100	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	0.0	100	0.0	0.0
CO 3	66.6	20.0	50.0	63.6	0.0	0.0	0.0	0.0	0.0	40.0	0.0	50.0	100	0.0	0.0
CO 4	66.6	50.0	50.0	36.3	0.0	0.0	0.0	0.0	0.0	40.0	0.0	0.0	100	0.0	0.0

				PSO'S											
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 5	100	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	50.0	100	0.0	0.0
CO 6	100	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	33.3	0.0	0.0	0.0

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C≤ 40% – Low/ Slight

2 - 40 % <C < 60% -Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

	PROGRAM OUTCOMES								PSO'S	5					
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	ı	ı	ı	-	-	ı	ı	1	ı	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	1	1	-	-	3		-
CO 3	3	1	2	3	-	-	-	-	-	1	-	2	3	-	-
CO 4	3	2	2	1	-	-	-	-	-	1	-	-	3	-	-
CO 5	3	1	-	-	-	-	-	-	ı	1	ı	2	3	-	-
CO 6	3	2	ı	-	-	-	-	ı	ı	1	ı	1	-	=	-
TOTAL	18	8	4	4	-	-	-	-	-	6	-	5	12	-	-
AVERAGE	3	1.6	2	2	-	-	-	-	1	1	-	1.6	3	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	~	Open Ended Experiments	-
Assignments	-	Tech-Talk	✓		

XVII ASSESSMENT METHODOLOGY-INDIRECT:

- Assessment of mini projects by experts	~	End Semester OBE Feedback
--	----------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	Digital image fundamentals and image transforms digital image fundamentals, sampling and quantization, relationship between pixels; Image transforms: 2-D FFT, properties, Walsh transform, Hadamard transform, discrete cosine transform, Haar transform, Slant transform, Hoteling transform.

MODULE II	IMAGE ENHANCEMENT
	Introduction, image enhancement in spatial domain, enhancement through point processing, types of point processing, histogram manipulation, linear and non-linear gray level transformation, local or neighborhood operation, median filter processing; Spatial domain high pass filtering, filtering in frequency domain, obtaining frequency domain filters from spatial filters, generating filters directly in the frequency domain, low pass (smoothing) and high pass (sharpening) filters in frequency domain.
MODULE III	IMAGE RESTORATION
	Image restoration degradation model, algebraic approach to restoration. Inverse filtering, least mean square filters, constrained least square restoration, interactive restoration.
MODULE IV	IMAGE SEGMENTATION
	Image segmentation detection of discontinuities, edge linking and boundary detection, threshold, region oriented segmentation morphological image processing dilation and erosion, structuring element decomposition, the Strel function, erosion; Combining dilation and erosion: Opening and closing the hit and miss transformation.
MODULE V	IMAGE COMPRESSION
	Image compression: Redundancies and their removal methods, fidelity criteria, image compression models, source encoder and decoder, error free compression, lossy compression, JPEG 2000 standard.

TEXR.BOOKS lez & R.E. Woods, —Digital Image Processing, Addison Wesley/ Pearson education, 2nd Education, 2002.

2. S. Jayaraman, S. Esakkirajan, T. Veerakumar, "Digital Image Processing", TMH, 3rd Edition, 2010.

REFERENCE BOOKS:

- 1. A.K.Jain, —Fundamentals of Digital Image Processing, PHI. 3RD Edition, 2003.
- 2. Rafael C. Gonzalez, Richard E Woods and Steven, —Digital Image Processing using MATLAB L. Edition, PEA, 2004.
- 3. William K. Pratt, John, Digital Image Processing, Wilely, 3rd Edition, 2004.
- 4. Somka, Hlavac, Boyle, "Digital Image Processing and Computer Vision", Cengage Learning, 1st Edition, 2008.
- 5. Adrain Low, "Introductory Computer vision Imaging Techniques and Solutions", Tata McGraw-Hill, 2nd Edition, 2008.
- 6. John C. Russ, J. Christian Russ, "Introduction to Image Processing & Analysis", CRC Press, 1st Edition, 2010.

WEB REFERENCES:

1. https://nptel.ac.in/courses/117105135

COURSE WEB PAGE:

1. https://akanksha.iare.ac.in/index?route=course/details&course_id=129

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Cour Outcomes (CO), Program Outcomes (PO) and CO-PO Mapp		es, Course
	CONTENT DELIVERY (THEORY)		
1	Introduction to Image Processing	CO 1	T1:1.4- 1.5
2	Digital Image Fundamentals	CO 1	T1:1.4- 1.5
3	Analyze sampling and quantization	CO 1	T1:2.4- 2.5
4	Relationship between pixels	CO 1	T1:2.4- 2.5
5	Introduction to Image transforms	CO 1	T1:2.4- 2.5
6	2D-FFT and properties	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
7	Properties of 2D FFT	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
8	Haar transform, Slant transform	CO 2	T1:3.1- 3.6
9	Hoteling transform, Walsh transform	CO 2	T1:3.1- 3.6
10	Hoteling transform, Walsh transform	CO 2	T1:3.1- 3.6
11	Discrete cosine transform, Hadamard transform	CO 2	T1:3.1- 3.6
12	Introduction to image enhancement	CO 3	T1:3.1- 3.6
13	Image enhancement in spatial domain	CO 3	T1:3.1- 3.6
14	Understand enhancement through point processing	CO 3	T1:3.1- 3.8
15	Types of point processing	CO 3	T1:3.1- 3.8
16	Histogram manipulation	CO 3	T1:3.1- 3.8

		<u> </u>	
17	Understand median filter processing	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
18	Spatial domain high pass filtering	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
19	Histogram equalization	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
20	Apply the Histogram processing technique for image enhancement	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
21	Understand filtering in frequency domain	CO 4	T1:4.1- 4.6
22	Obtaining frequency domain filters from spatial filters	CO 4	T1:4.1- 4.6
23	Generating filters directly in the frequency domain	CO 4	T1:4.1- 4.6
24	Low pass (smoothing) filter in frequency domain.	CO 4	T1:4.1- 4.6
25	High pass (sharpening) filter in frequency domain	CO 4	T1:4.1- 4.6
26	Introduction to Image segmentation	CO 5	T1:10.1- 10.6
27	Detection of discontinuities	CO 5	T1:10.1- 10.6
28	Edge linking and boundary detection	CO 5	T1:10.1- 10.6
29	Threshold techniques for image segmentation	CO 5	T1:10.1- 10.6
30	Understand region oriented segmentation	CO 5	T1:10.1- 10.6; T1:9.1- 9.6
31	Morphological image processing, dilation and erosion	CO 5	T1:10.1- 10.6; T1:9.1- 9.6
32	Understand structuring element decomposition, the Strel function, erosion;	CO 5	T1:9.1- 9.6
33	Combining dilation and erosion: Opening and closing	CO 5	T1:9.1- 9.6
34	The hit and miss transformation	CO 5	T1:9.1- 9.6
35	Introduction to Image compression	CO61	T1:8.1- 8.3 ; R2: 7.4-7.5

36	Redundancies and their removal methods	CO 6	T1:8.1-
			8.3; R2: 7.4-7.5
27	Fidality aritaria imaga samprassian madala	CO 6	7.4-7.5 T1:8.1-
37	Fidelity criteria, image compression models	CO 6	8.3; R2:
			7.4-7.5
38	Understand source encoder and decoder	CO 6	T1-8.1-
	onderstand source emoder and decode.	60 0	8.1.7
39	Error free compression	CO 6	T1-8.1-
			8.1.7
40	Lossy compression & JPEG 2000 standard	CO 6	T1-8.1-
	, ,		8.1.7
	PROBLEM SOLVING/ CASE STUDIES		'
1	Problem solving on 2-D FFT and it's properties	CO 2	T1:2.6-
			2.6.8; R2:
			5.8-5.10
2	Problem solving on Walsh transform, Hadamard transform	CO 3	T1:3.1-
			3.6
3	Problem solving on Haar Transform	CO 2	T1:3.1-
			3.6
4	Problem solving on Slant, Hoteling and discrete cosine	CO 2	T1:3.1-
	transform		3.6
5	Problem solving on image enhancement in spatial domain	CO 3	T1:3.1-
	and point processing		3.6
6	Problem solving on histogram manipulation and equalization	CO 3	T1:3.1-
			3.8
7	Problem solving on gray-level transformation and median	CO 3	T1:3.1-
	filter processing	60.3	3.8
8	Problem solving on image enhancement using filtering methods	CO 3	T1:4.1- 4.6
9	Problem solving on image enhancement using filtering	CO 3	T1:4.1-
9	methods	CO 3	4.6
10	Problem solving on image restoration using filtering	CO 4	T1:4.1-
	techniques	CO 4	4.6
11	Problem solving on image segmentation using edge linking	CO 5	T1:10.1-
	and boundary detection		10.6
12	Problem solving on image segmentation using region	CO 5	T1:10.1-
	orientation morphological processing		10.6
13	Problem solving on image segmentation using dilation and	CO5	T1:10.1-
	erosion		10.6
14	Problem solving on image compression using removal of	CO 6	T1:8.1-
	redundancies		8.3; R2:
			7.4-7.5
15	Problem solving on image compression using JPEG 2000	CO 6	T1:8.1-
	standard		8.3; R2:
			7.4-7.5

	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	Definitions and terminologies on Introduction to Digital image processing	CO 1	T1:1.4- 1.5
2	Definitions and terminologies on image enhancement	CO 3	T1:3.1- 3.8
3	Definitions and terminologies on image restoration	CO 4	T1:4.1- 4.6
4	Definitions and terminologies on image segmentation	CO 5	T1:10.1- 10.6
5	Definitions and terminologies on image compression	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
	DISCUSSION OF QUESTION BANK		
1	Discussion on question bank of introduction to digital image processing	CO 2	T1:1.4- 1.5
2	Discussion on question bank of image enhancement	CO 3	T1:3.1- 3.8
3	Discussion on question bank of image restoration	CO 4	T1:3.1- 3.8; R2: 7.4-7.5
4	Discussion on question bank of image segmentation	CO 5	T1:10.1- 10.6
5	Discussion on question bank of image compression	CO 6	T1:8.1- 8.3; R2: 7.4-7.5

Signature of Course Coordinator Dr. B. Surekha Reddy, Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTE	COMPUTER SCIENCE AND ENGINEERING							
Course Title	WEB TEC	WEB TECHNOLOGIES							
Course Code	AITB09	AITB09							
Program	B.Tech	B.Tech							
Semester	FIVE	FIVE							
Course Type	Core	Core							
Regulation	R-18								
		Theory		Prac	tical				
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits				
	2	1	3	-	-				
Course Coordinator	CH.Srividya,	CH.Srividya, Assistant Professor							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB01	II	Programming For Problem Solving
B.Tech	AITB06	IV	Object Oriented Programming Through Java Laboratory

II COURSE OVERVIEW:

This course emphasize on website development, build dynamic and database driven web applications. using tools. Content of this course covers an insight into HTTP communication protocol, the markup languages HTML, DHTML, XML and the CSS for formatting and transforming web content, interactive graphics and multimedia content on the web. It also enriches client-side and server side programming using servlets JSP, PHP and connects with Data bases. There is a growing need for management and decision makers to gain a clearer understanding of the application development process, from planning through to deployment and maintenance. It will also give you how you can analyze requirements, plan, design, implement and test arrange of web applications.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Web Technologies	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

√	Power Point Presentations	✓	Chalk & Talk	✓	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
40%	Understand
25%	Apply
15%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Theory					
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks			
CIA Marks	20	05	05	30			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

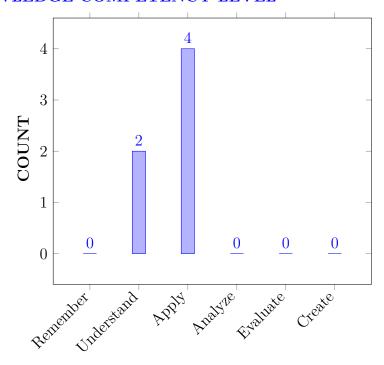
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The fundamentals of designing static and dynamic web pages using HTML and DHTML for creation of websites
II	The concepts of client - server programming with JavaScript, XML, Servlets, JSP and PHP
III	The project-based experience needed for designing real time web based client-server applications

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate basic elements of HTML and CSS for designing static web pages.	Understand
	1 0	
CO 2	Develop effective and interactive web pages using dynamic	Apply
	HTML with javascript and XML for client/server based	
	applications.	
CO 3	Make use of Servlets and Java Server Pages for server side	Apply
	programming with Model View Control architecture.	11 0
CO 4	Summarize basic concepts of PHP for designing static and	Understand
	dynamic web pages.	
CO 5	Build dynamic web pages using XML and PHP with database	Apply
	connectivity to perform CRUD operations and validate using	
	AJAX and Java Script.	
COG	*	A 1
CO 6	Construct website by using front end and backend end	Apply
	programming.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	CIE/Quiz/AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIE/Quiz/AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Assignments
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	SEE/ CIE, AAT, QUIZ

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PSO 1	Professional Skills: Design next-generation	2	CIA/SEE/AAT
	computer systems, networking devices, search		
	engines, soft computing and intelligent systems,		
	web browsers, and knowledge discovery tools.		
PSO 2	Problem-Solving Skills: Focus on mobile and web	2	CIA/SEE/AAT
	applications development and learn the emerging		
	technologies and frameworks in demand with		
	employers and contemporary challenges.		
PSO 3	Successful Career and Entrepreneurship:	3	CIA/SEE/AAT
	Practical experience in shipping real world		
	software, using industry standard tools and		
	collaboration techniques will equip to secure and		
	succeed in first job upon graduation in IT		
	industry		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	-	✓	-	✓	-	-	-	-	✓	-	✓	✓	-	✓
CO 2	✓	✓	✓	-	✓	-	-	-	-	✓	-	✓	✓	-	✓
CO 3	✓	✓	✓	-	✓	-		-	-	✓	-	✓	✓	-	✓
CO 4	✓	-	✓	-	✓	-	-	-	-	✓	-	✓	✓	-	✓
CO 5	✓	✓	✓	-	✓	-	-	-	-	✓	-	√	✓	✓	✓
CO 6	✓	✓	✓	✓	✓	-	-	-	-	✓	-	✓	✓	✓	✓

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Identify(knowledge) the structure of web page using HTML elements with their importance in webpage designing by applying basic principles of mathematics and engineering Fundamentals of programming.	2
	PO 3	Understand the customer needs of static and dynamic webpages and use creativity to provide innovative solutions in designing attractive webpages using various mark-up languages ,scripting languages by considering all aspects of the problem by managing the design process cost effectively and evaluate the outcomes to achieve engineering objectives to provide sustainable development.	5

	PO 5	Apply appropriate techniques, modern Engineering and IT tools to design a web page with HTML and CSS and use search tools such as browsers to produce the view of webpage.	1
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community related to web development and with society at large, to design web pages and write effective Programming by using the elements of HTML and CSS.	2
	PO 12	Recognize the need for advanced concepts related to HTML and CSS for understanding and developingweb applications through continuing education efforts with ongoing learning – stays up with industry trends.	2
	PSO 1	Identify the Customer needs and problem specific constraints in designing web pages related to the basic concepts of HTML and CSS.	2
	PSO 3	Make use of modern computer tool in designing Web applications by applying the technical skills and Knowledge on advanced frameworks and platforms and desire for higher studies.	1
CO 2	PO 1	Apply the knowledge of client side and server-side scripting, mark-up languages to develop effective web pages by applying principles of mathematics and engineering fundamentals.	2
	PO 2	Understand the problem statement and formulate (complex)specific engineering problems related to the concepts of HTML, Javascript and XML by considering the information and data provided by the customer to provide sustained conclusions by using model translation and validate the implementation of webpage byinterpretation of results .	8
	PO 3	Design solution for effective webpage by considering the customer requirements and use creativity and to ensure sustainable development in design process of web application to ensure fitness of the problemby using HTML, Javascript, XML.	5
	PO 5	Effective web pages are developed by using computer software related to web development with concepts related to Dynamic HTML ,XML and Java script for client/server based web applications.	1
	PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing client/server based web applications by using HTML ,XML and Java script concepts.	2

	PO 12	Recognize the need for advanced concepts in developing web applications and through continuing education efforts with ongoing learning – stays up with industry trends/ new technology related to the concepts of HTML, Javascript, XML.	2
	PSO 1	Understand the need and constraints related to programming concepts of dynamic HTML, Java Script and XML languages in designing web pages.	2
	PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2
CO 3	PO 1	Illustrate the use of servlets and JSP for server-side programming by applying principles of programming engineering fundamentals and mathematics.	2
	PO 2	Understand the given problem statement and formulate (complex)specific engineering problems related to Servlets ,and JSPs by appliying MVC architecture from the information and data collection.	2
	PO 3	Design solution for effective webpage by considering the customer requirements and use creativity and to ensure sustainable development in design process of web application to ensure fitness of the problem by using servlets and jsp with MVC architecture.	5
	PO 5	Effective server side web pages are developed by using computer software related to web development with concepts related to Servlets and JSP,s by using MVC architecture.	1
	PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing web pages by using Servlets and JSP with MVC architecture	2
	PO 12	Recognize the need for advanced concepts in developing web applications and through continuing education efforts with ongoing learning –stays up with industry trends/ new technology related to the concepts of Servlets, JSP with MVC architecture.	2
	PSO 1	Understand the need and constraints related to programming concepts of servlets, and JSP in designing web pages.	2
	PSO 3	Make use of modern computer tool in designing Web applications it desire for higher studies and to be an entrepreneur .	2
CO 4	PO 1	Understand the basic concepts of PHP in designing webpages by applying the principles of programming Engineering fundamentals and mathematics.	2

	PO 3	Understand the customer needs in designing static and dynamic web pages to ensure fitness of the problem by managing all the aspects under design process and to provide sustainable development.	4
	PO 5	Effective web pages are developed by using computer software related to web development with concepts related to PHP for designing static and dynamic web pages.	1
	PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing static and dynamic web pages by using PHP.	2
	PO 12	Recognize the need for advanced concepts in developing web applications through continuing education efforts with ongoing learning – stays up with industry trends/new technology related to the concepts of PHP.	2
	PSO 1	Understand the need and constraints related to programming concepts of PHP in designing web pages.	2
	PSO 3	Make use of modern computer tool in designing Web applications by applying the technical skills and Knowledge on advanced frameworks and platforms .	1
CO 5	PO 1	Illustrate the use of XML.PHP,AJAX and data base connectivity in designing web pages by applying the principles of mathematics and engineering fundamentals	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of creating dynamic webpages using XML,PHP,AJAX and Javascriptby considering all the specifications by the information provided by the user and use model translations if required and validate the conclusion of the problem by the Interpretation of results by implementing the webpages.	8
	PO 3	Design dynamic webpages using XML,PHP,AJAX and database connectivity by considering the customer requirements and use creativity to ensure sustainable development in design process of web pages to ensure fitness of the problemand to manage cost drivers.	6
	PO 5	Design web pages by using the computer software related to programming by using the concepts of PHP interaction with the database to perform CRUD and by using XML and AJAX.	1
	PO 10	Communicate effectively with the customer to take the specific needs in designing dynamic web pages by using the concepts of PHP with data base connectivity and AJAX.	2

	PO 12	Build web applications according to technological changes done in software environment trelated to the concepts of PHP,XML,AJAX with database connectivity through continuing education efforts with ongoing learning.	2
	PSO 1	Understand the need and constraints of the customers related to the web design by using the concepts of PHP,XML and AJAX.	2
	PSO 2	Understand and develop web applications using PHP for Improving software reliability.	1
	PSO 3	Make use of modern computer tool in designing Web applications for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2
CO 6	PO 1	Apply the knowledge of front end and back end programming in designing website by applying principles of mathematics and engineering fundamentals	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of creating dynamic webpages using XML,PHP,AJAX and Javascriptby considering all the specifications by the information provided by the user and use model translations if required and validate the conclusion of the problem by the Interpretation of results by implementing the webpages.	9
	PO 3	Create dynamic website using front end and backend programminglanguages by considering the customer requirements and use creativity to ensure sustainable development in design process of web pages to ensure fitness of the problem and to manage cost drivers.	6
	PO 4	Design website by conducting investigations on complex requirements of the user including design process, technologies, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	7
	PO 5	Create web site by using front end and backend technologies in developing web application by using Computer software .	1
	PO 10	Communicate effectively in designing website with the customer to take the requirements related to the designing of web pages by using front end and back end programming.	2
	PO 12	Construct web site according to technological changes done in software environment related to front end and backend programming through continuing education efforts with ongoing learning – stays up with industry trends/ new technology.	2

PSO 1	Design the web applications by considered all the	2
	constraints of the customer in designing web pages by	
	using front end and backend programming languages.	
PSO 2	Understand and develop web applications for	1
	Improving software reliability.	
PSO 3	Make use of modern computer tool in designing Web	2
	applications for creating innovative career paths, to be	
	an entrepreneur and desire for higher studies.	

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE				PRO	OGR.	$\overline{\mathbf{AM}}$	CUO	COI	MES]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	5	-	1	-		-	-	2	-	2	2	-	1
CO 2	2	8	5	-	1	-	-	-	-	2	-	2	2	-	1
CO 3	2	2	5	-	1	-	-	-	-	2	-	2	2	-	2
CO 4	2	-	4	-	1	-	-	-	-	2	-	2	2	-	1
CO 5	2	8	6	-	1	-	-	-	-	2	-	2	2	1	2
CO 6	2	9	6	7	1	-	-	-	-	2	-	2	2	1	2

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE]	PRO	\overline{GRA}	.M C	UT	$\overline{\text{CON}}$	IES				F	SO'S	S
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	-	50	-	100	-	-	-	-	40	-	25	33.3	-	50
CO 2	66.7	80	50	-	100	-	-	-	-	40	-	25	33.3	-	50
CO 3	66.7	20	50	-	100	-	-	-	-	40	-	25	33.3	-	100
CO 4	66.7	-	40	-	100	-	-	-	-	40	-	25	33.3	-	50
CO 5	66.7	80	60	-	100	-	-	-	-	40	-	25	33.3	50	100
CO 6	66.7	90	60	63.6	100	-	-	_	-	40	-	25	33.3	50	100

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, **0** being **no correlation**, **1** being the **low correlation**, **2** being **medium correlation** and **3** being **high correlation**.

 $\boldsymbol{\textit{0}}$ - 0 \leq C \leq 5% - No correlation

 $1 - 5 < C \le 40\% - Low/$ Slight

 $\boldsymbol{2}$ - 40 % <C < 60% –Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	2	-	3	-	-	-	-	1	-	1	2	-	2
CO 2	3	3	2	-	3	-	-	-	-	1	-	1	2	-	2

CO 3	3	1	2	-	3	-	-	-	-	1	-	1	2	-	3
CO 4	3	-	1	-	3	-	-	-	-	1	-	1	2	-	2
CO 5	3	3	3	-	3	-	-	-	-	1	-	1	2	2	3
CO 6	3	3	3	-	3	-	-	-	-	1	-	1	2	2	3
TOTAL	18	10	13	3	18	-	-	-	-	6	-	6	6	4	15
AVER- AGE	3	2.5	2.1	3	3	-	-	-	-	1	-	1	2	2	2.5

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	1	SEE Exams	<i></i>	Assignments	/
Seminars		Student Viva		Certification	_
Laboratory		5 Minutes		Open Ended	
Practices	-	Video	_	Experiments	-
Term Paper	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
\mathbf{X}	Assessment of Mini Projects by Ex	perts	

XVIII SYLLABUS:

MODULE I	INRODUCTION TO HTML AND JAVA SCRIPT
	Introduction to html: fundamentals of HTML elements, Document body, text, hyperlink, lists, tables, color and images, frames; Cascading Style Sheets: Introduction, defining your own styles, properties and values in styles, style sheets, formatting blocks, and layers. JavaScript: JavaScript basics, variables, string manipulation, mathematical functions, statements, operators, arrays and functions.
MODULE II	OBJECTS IN JAVASCRIPT AND XML
	Objects in JavaScript: Data and objects in JavaScript, regular expressions, exception handling, built- in objects, events; Dynamic HTML with JavaScript: Data validation, opening a new window, Rollover buttons, moving images, multiple pages in a single download, floating logos. XML: Basics XML, document type definition, xml schemas, Document Object Model, presenting XML.
MODULE III	SERVLETS AND JSP
	Servlet: Lifecycle of a Servlet, a simple Servlet, the Servlet API, the Javax. Servlet package, reading Servlet parameters, the javax.Servlet.HTTP package, Handling HTTP requests and responses, using cookies and sessions. JSP: The anatomy of a JSP page, JSP processing, declarations, directives, expressions, code snippets, implicit objects, using beans in JSP pages, connecting to database in JSP.

MODULE IV	INTRODUCTION TO PHP
	Basics of PHP: downloading, installing, configuring PHP, programming in a web environment and the anatomy of a PHP page; Overview of PHP data types and concepts: Variables and data types, operators, expressions and statements, strings, arrays and functions
MODULE V	PHP AND DATABASE ACCESS
	PHP and database access: Basic database concepts, connecting to a My SQL database, retrieving and displaying results, modifying, updating and deleting data; MVC architecture: PHP and AJAX other web technologies: PHP and XML.

TEXTBOOKS

- 1. Chris Bates, "Web Programming: Building Internet Applications", Wiley Dream Tech, 2nd Edition, 2002.
- 2. Jeffrey C K Jackson, "Web Technologies", Pearson Education, 1st Edition, 2006
- 3. Steven Holzner, "The Complete reference PHP", Tata McGraw-Hill, 1st Edition, 2007.

REFERENCE BOOKS:

- 1. WHans Bergsten, "Java Server Pages", O Reilly, 3rd Edition, 2003.
- 2. D. Flanagan, "Java Script", O Reilly, 6th Edition, 2011.
- 3. Jon Duckett, "Beginning Web Programming", WROX, 2nd Edition, 2008.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference			
	OBE DISCUSSION					
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	https://lms. iare.ac.in/ index?route= course/ details& course_id= 177			
	CONTENT DELIVERY (THEORY)					
1	Basic concepts: Introduction to HTML	CO 1	T1:1.1 T1:2.1			
2	Fundamentals of HTML elements, Document body	CO 1	T1:2.1 R2 : 1.4			
3	Text, Hyperlink, Lists, Tables, color and images, Frames	CO 1	T1:2.2-2.8			
4	Introduction to CascadingStyleSheets,Defining your own styles	CO1	T1:4.1-4.4.3			

5	Properties and values in styles	CO 3	T1:4.4
6	Stylesheets, Formatting blocks, Layers	CO 1,	T1:4.5
7	JavaScript basics, variables,	CO 2,	T1:5.1 -5.4
8	String manipulation	CO 2	T1:5.5
9	Mathematical functions, statements, operators	CO 2	T1:5.6-5.8
10	Arrays and Functions.	CO 2	T1:5.9-5.10
11	Data and objects in JavaScript, built-in objects.	CO 2	T1:6.1,6.4
12	Regular expressions.	CO 2	T1:6.2
13	Exception handling	CO 2	T1:6.3
14	Events	CO 2	T1:6.5
15	HTML with JavaScript: Data validation	CO 2	T1:7.1
16	Opening a window, Roll over buttons	CO 2	T1:7.2,7.6
17	Moving images, multiple pages in a single download, floating logos	CO 2	T1:7.7-7.10
18	Basics XML, document type definition	CO 2	T1: 14.1,14.2
19	Xml schemas.	CO 2	T1: 14.3
20	Document Object Model	CO 2	T1: 14.4
21	Presenting XML	CO 2	T1: 14.5
22	Life cycle of a Servlet, a simple Servlet	CO 3	T2: 6.1-6.4
23	The servlet API, the Javax. servlet package.	CO 3	T2: 6.1-6.4
24	Reading Servlet parameters	CO 3	T1:6.5
25	Handling HTTP requests and responses, Packages.	CO 3	T1:6.5
26	Cookies and sessions	CO 3	T2: 6.6-6.7
27	The anatomy of a JSP page, JSP processing, declarations	CO 3	T2: 8.1-8.2
28	Directives, Eexpressions, Code snippets	CO 3	T2: 8.3-8.4
29	Implicit objects, using beans in JSP pages, connecting to database in JSP.	CO 3	T2: 8.5
30	Basics of PHP, downloading, installing, configuring PHP	CO4	T3:1.1
31	Programming in a web environment and the anatomy of a PHP page	CO4	T3:1.1
32	Overview of PHP datatypes and concepts:Variables,datatypes,operators,expressions and statements	CO 4	T3:1. 2
33	Complex structures, structures and functions	CO 4	T3:2.1
34	Passing structures through pointers, self-referential structures	CO 4	T3:3.4
35	Strings, arrays, Functions	CO 4	T3: 3.10
36	PHP and data base access :Basic database concepts, connecting to a My SQL	CO 5	T3:3.10

37	Retrieving and displaying results, modifying, updating and deleting data	CO 5	T3: 3.18
38	MVC Architecture	CO 5	T3: 3.12
39	PHP and other web technologies: PHP and XML	CO 5	T3: 3.13
40	PHP and AJAX.	CO 5	T3: 3.14
	PROBLEM SOLVING		
41	Create a table to show your class timetable.	CO 1	T1:2.7
42	Build a HTML document that has the form with the following controls: (a) A text box to collect the customer's name. (b) Four checkboxes, one each for the following items: i. Four HTML textbooks for Rs.1000. ii. Eight XML textbooks for Rs.2000. iii. Four Javabeans books for Rs.2500. iv. Eight UML textbooks for Rs.1500.	CO 1	T1:2.6
43	Build a script that inputs three integers from the user and displays sum, average, product, smallest and largest of these numbers in an alert dialog	CO 2	T1:6.3
44	Write an HTML page that has one input, which can take multi-line text and a submit button. Once the user clicks the submit button should show the number of characters, words and lines in the entered using an alert message. Words are separated with space and lines are separated with new line character.	CO 2	T1: 2.1-2.9
45	Build the page(s) for accepting the values of name and marks in a table then display them in the descending order of the marks.	CO 2	T1:2.5
46	Build web page for a library system, page should be in such a way that it should contain all book details- details include fields like Book name, Author name, ISBN and no. of copies available. Design webpage using CSS.	CO 6	T1: 2.1-2.9
47	Construct HTML page for any company home page and explain.	CO 6	T1: 2.4
48	Write a Java Script function to print an integer with commas as thousands separators.	CO 2	T1:4.8
49	Write a Java Script program to test the first character of a string is uppercase or not. Write a pattern that matches e-mail addresses.	CO 2	T1:2.2
50	Write a Java Script program to sort a list of elements using quick sort.	CO 2	T2: 4.1-4.5
51	Write a Java Script function which will take an array of numbers stored and find the second lowest and second greatest numbers, respectively.	CO 2	T2: 4.2-4.6

52 Write a Java Script program which compute, the average marks of the following students then determine the corresponding grade. 53 To design the scientific calculator and make event for each button using java script. 54 A simple calculator web application CO 6 T1: 4 55 Write php program how to send mail using PHP. CO 4 T3:9. 56 Write php program to upload image to the server using html and PHP.	1
determine the corresponding grade. 53 To design the scientific calculator and make event for each button using java script. 54 A simple calculator web application CO 6 T1: 4 55 Write php program how to send mail using PHP. CO 4 T3:9. 56 Write php program to upload image to the server CO 4 T3: 4	.4
53 To design the scientific calculator and make event for each button using java script. 54 A simple calculator web application CO 6 T1: 4 55 Write php program how to send mail using PHP. CO 4 T3:9. 56 Write php program to upload image to the server CO 4 T3: 4	.4
54 A simple calculator web application CO 6 T1: 4 55 Write php program how to send mail using PHP. CO 4 T3:9 56 Write php program to upload image to the server CO 4 T3: 4	
55 Write php program how to send mail using PHP. CO 4 T3:9. 56 Write php program to upload image to the server CO 4 T3: 4	
56 Write php program to upload image to the server CO 4 T3: 4	.5
	.4
57 Write php program to upload registration form CO 5 T3: 5 into database	.5
Write php program to display the registration CO 5 T3: 6 form from the database.	.5
59 Write php program to delete the registration CO 5 T3: 6 form from database	.7
DISCUSSION ON DEFINITION AND TERMINOLOGY	
60 HTML, Java script, CSS, arrays, functions, string CO 1,CO T1:1.1 T	ຳ1.9 1
manipulation 2	1.2.1
Data validation, regular expressions, exception CO 2 T1:2. handling	.1
62 Servlet, cookies and sessions, JSP page CO 3 T2:6.2-	-6.8
63 PHP CO 4 T3:2	.1
64 My SQL database, retrieving MVC architecture CO 5 T3:10,1	1,12
DISCUSSION ON QUESTION BANK	
65 A simple calculator web application that takes CO 2 T1: 2.1	-2.9
two numbers and an operator $(+, -,/, *)$ from an	
two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the	
two numbers and an operator $(+, -,/, *)$ from an	-5.9
two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operands 66 State the order of evaluation of the operators in the following JavaScript statements and show the	-5.9
two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operands 66 State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed.	-5.9
two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operands 66 State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));	
two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operands 66 State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed.	
two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operands 66 State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3)))); 67 The MVC architecture in PHP with a neat CO 5 T2:8.	.7
two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operands 66 State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3)))); 67 The MVC architecture in PHP with a neat diagram? 68 create a database using PHP and My SQL CO 5 T3: 5, 69 Write a PHP Script to validate username and CO 5 T3:10,1	.7
two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operands 66 State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3)))); 67 The MVC architecture in PHP with a neat diagram? 68 create a database using PHP and My SQL CO 5 T3: 5.	.7

Signature of Course Coordinator Ms.CH.Srividya, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPI	COMPUTER SCIENCE AND ENGINEERING				
Course Title	OBJEC	OBJECT ORIENTED ANALYSIS AND DESIGN				
Course Code	ACSB10	ACSB10				
Program B.Tech						
Semester	V					
Course Type	Core	Core				
Regulation	R18					
		Theory			ical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Dr. C. R	Dr. C. Raghavendra, Associate Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AITB01	III	Object Oriented Programming through
			Python
B.Tech	ACSB08	IV	Database Management Systems

II COURSE OVERVIEW:

This course emphasizes on the design and construction of software systems using Unified Modeling Language as a tool that view a system as a set of objects to realize the systems functionality. This course includes object oriented analysis and design techniques that impact the implementation of software systems. Learned skills will be applied to the development of project and the analysis of real-world object oriented systems.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Discrete Mathematical	70 Marks	30 Marks	100
Structures			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point Presentations	✓	Chalk & Talk	\	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
60 %	Understand
20%	Apply
10 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz	AAT	Total Walks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

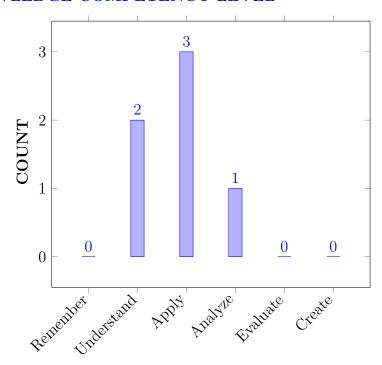
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	Applying UML meta models in analysis and design of software.
II	Transformation of use cases into object oriented software realization through
	object oriented analysis and design using UML.
III	Constructing forward and reverse engineering using case tools.
IV	Developing application of OOAD practices from a software project management
	perspective.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

	<u> </u>	
CO 1	Demonstrate basic principles, building blocks and different views for	Understand
	designing conceptual model and architectural views of the system.	
CO 2	Outline structural and behavioral design for visualizing the advanced	Understand
	relationships among components of a system.	
CO 3	Make use of architectural modeling diagrams for studying static	Apply
	aspects of the system	
CO 4	Construct behavioral modeling diagrams for studying dynamic	Apply
	aspects of the system	
CO 5	Model software application like Unified Library with the help of UML	Apply
	diagrams for documenting static and dynamic aspects of a system.	
CO 6	Categorize structural and behavioral modeling in analysis and	Analyze
	design of real-time applications	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	SEE / CIE / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	SEE / CIE / AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	თ	SEE / CIE / AAT
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction analysis and interpretation of data, and synthesis of the information to provide valid conclusions and modeling to complex engineering activities with an understanding of the limitations.	2	SEE / CIE / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	1	SEE / CIE / AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	SEE / CIE / AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	2	SEE/AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	SEE/AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s),PSO(s):

	PROGRAM OUTCOMES									PSO'S					
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	-	✓	-	~	-	-	-	-	✓	-	<	-	✓	-
CO 2	✓	✓	✓	-	✓	-	-	-	-	✓	-	/	-	✓	-
CO 3	✓	<	✓	-	~	-	-	-	-	✓	-	<	-	✓	-
CO 4	✓	-	✓	-	-	-	-	-	-	✓	-	/	-	✓	✓
CO 5	✓	-	✓	-	-	-	-	-	-	✓	-	<	-	✓	-
CO 6	✓	/	✓	-	✓	_	-	-	-	✓	-	✓	-	✓	✓

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Usage of CASE tool for modelling simple to complex engineering activities with understanding requirements and limitations of user.	1
	PO 3	Use of methods in CASE tools complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for development of models in efficient manner.	7
	PO 5	Apply Different views techniques, resources, and modern engineering and IT tools including prediction analysis and interpretation of data, and synthesis of the information to provide valid conclusions and modeling to complex engineering activities with an understanding of the limitations.	1
	PO 10	Use of designing conceptual model and Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2

	PO 12	Apply architectural views of the system Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1
	PSO 2	Formulate and Evaluate engineering concepts to Design next-generation computer systems for modelling simple to complex engineering activities with understanding requirements and limitations of user.	1
CO 2	PO 1	Apply Modeling diagrams in Engineering knowledge and modelling principles, building blocks and architectural views of the system with support of UML.	2
	PO 2	Identify, studying static aspects of the system formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	6
	PO 3	Design solutions for simple and complex problems by Defining and understanding customer requirements, identifying various static and dynamic functions, managing design process and evaluate the outcomes as UML diagrams.	7
	PO 5	Conduct investigation of complex problems for visualizing artefacts by using basic and advanced building blocks with knowledge of process, laboratory skills, understanding knowledge and ability to apply a systems approach to engineering problems.	1
	PO 10	Make use of building blocks for creating architectural view of system using UML by communicating effectively to engineering community	2
	PO 12	Usage of CASE tool for modelling simple to complex engineering activities with understanding requirements and limitations of user for architectural view of system.	1
	PSO 2	Focus on studying static aspects of the system improving software reliability, network security or information retrieval systems.	1
CO 3	PO 1	Apply Engineering knowledge and modelling principles, building blocks and architectural views of the system with support of UML.	2
	PO 2	Understand the given problem and system definition, problem formulation, collecting data, modelling, solution development and documentation by using diagrams for static and dynamic aspects of the system.	6
	PO 3	Make use of architectural modeling diagrams Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	7
	PO 5	Usage of CASE tool for modelling simple to complex engineering activities with understanding requirements and limitations of user.	1

	PO 10	Communicate static and dynamic aspects of the system using UML diagrams for specifying structure and interaction of objects during runtime.	2
	PO 12	Recognize the need and develop suitable building blocks using UML diagrams for future advancement and lifelong learning.	1
	PSO 2	Focus on studying static aspects of the system improving software reliability, network security or information retrieval systems.	1
CO 4	PO 1	Apply Engineering knowledge and modelling principles, in identifying basic building blocks for visualizing artefacts of system.	2
	PO 3	Design solutions for simple and complex problems by Defining problem, understand customer requirements, identifying basic building blocks to draw UML diagrams.	6
	PO 10	Communicate with structural and behavioral design patterns effectively on complex engineering activities with the engineering community and give and receive clear instructions.	2
	PO 12	Recognize solve design problems in real time applications and develop suitable building blocks using UML diagrams for future advancement and lifelong learning.	1
	PSO 2	Focus on studying static aspects of the system improving software reliability, network security or information retrieval systems.	1
	PSO 3	Make use of computational and advanced CASE tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1
CO 5	PO 1	Apply Architectural and domain model Engineering knowledge and modelling principles, in identifying basic building blocks for visualizing artefacts of system.	2
	PO 3	Design representation of Next gen POS system for simple and complex problems by Defining problem, understand customer requirements, identifying basic building blocks to draw UML diagrams.	6
	PO 10	Communicate static and dynamic aspects of the system using using system sequence and use case diagrams. For specifying structure and interaction of objects during runtime	2
	PO 12	Recognize the need and develop suitable building blocks using UML diagrams for future advancement and lifelong learning	1
	PSO 2	Formulate and Evaluate engineering concepts to Design next-generation computer systems by using advanced building blocks of UML.	1
CO 6	PO 1	Apply structural modeling Engineering knowledge and modelling principles, in identifying basic building blocks for visualizing artefacts of system.	2

PO 2	Understand the given problem and system definition, problem formulation, collecting data, modelling, solution development and documentation by using diagrams for static and dynamic aspects of the system.	10
PO 3	Design representation of Next gen POS system for simple and complex problems by Defining problem, understand customer requirements, identifying basic building blocks to draw UML diagrams.	7
PO 5	Apply Design Patterns to Conduct investigation of complex problems for visualizing diagrams of static and dynamic aspects by using basic and advanced building blocks knowledge of process, laboratory skills, understanding knowledge and ability to apply a systems approach to engineering problems.	1
PO 10	Communicate structural, behavioral modeling using system sequence and use case diagrams. For specifying structure and interaction of objects during runtime.	2
PO 12	Recognize Design patterns the need and develop suitable building blocks using UML diagrams for future advancement and lifelong Learning.	1
PSO 2	Focus on studying static aspects of the system improving software reliability, network security or information retrieval systems.	1
PSO 3	Make use of computational and advanced CASE tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES							PSO'S						
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	_	7	-	1	-	-	-	-	2	-	1	-	1	-
CO 2	2	6	7	-	1	-	-	-	-	2	-	1	-	1	-
CO 3	2	6	7	-	1	-	-	-	-	2	-	1	-	1	-
CO 4	2	-	6	-	-		-	1	-	2	-	1	-	1	1
CO 5	2	-	6	-	-	-	-	-	-	2	-	1	-	1	-
CO 6	2	10	7	-	1	-	-	-	-	2	-	1	-	1	1

PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO XIV

		PROGRAM OUTCOMES							PSO'S						
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.0	0.0	70.0	0.0	100	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	0.0
CO 2	66.0	60.0	70.0	0.0	100	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	0.0
CO 3	66.0	60.0	70.0	0.0	100	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	0.0
CO 4	66.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	50.0
CO 5	66.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	0.0
CO 6	66.0	100	70.0	0.0	100	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	50.0

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{0}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C $\le 40\%$ – Low/ Slight

 $\boldsymbol{2}$ - 40 % <C < 60% – Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

		PROGRAM OUTCOMES]	PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	3	-	3	-	-	-	-	3	-	1	-	2	-
CO 2	3	3	3	1	3	-	-	-	-	3	-	1	-	2	-
CO 3	3	3	3	-	3	_	-	-	-	3	-	1	-	2	-
CO 4	3	_	3	-	-	_	-	-	-	3	-	1	-	2	2
CO 5	3	-	3	-	-	-	-	-	-	3	-	1	-	2	-
CO 6	3	3	3	-	3	-	-	-	-	3	-	1	-	2	2
TOTAL	16	9	18	-	12	-	-	-	-	18	-	6	-	12	4
AVERAGE	2.6	3.0	3.0	-	3.0	-	-	-	-	3.0	-	1.0	-	2.0	2.0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	~
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Experiments	-
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO UML				
	Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, architecture, software development life cycle; Classes, relationships, common mechanisms and diagrams.				
MODULE II	ADVANCED BEHAVIORAL MODELING				
	Advanced classes, advanced relationships, interfaces, types and roles, packages, terms, concepts; Class and Object Diagrams: Terms, concepts, common modeling techniques for class and object diagrams.				
MODULE III	ARCHITECTURAL MODELING				
	Basic Behavioral Modeling - I: Interactions, Interaction diagrams. Basic Behavioral Modeling-II: Use cases, Use case Diagrams, Activity Diagrams.				
MODULE IV	ADVANCED BEHAVIORAL MODELING				
	Events and signals, state machines, processes and threads, time and space, state chart and state chart diagrams. Case study: The next gen POS system.				
MODULE V	ARCHITECTURAL MODELING				
	Component, Component diagrams, Deployment, Deployment diagrams; Case Study: The Unified Library Application.				

TEXTBOOKS

- 1. Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Language User Guide", Pearson Education, 2nd Edition, 2004.
- 2. Craig Larman, "Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design and Iterative Development", Pearson Education, 3rd Edition, 2005.

REFERENCE BOOKS:

- 1. MeilirPage-Jones: Fundamentals of Object Oriented Design in UML, Pearson Education, 1st Edition, 2006.
- 2. Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado, "UML 2 Toolkit", WILEY-Dreamtech India Pvt. Ltd., Pearson Education, 3rd Edition, 2005

WEB REFERENCES:

- 1. http://www.web.stanford.edu/class/cs103x
- 2. http://www.saylor.org/course/cs202/.
- 3. http://www.cse.iitd.ernet.in/ bagchi/courses/discrete-book

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details & course_id=413

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSS	SION	
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms.iare.ac.in/ index?route =course/details & course id=137
	CONTENT DELIVERY	Y (THEORY)	
1	Introduction to UML: Importance of Modeling, Things, Principles of Modeling.	CO 1	T1:1.1
2	Object Oriented Modeling, Structural things, Structural diagrams.	CO 1	T1:1.2
3	Conceptual model of the UML, Structural diagrams	CO 1	T1:1.3-1.4
4	Behavioral diagrams.	CO 4	T1:2.3
5	UML architecture, Software Development Life Cycle.	CO 1	T1:2.4
6	Basic class diagram symbols and notations.	CO 2	T1:2.5
7-8	Class diagram: Purpose, Benefits with example.	CO 3	T1:4.1
9-10	Relationships: Dependencies, Generalizations, Associations with example	CO 2	T1:5.1
11	Aggregation vs. Composition, Common mechanisms.	CO 2	T1:6.1
12-13	Advanced classes: scope, multiplicity, operations, examples.	CO 3	T1:7.1.1
14-16	Common modeling techniques for class diagram, Advanced relationships: dependency, generalization, association, realization, common modeling techniques	CO 4	T1:8.1.1
17	ThPackages: Key elements of package diagram, visibility of packages, import and access.	CO 4	T1:11.4
18	Terms and Concepts: common uses, common modeling techniques, forward and reverse engineering.	CO 4	T1:12.5
19	Class Diagrams- Terms, concepts and common modeling techniques.	CO 6	T1:13.1
20	Object Diagrams: Terms, concepts and common modeling techniques.	CO 6	T1:13.1
21	OInteractions: Interactions, concepts and common modeling techniques.	CO 5	T1:14.1
22-23	Interaction Diagrams: Terms, concepts, uses and common modeling techniques.	CO 6	T2: 5.2

24-25	Use cases: Use case diagrams Terms, concepts, uses and common modeling	CO 4	T1:16.1
	techniques.		
26-27	Activity Diagrams: Terms, concepts, uses and common modeling techniques.	CO 4	T1:16.4
28	Events and signals, State machines.	CO 4	T1:20.5
29	Processes and threads, Time and space.	CO 4	T1:21.4
30-31	State Chart: Terms, concepts, uses and common modeling techniques.	CO 4	T1:22.1
32-33	State chart diagrams: Terms, concepts, uses and common modeling techniques.	CO 4	T1:22.4
34	Case study: The next gen POS system.	CO 5	T1:22.7
35	Component: Terms and concepts.	CO 4	T1:29.1
36-37	Component diagrams: Terms, concepts, uses and common modeling techniques.	CO 4	T1:29.3
38	Deployment: Terms and concepts.	CO 4	T1:30.1
39-40	Deployment diagrams: Terms, concepts, uses and common modeling techniques.	CO 4	T1:30.7
41-43	Case Study: The Unified Library Application.	CO 4	T1:30.9
44-45	Case Study: Real-Time applications.	CO 6	T1:30.9
	PROBLEM SOLVING/ O	CASE STUDIE	S
1	Build a class hierarchy to organize the following drink classes: Mineral water, alcoholic, nonalcoholic, grape juice and soda.	CO 1	T2:2.1
2	Classify and describe four fundamental process activities which are common to all software processes.	CO 2	T2:2.3
3	List four facts which indicate that the requirement capture and analysis process to be very difficult.	CO 2	T2:2.3.1
4	Construct an object diagram that contains a three-level hierarchy of objects.	CO 6	T2:7.2,7.3
5	Assume that you wise to buy a car. Identify all the attributes and methods of the car object. Write a short description of services that each will provide. Create a class hierarchy of the "car" class.	CO 6	T2:10.3.1
6	Build basic class diagrams (of your choice) to identify and describe key concepts like classes, types in the system and their relationships.	CO 4	T2:13.3
7	Draw and model the activity diagrams to display either business flows or like flow charts. (Example: ATM system)	CO 4	T2:17.1.1, 17.1.3

8	Construct an activity diagram the shows flow of control from activity to another by modeling a credit card validation system with swim lanes.	CO 4	T2:18.1, 18.2.1
9	Develop the activity diagram for the process sale and specify actor, use case and scenario with swim lanes.	CO 4	T2:18.3.4, 18.3.4.1
10	Model a state machine for the controller of a home security system, which is responsible for monitoring various sensors around the perimeter of the house.	CO 6	T2:22.12, 19.1.2
11	Develop a state chart diagram of an ATM system.	CO 4	T2:18.4, 18.4.3
12	Develop a state chart diagram for the case study on the Next Gen POS system with suitable examples.	CO 6	T2:19.2, 18.4.4
13	Construct UML deployment and component diagrams for ATM system.	CO 1	T2:23.1.1, 23.1.3
14	Consider the Hospital Management System application with the following requirements i. System should handle the in- patient, out-patient information through receptionist. ii. Doctors are allowed to view the patient history and give their prescription iii. There should be a information system to provide the required information Construct the component and deployment diagram	CO 5	T2:18.3.4, 18.3, 4.1
15	Explain in detail about the notations of a sequence diagram with neat sketch.	CO 4	T2:24.2,28.4
	DISCUSSION ON DEFINITION	AND TERMI	NOLOGY
1	Model, encapsulation, behavioral things, UML,package	CO 1, CO 2	T2:18.3.4, 18.3.4.1
2	Class, object, use case.	CO 3, CO 4	T2:22.12, 19.1.2
3	Interaction Diagrams.	CO 4	T2:18.4, 18.4.3
4	Activity Diagram, State chat diagrams	CO 4	T2:19.2, 18.4.4
5	Component Diagram, Deployment Diagram	CO 5	T2:23.1.1, 23.1.3
	DISCUSSION ON QUE		
1	Introduction to Uml	CO 1,	T2:18.3.4, 18.3.4.1
2	Advanced Behavioral Modeling	CO 2,	T2:22.12, 19.1.2
3	architectural modeling	CO 3	T2:18.4, 18.4.3
4	Advanced Behavioral Modeling	CO 4	T2:19.2, 18.4.4
5	Architectural Modeling	CO 5,CO 6,	T2:23.1.1, 23.1.3

 ${\bf Signature\ of\ Course\ Coordinator}$

 $_{\rm HOD,CSE}$

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Course Title	WEB TEC	WEB TECHNOLOGIES LABORATORY					
Course Code	AITB11						
Program	B.Tech	B.Tech					
Semester	V CSE						
Course Type	Core						
Regulation	IARE - R18						
		Theory			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	3	2		
Course Coordinator	Ms B Geetavani, Assistant Professor						

I COURSE OVERVIEW:

This Laboratory course provides a foundation for the development of a broad range of increasingly influential and strategic technologies, supporting a large variety of applications and services, both in the private and public sectors. There is a growing need for management and decision makers to gain a clearer understanding of the application development process, from planning through to deployment and maintenance. This module will give you an insight into architectures, protocols, standards, languages, tools and techniques; an understanding of approaches to more dynamic and mobile content; and demonstrate how you can analyze requirements, plan, design, implement and test arrange of web applications.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB01	II	Programming for Problem Solving
B.Tech	AITB06	IV	Object Oriented Programming Through Java

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Web Technologies Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab		Viva		Probing further
✓		✓	Worksheets	✓	Questions	✓	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of of of the final assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based	
20 %	Objective	Purpose	
20 %	Analysis	Algorithm	
20 %	Design	Programme	
20 %	Conclusion	Conclusion	
20 %	Viva	Viva	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day Final internal lab		Total Walks
	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

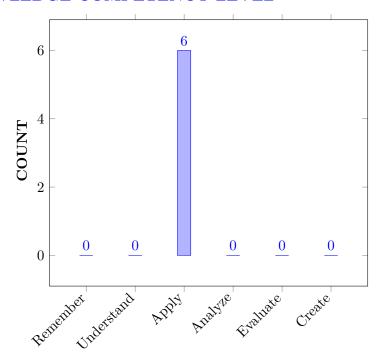
2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

I	The fundamentals of designing static and dynamic web pages using HTML and DHTML for creation of websites.
II	The concepts of client - server programming with JavaScript, XML, Servlets, JSP and PHP.


III	The project-based experience needed for designing real time web based client-server
	applications.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Develop static web pages using HTML and CSS	Apply
CO 2	Develop effective and interactive web pages using elements and	Apply
	selectors in style sheets and dynamic HTML.	
CO 3	Make use of functions in JavaScript and PHP for implementing data	Apply
	validations in web applications.	
CO 4	Develop dynamic web site using server side PHP programming and	Apply
	database connectivity.	
CO 5	Build dynamic web pages using XML and PHP with database	Apply
	connectivity to perform CRUD operations.	
CO 6	Construct website by using front end and back end programming.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	2	Lab Exercises,CIE,SEE
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab Exer- cises,CIE,SEE
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	3	Lab Exer- cises,CIE,SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Lab Exer- cises,CIE,SEE
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	Lab Exer- cises,CIE,SEE
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2	Lab Exercises,CIE,SEE
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2	Lab Exercises,CIE,SEE
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Lab Exercises,CIE,SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Lab Exercises,CIE,SEE

PO 12	Life-long learning: Recognize the need for, and	2	Lab Exer-
	have the preparation and ability to engage in		cises,CIE,SEE
	independent and life-long learning in the broadest		
	context of technological change.		

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.	2.5	Lab Exercises
PSO 2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	2	Lab Exercises
PSO 3	Successful Career and Entrepreneurship: Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry	2	Lab Exercises

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Identify(knowledge) the structure of web page using HTML elements with their importance in web page designing by applying basic principles of mathematics and engineering fundamentals of programming.	2
	PO 2	Understand the problem statement and formulate (complex) specific engineering problems related to the concepts of HTML and CSSL by considering the information and data provided by the customer to provide sustained conclusions by using model translation and validate the implementation of webpage by interpretation of results .	8

	PO 3	Understand the customer needs of static and dynamic web pages and use creativity to provide innovative solutions in designing attractive web pages using various mark-up languages, scripting languages by considering all aspects of the problem by managing the design process cost effectively and evaluate the outcomes to achieve engineering objectives to provide sustainable development.	7
	PO 5	Apply appropriate techniques, modern Engineering and IT tools to design a web page with HTML and CSS and use search tools such as browsers to produce the view of webpage.	1
	PO 6	Apply the contextual knowledge of HTML and CSS to assess societal, health and the consequent responsibilities relevant to the professional engineering practice.	2
	PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2
	PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2
	PO 9	Design the webpages effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	7
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community related to web development and with society at large, to design web pages and write effective Programming by using the elements of HTML and CSS.	3
	PO 12	Recognize the need for advanced concepts related to HTML and CSS for understanding and developing web applications through continuing education efforts with ongoing learning – stays up with industry trends/new technology.	4
	PSO 1	Identify the Customer needs and problem specific constraints in designing web pages related to the basic concepts of HTML and CSS.	4
	PSO 2	Focus on improving software reliability and information retrieval systems using data validation.	2
	PSO 3	Make use of modern computer tool in designing Web applications by applying the technical skills and Knowledge on advanced frameworks and platforms .	2
CO 2	PO 1	Illustrate all variations of styling web pages such as internal, external and inline by applying principles of programming engineering fundamentals and mathematics.	2

PO 2	Understand the problem statement and formulate	5
	(complex) specific engineering problems related to the concepts of HTML, Javascript and XML by considering the information and data provided by the customer to provide sustained conclusions by using model translation	
	and validate the implementation of webpage by interpretation of results .	
PO 3	Understand the customer needs of developing interactive web pages identify the cost limitations of the web application and use creativity in applying style sheets and changing element's style object for innovative solutions by properly managing design process.	6
PO 5	Effective web pages are developed by using computer software related to web development with concepts related to Dynamic HTML ,XML and Java script for client/server based web applications.	1
PO 6	Apply the contextual knowledge of Javascript and XML to assess societal, health and the consequent responsibilities relevant to the professional engineering practice.	2
PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2
PO 9	Design the webpages effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	6
PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing client/server based web applications by using HTML ,XML and Java script concepts.	3
PO12	Recognize the need for advanced concepts in developing web applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology related to the concepts of HTML, Javascript, XML.	6
PSO 1	Understand the need and constraints related to programming concepts of dynamic HTML, Java Script and XML languages in designing web pages.	4
PSO 2	Focus on improving software reliability and information retrieval systems using data validation functions.	2
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2

CO 3	PO 1	Apply the knowledge of client side and server side scripting, mark-up languages to validate the information and data provided by the user by applying principles of mathematics and engineering fundamentals.	2
	PO 2	Understand the given problem statement and formulate (complex)specific engineering problems related to Servlets, and JSPs by appliying MVC architecture from the information and data collection.	5
	PO 3	Understand the customer needs of validating data; identify the cost limitations based on requirements and network traffic, use creativity in implementing validation functions for innovative solutions of the web application.	6
	PO 5	Effective web pages are developed by using computer software related to web development with concepts related to PHP for client/server based web applications.	1
	PO 6	Apply the contextual knowledge of client side and server side scripting to assess societal, health and the consequent responsibilities relevant to the professional engineering practice.	1
	PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2
	PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2
	PO 9	Design the webpages effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	6
	PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing client/server based web applications by using PHP.	4
	PO 12	Recognize the need for advanced concepts in developing web applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology related to the concepts of PHP.	4
	PSO 1	Understand the need and constraints related to programming concepts of PHP in designing web pages.	4
	PSO 2	Focus on improving software reliability and information retrieval systems by implementing appropriate data validation functions.	1
	PSO 3	Make use of modern computer tool in designing Web applications by applying the technical skills and Knowledge on advanced frameworks and platforms .	1
CO 4	PO 1	Make use of (apply) programming constructs such as arrays, functions and database connectivity (knowledge) in solving (complex) engineering problems related to web applications by applying the principles of engineering fundamentals and mathematical principles.	3

PO	Understand the given problem statement and formulate the (complex) engineering problems of creating fast and flexible web application to collect data and information , develop solutions based on the programming constructs of PHP, validate the web application in reaching substantiated conclusions by the Interpretation of results .	5
PO	Understand the user needs of creating web applications, use creativity of widgets, containers and frames in applying the methods for innovative solutions, and evaluate the outcomes of the model analysis for developing the web applications to achieve engineering objectives.	5
PO	O 5 Create the PHP code for interaction with the database to perform CRUD operations by properly using cookies and encryption in developing web application (complex) Engineering activities in Computer software.	1
PO	Apply the contextual knowledge of PHP, client side and server side scripting to assess societal, health and the consequent responsibilities relevant to the professional engineering practice.	2
PO	O 7 Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2
PO	O 8 Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2
PO	O 9 Design the webpages effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	6
PC	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing client/server based web applications by using PHP .	4
PC	O 12 Create web applications according to technological changes done in software environment.	4
PS	O 1 Understand the need and constraints related to programming concepts of PHP in designing web pages.	3
PS	Focus on improving software reliability and information retrieval systems by implementing appropriate data validation functions.	1
PS	Make use of modern computer tools in designing Web applications at coding competitions and solving complex engineering problems	1
CO 5 PO	Apply the knowledge of client side and server side scripting, mark-up languages to validate the information and data provided by the user by applying principles of mathematics and engineering fundamentals.	2

PO 2	Understand the given problem statement and formulate the (complex) engineering problems of creating user interface of Web application for the collection of data and information develop solutions based on open, send methods of request object, validate the web application in reaching substantiated Conclusions by the Interpretation of results.	5
PO 3	Understand the customer needs of validating data; identify the cost limitations based on requirements and network traffic, use creativity in implementing validation functions for innovative solutions of the web application.	7
PO 5	Create the PHP code for interaction with the database to perform CRUD operations by properly using cookies and encryption in developing web application(complex) Engineering activities in Computer software.	1
PO 6	Apply the contextual knowledge of client side and server side scripting to assess societal, health and the consequent responsibilities relevant to the professional engineering practice.	2
PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2
PO 9	Design the webpages effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	5
PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing client/server based web applications by using PHP with data base connectivity.	2
PO 12	Create web applications according to technological changes done in software environment.	4
PSO 1	Focus on improving software reliability and information retrieval systems by implementing appropriate data validation functions.	3
PSO 2	Understand and develop web applications using PHP for Improving software reliability.	1
PSO 3	Make use of modern computer tool in designing Web applications by applying the technical skills and Knowledge on advanced frameworks and platforms .	1
CO 6 PO 1	Relate the principles of HTML and XML for separation of data and presentation during the development (complex) of web pages by the principles of mathematics and engineering fundamentals.	2

PO 2	Understand the given problem statement and formulate the (complex) engineering problems of creating user interface of Web application for the collection of data and information develop solutions based on open, send methods of request object, validate the web application in reaching substantiated Conclusions by the Interpretation of results.	8
PO 3	Manage the design process by understanding the customer needs for simplification of sharing and transport of data and use creativity to wrap the data in order to provide innovative solutions for the requirements.	6
PO 5	Create web site by using front end and backend technologies in developing web application by using Computer software.	1
PO 6	Apply the contextual knowledge of client side and server side scripting to assess societal, health and the consequent responsibilities relevant to the professional engineering practice.	2
PO 7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2
PO 9	Design the webpages effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	6
PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing client/server based web applications by using PHP with data base connectivity.	3
PO 12	Create web applications according to textbf technological changes Done in software environment.	4
PSO 1	Make use of concepts in XML for improving software reliability and information retrieval systems.	3
PSO 2	Understand and develop web applications for Improving software reliability.	1
PSO 3	Make use of modern computer tool in designing Web applications by applying the technical skills and Knowledge on advanced frameworks and platforms .	1

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE		Program Outcomes									PSO'S		8		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	6	2	2
CO 1	2	8	7	-	1	2	2	2	7	3	-	4	4	2	2
CO 2	2	5	6	-	1	2	2	2	6	3	-	6	4	2	2
CO 3	2	5	6	-	1	1	2	2	6	4	-	4	4	1	1
CO 4	3	5	5	-	1	2	2	2	6	4	-	4	3	1	1
CO 5	2	5	7	-	1	2	2	2	5	2	-	4	3	1	1
CO 6	2	8	6	-	1	2	2	2	6	3	1	4	3	1	1

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams		SEE Exams		Seminars	-
	✓		✓		
Laboratory		Student Viva		Certification	-
Practices	✓		✓		
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK I	INSTALLATIONS
	Installation of XAMPP and WAMP servers.
WEEK II	HTML
	1. Create a table to show your class time table.
	2. Use tables to provide layout to your HTML page describing your college
	infrastructure.
	3. Use and <div> tags to provide a layout to the above page instead of</div>
	a table layout.
WEEK III	HTML
	1. Use frames such that page is divided into 3 frames 20% on left to show
	contents of pages, 60% in center to show body of page, remaining on right to
	show remarks.
	2. Embed Audio and Video into your HTML web page.

WEEK IV	HTML
	 Create a webpage with HTML describing your department use paragraph and list tags. Apply various colors to suitably distinguish key words, also apply font styling like italics, underline and two other fonts to words you find appropriate, also use header tags. Create links on the words e.g. Wi-Fi and LAN to link them to Wikipedia pages. Insert an image and create a link such that clicking on image takes user to other page. Change the background color of the page; At the bottom create a link to take
	user to the top of the page.
WEEK V	HTML
	Develop static pages (using only HTML) of an online book store, the pages should resemble: www.amazon.com, the website should consist the following pages, home page, registration and user login, user profile page, books catalog, shopping cart, payment by credit card, order confirmation.
WEEK VI	CASCADING STYLE SHEET
	Write an HTML page that contains a selection box with a list of 5 countries, when the user selects a country, its capital should be printed next to the list; Add CSS to customize the properties of the font of the capital (color, bold and font size).
WEEK VII	CASCADING STYLE SHEET
	Let your visitors change the style sheet on your web site, this script will let your visitors choose between five style sheets, which can create yourself or use the one's included.
WEEK VIII	JAVASCRIPT
	 Write a Java Script program to test the first character of a string is uppercase or not. Write a pattern that matches e-mail addresses. Write a Java Script function to print an integer with commas as thousands separators.
WEEK IX	JAVASCRIPT
	 Write a Java Script program to sort a list of elements using quick sort. Write a Java Script for loop that will iterate from 0 to 15 for each iteration, it will check if the current number is odd or even, and display a message to the screen. Write a Java Script function which will take an array of numbers stored and find the second lowest and second greatest numbers, respectively.
WEEK X	JAVASCRIPT
	 Write a Java Script program which compute, the average marks of the following students then this average is used to determine the corresponding grade. Write a Java Script program to sum the multiples of 3 and 5 under 1000. To design the scientific calculator and make event for each button using java script.

WEEK XI	PHP
	1. A simple calculator web application that takes two numbers and an operator (+, -,/,*and %) from an HTML page and returns the result page with the operation performed on the operands.
	2. Write php program how to send mail using PHP.
WEEK XII	PHP
	 Write php program to convert a string, lower to upper case and upper case to lower case or capital case. Write php program to change image automatically using switch case.
WEEK XIII	РНР
	 Write php program to calculate current age without using any pre-define function. Write php program to upload image to the server using html and PHP.
WEEK XIV	PHP
	 Write php program to upload registration form into database. Write php program to display the registration form from the database.
WEEK XV	PHP
	 Write php program to update the registration form present in database. Write php program to delete the registration form from database

REFERENCE BOOKS

- 1. Uttam K Roy, Web Technologies \parallel , Oxford University Press, 1st Edition, 2010.
- 2. Steven Holzner, The Complete Reference PHP \parallel , Tata McGraw-Hill, 1st Edition, 2007

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer-
			ence
1	Installations	CO1	T2:1
2	HTML tables	CO1	T1:2.6-2.9
3	HTML frames	CO1	T1:4.1-4.2
4	HTML basic tags.	CO1	T1:2.1-2.4
			T1:2.6-2.9
5	HTML form elements	CO2	T1:4.2-4.3
6	HTML using CSS	CO2	T1:4.4-4.7
7	Javascript functions.	CO3	T1:5.6-
			5.10
8	Javascript Control statements	CO3	T1:5.6-
			5.10
9	Javascript Control statements	CO3	T1:5.6-
			5.10
10	РНР	CO4	T2:1, 2
11	PHP functions	CO4	T2:2

12	PHP database access	CO4	T2:10	
13	PHP database access	CO4	T2:10	

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Updating latest version and new features of the PHP Language.
2	Familiarizing the role of Java script Objects in developing system level programs.
3	Updating to latest Technology React JS in developing all devices interoperability

Signature of Course Coordinator Ms B Geetavani, Assistant Professor HOD,CSE

EDUCATION FOR LIBERT

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	CASE 1	CASE TOOLS LABORATORY				
Course Code	ACSB12					
Program	B.Tech					
Semester	V	V CSE				
Course Type	CORE					
Regulation	IARE - R	18				
		Theory			Practical	
Course Structure	Lecture Tutorials Credits Laboratory Credits					
	3 1					
Course Coordinator	Mr.Rajes	Mr.Rajesh Kumar Bhavani, Assistant Professor				

I COURSE OVERVIEW:

This Laboratory course introduces the Unified Modeling language for visualizing, specifying, constructing and documenting in preparing blueprint of a software intensive system. This lab covers Static and Dynamic aspects of the System with illustrations of Class, Object, Component, Deployment Use case, State chart, sequence, activity, collaboration Diagrams. These diagrams are used to create low level and high level design documents of the software system.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AITB06	IV	Object Oriented Programming through Java.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Case Tools Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab Worksheets		Viva		Probing further
✓		√		√	Questions	√	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of of of assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design Programme	
20 %	Conclusion	Conclusion
20 %	Viva Viva	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	Total Walks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

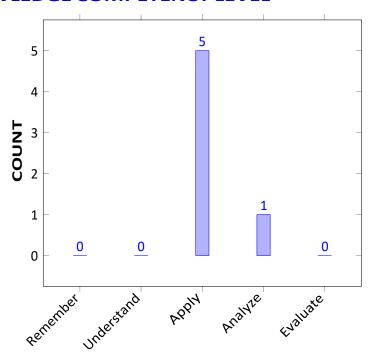
Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	The Usage of CASE tools in modeling and designing of real time applications
П	The implementation of Architectural views for different case studies.
Ш	Applying common modeling techniques of forward and reverse engineering.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate Interlocking views of software intensive system for projection into the structure of system	Apply
CO 2	Analyze use case view for designing overall behavior of different systems.	Analyze
CO 3	Apply Design view for implementing vocabulary and functionality of various systems.	Apply
CO 4	Apply process view for improving performance and scalability in designing systems.	Apply
CO 5	Apply implementation view in system assembly and configuration management.	Apply
CO 6	Apply tdeployment view for designing system topology of various systems.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab Exercise, CIE, SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	Lab Exercise, CIE, SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	w	Lab Exercise, CIE, SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Lab Exercise, CIE, SEE
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	2	SEE

3 = High; **2** = Medium; **1** = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	Lab Exercises
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	Lab Exercises

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 5	Usage of CASE tool for modeling simple to complex engineering activities with understanding requirements and limitations of user.	1
	PSO 1	Formulate and Evaluate engineering concepts to Design next-generation computer systems for modeling simple to complex engineering activities with understanding requirements and limitations of user	2
CO 2	PO 3	Design solutions for simple and complex problems by Defining and understanding customer requirements, identifying various static and dynamic functions, managing design process and evaluate the outcomes as UML diagrams.	4
	PO 10	Make use of building blocks for creating architectural view of system using UML by communicating effectively to engineering community.	3
	PO 5	Usage of CASE tool for modeling simple to complex engineering activities with understanding requirements and limitations of user for architectural view of system.	1
	PSO 3	Make use of computational and advanced CASE tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2
CO 3	PO 2	Understand the given problem and system definition, problem formulation, collecting data, modelling, solution development and documentation by using diagrams for static and dynamic aspects of the system.	4
	PO 5	Usage of CASE tool for modeling simple to complex engineering activities with understanding requirements and limitations of user.	1
	PO 10	Communicate static and dynamic aspects of the system using UML diagrams for specifying structure and interaction of objects during runtime.	5
	PO 12	Recognize the need and develop suitable building blocks using UML diagrams for future advancement and lifelong learning.	5
CO 4	PO 3	RDesign solutions for simple and complex problems by Defining problem, understand customer requirements, identifying basic building blocks to draw UML diagrams.	3
	PO 5	Usage of CASE tool for modelling simple to complex engineering activities with understanding requirements and limitations of user.	1
	PO 10	Recognize building blocks for visualizing design requirements of an object-oriented System.	4

	PO 12	Visualize objects based on the need, through identifying required design requirements and build architectural model using the object-oriented system for future advancement and lifelong learning.	5
	PSO 1	Formulate and Evaluate engineering concepts to Design next-generation computer systems in identifying basic building blocks for visualizing artifacts of system.	2
	PSO 3	Make use of computational and advanced CASE tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2
CO 5	PO 2	Understand the given problem and system definition, problem formulation, collecting data, modelling, solution development and documentation for design solution by using advanced building blocks of UML.	5
	PO 5	Usage of CASE tool for modelling simple to complex engineering activities with understanding requirements and limitations of user.	1
	PSO 1	Formulate and Evaluate engineering concepts to Design next-generation computer systems by using advanced building blocks of UML.	2
	PSO 3	Make use of computational and advanced CASE tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2
CO 6	PO 10	Make effective presentation and better understanding of the scenario, use structural modeling framework with knowledge and system approach.	5
	PSO 1	Formulate and Evaluate engineering concepts to Design next-generation computer systems for structural modeling.	2
	PSO 3	Make use of computational and advanced CASE tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Table 10:

Table 10.							
Course Outcomes	Program Outcomes			Program	Specific Outcomes		
	PO2	PO3	PO5	PO10	PO12	PSO1	PSO3
CO1			1			2	
CO2		4	1	3			2
CO3	4		1	5	5		
CO4		1	1	4	5	2	2
CO5	5		1			2	2
CO6				5		2	2

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exam	S	PO 2, PO 3,	SEE Exams	PO 2,PO 3,	Seminars	-
		PO 5		PO 5,PO 10,		
				PO 12		
Laborator	У	PO 2,PO 3,	Student Viva	PO 2, PO 3,	Certification	-
Practices		PO 5		PO 10		
Assignmen	ts	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

√	Early Semester Feedback	√	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIV SYLLABUS:

WEEK I	INTRODUCTION TO UML
	Study Of UML.
WEEK II	ON LINE PURCHASE SYSTEM
	Create a UML model for On line Purchase System
WEEK III	LIBRARY MANAGEMENT SYSTEM
	Create a UML model for Library Management System
WEEK IV	E-TICKETING
	Create a UML model for E-Ticketing
WEEK V	QUIZ SYSTEM
	Create a UML model for Quiz System.
WEEK VI	STUDENT MARK ANALYZING SYSTEM
	Create a UML model for Student Mark Analyzing System.
WEEK VII	E-MAIL CLIENT SYSTEM
	Create a UML model for E-Mail Client System.
WEEK VIII	TELEPHONE PHONE DIALING
	Create a UML model for Telephone Phone Dialing.
WEEK IX	POINT OF SALE
	Create a UML model for Point of sale.
WEEK X	WORKING COMPANY
	Create a UML model for a Working Company
WEEK XI	ATM TRANSACTIONS
	Create a system to design Bank ATM Transactions and generate code by using MS-Access as back end and VB as the front end.

WEEK XII	STUDENT MARK ANALYSIS
	Create a system to design Student mark analysis system and generate code by using MS-Access as back end and VB as the front end

TEXTBOOKS

1. Grady Booch, James Rumbaugh, Ivar Jacobson, —The Unified Modeling Language User Guide, Pearson Education, 2ndEdition, 2004.

REFERENCE BOOKS:

1. Craig Larman, —Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design and Iterative Development, Pearson Education, 3rd Edition, 2005.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Introduction To UML.	CO 1	R1: 1.1
2	On Line Purchase System.	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R1: 2.3
3	Library Management System	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R1: 4.1
4	E-Ticketing	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R1: 5.1
5	Quiz System.	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R2: 6.1
6	Student Mark Analyzing System.	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R1: 7.1
7	E-Mail Client System.	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R2: 11.4
8	Telephone Phone Dialing.	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R1: 12.5
9	Telephone Phone Dialing.	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R2: 14.3
10	Working Company.	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R1: 15.1
11	ATM Transactions.	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R2:16.4
12	Student Mark Analysis.	CO 1, CO 2 ,CO 3, CO 4 ,CO 5 ,CO 6	R1:20.5

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Real time Online Transform for embedded Systems considering non-functional aspects with rate-monotonic analysis.
2	Implementation of Advanced relationships and common mechanisms in real time applications.
3	Reverse engineering: Encourage students to implement model from a given input of source code.

Course Coordinator Mr. Rajesh Kumar Bhavani HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING					
Course Title	INFORMATION SECURITY					
Course Code	AITB22	AITB22				
Program	B.Tech					
Semester	VI					
Course Type	Elective					
Regulation	R-18					
		Theory		Pract	ical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
3 -			3	-	-	
Course Coordinator	r Ms B.Geetavani , Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AITB10	V	Computer Networks

II COURSE OVERVIEW:

This course focuses on the fundamentals of security that are used in protecting both the information present in computer storage as well as information passing over any computer networks. It includes attacks, security mechanisms, and secret-key and public-key cryptography. The authentication protocols and key management techniques for providing security in Email, IP and web, Firewalls and virtual private networks are learned.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Information Security	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	Power Point Presentations	✓	Chalk & Talk	✓	Assignments	х	МООС
х	Open Ended Experiments	x	Seminars	x	Mini Project	х	Videos
х	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
45%	Understand
18%	Apply
27%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	ory	Total Marks
Type of Assessment	CIE Exam	Quiz \AAT	1 Otal Ivial KS
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part—A shall have five compulsory questions of one mark each. In part—B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

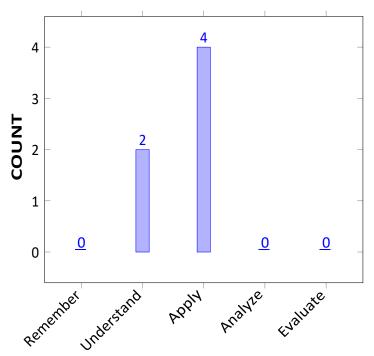
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	Understand security standards and practices. The scope and essentiality of threats, attacks to computers and networks associated to them
Ш	The symmetric and asymmetric key generation techniques used for providing message authentication, confidentiality and Integrity
III	The use cases on cryptography and security systems for server and client systems such as web, email and firewalls

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Outline dmodel for network security and cryptographic algorithms to prevent attacks on computer and computer security.	Understand
CO 2	Demonstrate symmetric and asymmetric key ciphers for messaging end to end encryption used in different types of cryptographic algorithms	Understand
CO 3	Make use of tools and protocols used in message authentication and hashing functions for every day computing to remine secure	Apply
CO 4	Choose appropriate architecture and protocols used in email and IP security to protect against attackers and intruders	Apply
CO 5	Select firewalls to provide web security as case study in cryptography and network security	Apply
CO 6	Utilize cryptographic and security algorithms to enhance defence against cyber attacks and to improve organization working culture.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2.3	SEE / CIE / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2.6	SEE / CIE / AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1.3	SEE / CIE / AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	SEE / CIE / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	SEE / CIE / AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	1	SEE / CIE / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	SEE/CIE/AAT
PSO 2	Focus on improving software reliability, network security / information retrieval systems.	2	SEE/CIE/A/T
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	SEE/CIE/AAT

3 = High; **2** = Medium; **1** = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES										PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\	✓	✓	✓	-	-	-	-	-	/	-	\	~	\	✓
CO 2	\	✓	✓	-	-	-	-	-	-	/	1	\	\	\	✓
CO 3	\	~	✓	-	-	-	-	-	-	/	-	\	/	\	✓
CO 4	\	~	✓	-	-	-	-	-	-	~	-	\	\	\	✓
CO 5	/	✓	✓	-	-	-	-	-	-	✓	-	✓	✓	✓	✓
CO 6	<	✓	✓	✓	-	-	-	-	-	✓	-	/	\	<	✓

XII JUSTIFICATIONS FOR CO - PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Summarize the knowledge of mathematics, Scientific and Engineering principals to prevent attacks on computer using network security and cryptographic algorithms	3
	PO 2	Classify different network security and cryptographic algorithms by problem identification, formulation, abstraction, data collection, design and provide solution to prevent attacks on computer	7
	PO 3	Outline the customer requirements, maintenance and engineering activities to prevent attacks on computer using network and cryptography algorithms.	3
	PO 4	Interpret the appropriate quantitative method, engineering principles and the ability to apply them to develop the cryptographic and network security algorithms to prevent attacks on computer.	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms	2
	PO 12	Use appropriate techniques and algorithms in computer science related, industry oriented applications for preventing attacks on computers.	3
	PSO 1	Understand the problem specific constraints to prevent attacks on computers by applying appropriate network security and cryptographic algorithms.	4
	PSO 2	Focus on improving network security by selecting appropriate network security and cryptographic algorithms to prevent attacks on computer.	1
	PSO 3	Extend the use of modern computer tools for creating innovative career paths to prevent attacks on computer using network security and cryptographic algorithms.	1
CO 2	PO 1	Summarize the knowledge of mathematics, Scientific and Engineering principals to prevent attacks on computer using symmetric and asymmetric key ciphers for messaging end to end encryption.	3
	PO 2	Classify different network security and cryptographic algorithms by problem identification, formulation, abstraction, data collection, design and provide solution to prevent attacks on computer using symmetric and asymmetric key ciphers for messaging end to end encryption	6
	PO 3	Outline the customer requirements, maintenance and engineering activities to prevent attacks on computer using symmetric and asymmetric key ciphers for messaging end to end encryption.	ω
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms	2
	PO 12	BUse appropriate techniques and algorithms in computer science related, industry oriented applications for preventing attacks on computers.	3
	PSO 1	IUnderstand the problem specific constraints to provide end to end security by applying appropriate symmetric and asymmetric key ciphers for messaging end to end encryption used in different types of cryptographic algorithms.	4
	PSO 2	Focus on improving network security by selecting appropriate symmetric and asymmetric key ciphers to provide end to end security.	1
	PSO 3	BExtend the use of modern computer tools for creating innovative career paths to prevent attacks on computer using symmetric and asymmetric key ciphers for messaging end to end encryption used in different types of cryptographic algorithms.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.		
CO 3	PO 1	Apply the knowledge of mathematics and Engineering principals to use the tools and protocols used in message authentication and hashing functions for every day computing to remain secure.	2		
	PO 2	Classify different tools and protocols required for problem identification, formulation, abstraction, data collection, design and provide solution to prevent attacks on computer using MAC and Hash Function.	7		
	PO 3	3			
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms	2		
	PO 12				
	PSO 1 Understand the problem specific constraints to prevent attacks on computers by applying appropriate network security and cryptographic algorithms.				
	PSO 2	Focus on improving network security by selecting appropriate tools and protocols used in message authentication and hashing functions for every day computing to remain secure.	1		
,	PSO 3	Make use of modern computer tools for creating innovative career paths for every day computing to remain secure using MAC and Hash functions.	1		
CO 4	PO 1	Apply the knowledge of mathematics and Engineering principals to Choose appropriate architecture and protocols to provide security to email against attackers and intruders.	2		
	PO 2	Make use of appropriate architecture and protocols required for problem identification, formulation, abstraction, data collection, design and to provide security to E-mail and IP.	7		
	PO 3	Outline the customer requirements, maintenance and engineering activities to provide security to email against attackers and intruders.	4		
	PO 10 Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms		2		
	PO 12	Use appropriate techniques and algorithms in computer science related, industry oriented applications for preventing attacks on computers.	3		
	PSO 1	Understand the problem specific constraints to prevent attacks on E-mail and IP by choosing appropriate architecture and protocols.	4		

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 2	Focus on improving network security by selecting appropriate network security and cryptographic algorithms to prevent attacks on computer.	1
	PSO 3	Extend the use of modern computer tools for creating innovative career paths to prevent attacks on E-mail using appropriate algorithms.	1
CO 5	PO 1	Apply the knowledge of mathematics and Engineering principals to Select firewalls to provide web security as case study in cryptography and network security	2
	PO 2	Classify different firewalls required for problem identification, formulation, abstraction, data collection, design and to provide web security.	7
	PO 3	Outline the customer requirements, maintenance and engineering activities to provide web security using appropriate firewalls.	4
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms .	2
	PO 12	Use appropriate techniques and algorithms in computer science related, industry oriented applications for preventing attacks on computers.	3
	PSO 1	Understand the problem specific constraints to provide web security by using appropriate firewall.	4
	PSO 2	Focus on improving network security by selecting appropriate firewalls and methods to provide web security.	1
	PSO 3	Extend the use of modern computer tools for creating innovative career paths to to provide web security by using appropriate firewall.	1
CO 6	PO 1	Apply the knowledge of mathematics and Engineering principals to to enhance defence against cyber-attacks and to improve organization working culture using cryptographic and security algorithms.	3
	PO 2	Classify different cryptographic and security algorithms required for problem identification, formulation, abstraction, data collection, design and provide solution to enhance defence against cyber-attacks and to improve organization working culture.	7
	PO 3	Outline the customer requirements, maintenance and engineering activities to enhance defence against cyber-attacks and to improve organization working culture using cryptographic and security algorithms	5
	PO 4	Interpret the appropriate quantitative method, engineering principles and the ability to enhance defence against cyber-attacks and to improve organization working culture	5
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	Use appropriate techniques and algorithms in computer science related, industry oriented applications for preventing attacks on computers.	3
	PSO 1	Understand the problem specific constraints to prevent attacks on computers by applying appropriate network security and cryptographic algorithms.	4
	PSO 2	Focus on improving network security by selecting appropriate network security and cryptographic algorithms to prevent attacks on computer.	1
	PSO 3	Extend the use of modern computer tools for creating innovative career paths to prevent attacks on computer using network security and cryptographic algorithms.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	7	3	4	-	-	ı	ı	ı	2	ı	1	4	1	1
CO 2	3	6	3	-	-	-	-	-	-	2	-	1	4	1	1
CO 3	2	7	3	-	-	-	-	-	-	2	-	1	4	1	1
CO 4	2	7	4	-	-	-	-	-	-	2	-	1	4	1	1
CO 5	2	7	4	-	-	-	-	-	-	2	-	1	4	1	1
CO 6	3	7	5	5	-	-	-	-	-	2	-	1	4	1	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

	PROGRAM OUTCOMES											PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	70	30	36.3	-	-	-	-	-	40	ı	12.5	66.66	50	50
CO 2	100	60	30	-	-	-	-	-	-	40	-	12.5	66.66	50	50
CO 3	60	70	30	-	-	-	-	-	-	40	-	12.5	66.66	50	50
CO 4	60	70	40	-	-	-	-	-	-	40	-	12.5	66.66	50	50
CO 5	60	70	40	-	-	-	-	-	-	40	-	12.5	66.66	50	50
CO 6	60	60	40	45.4	-	-	-	-	-	40	ı	12.5	66.66	50	50

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C \le 40% – Low/ Slight

2 - 40 % <C < 60% –Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

	PROGRAM OUTCOMES											PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	1	1	-	-	-	-	-	1	-	1	3	2	2
CO 2	3	2	1		-	-	-	-	-	1	-	1	3	2	2
CO 3	2	3	1	-	-	-	-	-	-	1	-	1	3	2	2
CO 4	2	3	2	-	-	-	-	-	-	1	-	1	3	2	2
CO 5	2	3	2	-	-	-	-	-	-	1	-	1	3	2	2
CO 6	2	2	1	1	-	-	-	-	-	1	-	1	3	2	2
TOTAL	14	16	8	2	-	-	-	-	-	6	ı	6	18	12	12
AVERAGE	2.3	2.6	1.3	1	1	-	-	-	ı	1	ı	1	3	2	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	/
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	✓	Open Ended Experiments	-
Assignments	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback					
X	Assessment of Mini Projects by Exp	Assessment of Mini Projects by Experts						

XVIII SYLLABUS:

MODULE I	ATTACKS ON COMPUTERS AND COMPUTER SECURITY
	Attacks on computers and computer security: Introduction, the need for security, security approaches, principles of security, types of security attacks, security services, security mechanism, a model for network security; Cryptography concepts and techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.
MODULE II	SYMMETRIC KEY CIPHERS
	Symmetric key ciphers:Block cipher principles and algorithms (DES,AES,Blowfish), differential and linear cryptanalysis, block cipher modes of operation, stream ciphers,RC4 location, and placement of encryption function, key distribution; Asymmetric key ciphers: Principles of public key cryptosystems, algorithms (RSA Diffie-Hellman, ECC) key distribution.

MODULE III	MESSAGE AUTHENTICATION ALGORITHM AND HASH FUNCTIONS						
	Message authentication algorithm and hash functions: Authentication requirements, functions, message, authentication codes, hash functions, secure hash algorithm, whirlpool, HMAC, CMAC, digital signatures, knapsack algorithm. Authentication application: Kerberos, X.509 authentication service, public – key infrastructure, biometric authentication.						
MODULE IV	E-MAIL SECURITY						
	E-mail Security: Pretty Good Privacy; S/MIMI IP Security: IP security overview, IP security architecture, authentication header, encapsulating security payload, combining security associations, key management.						
MODULE V	WEB SECURITY						
	Web security: Web security considerations, secure socket layer and transport layer security, secure electronic transaction intruders; Virus and firewalls: Intruders, intrusion detection password management, virus and related threats, countermeasures, firewall design principles; Types of firewalls Case Studies on Cryptography and security: Secure inter-branch payment transactions, cross site scripting vulnerability, virtual electronics.						

TEXTBOOKS

- 1. William Stallings, —Cryptography and Network Security, Pearson Education, 4th Edition, 2005.
- 2. Atul Kahate, —Cryptography and Network Security, McGraw-Hill, 2nd Edition, 2009.

REFERENCE BOOKS:

- 1. C K Shymala, N Harini, Dr. T R Padmanabhan, —Cryptography and Network Security, Wiley India, 1st Edition, 2016.
- 2. Behrouz A. Forouzan Debdeep Mukhopadhyay, —Cryptography and Network Security , McGraw- Hill, 2nd Edition, 2010.

WEB REFERENCES:

- http://bookboon.com/en/search?q=INFORMATION+SECURITY
- 2. https://books.google.co.in/books/about/Cryptography Network Security Sie _2E.html?id=Kokjwdf0 C
- 3. https://books.google.co.in/books/about/Information_Security.html?id=Bh45pU0_E_4C
- 4. www.technofest2u.blogspot.com

COURSE WEB PAGE:

https://lms.iare.ac.in/index ?route=course/details& course id=84

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	-
	CONTENT DELIVERY (THEORY)		
2	Introduction, the need for security	CO 1	T1:1.1- 1.4
3	security approaches, principles of security	CO 1	T1:1.5
4	types of security attacks, security services	CO 1	T2:2.2
5	security mechanism, a model for network security	CO 1	T2:2.2
6	Cryptography concepts and techniques: Introduction, plain text and cipher text,	CO 1	T2:2.1- 2.2
7	substitution techniques	CO 1	T2:2.3- 2.5
8	transposition techniques,	CO 1	T1:2.6
9	encryption and decryption	CO 1	T1:2.7- 2.8
10	symmetric and asymmetric key cryptography,	CO 1	T1:3.1- 3.2
11	steganography, key range and key size	CO 1	T1:3.2- 3.4
12	possible types of attacks.	CO 1	T1:5.2
13	Symmetric key ciphers:Block cipher principles and algorithms (DES,AES,Blowfish)	CO 2	T1:5.3
14	differential and linear cryptanalysis,	CO 2	T1:5.3
15	block cipher modes of operation,	CO 2	T1:5.3
17	stream ciphers,RC4 location, and placement of encryption function	CO 2	T1:5.4- 5.5
18	key distribution; Asymmetric key ciphers: Principles of public key cryptosystems	CO 2	T1:5.6, 21.4
19	algorithms (RSA Diffie-Hellman, ECC) key distribution.	CO 2	T1:6.1
20	Message authentication algorithm and hash functions	CO 3	T1:6.2- 6.3
21	Authentication requirements, functions, message	CO 3	T1:6.4
22	authentication codes, hash functions	CO 3	T1:6.5
23	secure hash algorithm	CO 3	T1:6.6- 6.7
24	whirlpool, HMAC	CO 3	T1:8.1
26	CMAC	CO 3	T1:8.2
27	digital signatures,	CO 3	T1:8.3

29	knapsack algorithm	CO 3	T1:8.4-
29	Kilapsack algoritim	003	8.5
30	Authentication application: Kerberos	CO 3	T1:8.6
31	X.509 authentication service,	CO 3	T1:8.6
33	public – key infrastructure, biometric authentication.	CO 3	T1:9.5
34	E-mail Security: Pretty Good Privacy;	CO 4	T1:9.6
35	S/MIMI IP Security	CO 4	T1:10.1-
			10.2
36	IP security overview	CO 4	T1:10.3
37	IP security architecture	CO 4	T1:10.5
38	authentication header	CO 4	T1:10.6
39	encapsulating security payload	CO 4	T1:10.6
40	combining security associations	CO 4	T1:11.3
41	key management.	CO 4	T1:11.4
43	Web security: Web security considerations,	CO 5	T1:11.5
44	secure socket layer and transport layer security,	CO 5	T1:11.6
45	secure electronic transaction intruders	CO 5	T1:12.1- 12.3
46	Virus and firewallst	CO 5	T1:12.4- 12.6
48	Intruders, intrusion detection password management	CO 5	T1:12.7- 12.8
49	virus and related threats, countermeasures	CO 6	T1:7.1- 7.2
50	firewall design principles;	CO5	T1:8.1
51	Types of firewalls Case Studies on Cryptography and security	CO 5	T1:8.2
52	Secure inter-branch payment transactions	CO 6	T1:8.3
55	cross site scripting vulnerability	CO 6	T2:27.8
56	Secure inter-branch payment transactions	CO 6	T2:27.9
57	virtual electronics.	CO 6	T1:8.2- 8.3
	PROBLEM SOLVING/ CASE STUDIES	5	
16	Problems on Substitution techniques	CO 1	T1:5.3- 5.3
25	Problems on transposition techniques	CO 1	T1:8.1- 8.3
28	Problems on RSA algorithm	CO 2	T1:8.4- 8.6 T1:9.1- 9.2
32	Problems on encryption and decryption methods	CO 3	T1:9.4- 9.6
42	Problems on ceaser cipher method	CO 1	T1:11.3- 11.6

47	Problems on Hill Ciphermethod	CO 2	T1:12.1- 12.6
53	Problems on performance issues	CO 2	T1:8.1- 8.3
54	Problems on DES Algorithm	CO 2	T1:8.1- 8.3
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
58	Definitions on information security terminologies	CO 1	T1:1.2
59	Definitions on symmetric and asymmetric cipher	CO 2	T1:1.5
60	Definitions on MAC and Hash functions	CO 3	T1:8,9
61	Definitions on E-mil and PGP	CO 4	T1:10,11
62	Definitions on Intruders, Firewalls	CO 5,	T1:9.1
		CO 6	
	DISCUSSION OF QUESTION BANK		
1	Tyoes of security attacks	CO 1	T1:1.2
2	Symmetric and asymmetric algrorthims	CO 2	T1:1.5
3	Authentication and hashing algorithms	CO 3	T1:8,9
4	Email security algorithms	CO 4	T1:10,11
5	Intrusion Detection system and firewalls	CO 5,6	T1: 9.1

Signature of Course Coordinator

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	LINUX PROGRAMMING LABORATORY						
Course Code	AITB13	AITB13					
Program	B.Tech	B.Tech					
Semester	VI	VI CSE					
Course Type	Core	Core					
Regulation	IARE - R18						
		Theory		Prac	tical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	2	1		
Course Coordinator Ms K.Aishwarya, Assistant Professor							

I COURSE OVERVIEW:

The main emphasis of this lab course is to provide the idea behind the open source operating system approach to programming and to write bash scripts to solve real-world problems. Linux is the blend of innovative concepts required by its unique environment involving kernel concepts, basic commands, shell scripting, file processing, socket programming, processes and inter process communication (IPC). Linux is one of the most prominent open-source software used for commercial and non-commercial distributions.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB01	I	PPS
B.Tech	AITB04	IV	Operating Systems

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
LINUX PROGRAMMING	70 Marks	30 Marks	100
LABORATORY			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

X	Demo Video		Lab		Viva		Probing further
		С	Worksheets	С	Questions	С	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks ofinternal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	Total Walks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

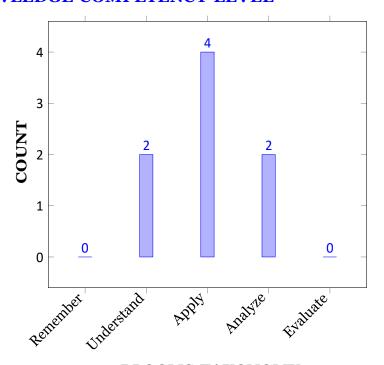
Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	The fundamental concepts of operating system including bourne again shell (bash) with the linux command line environment.
II	The shell programming by writing shell scripts using arithmetic operations, control structures and functions in vi editor.
III	The process management and inter-process communication used for exchanging data between multiple threads in one or more processes.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate text processing utilities, file handling utilities, security by file permissions, process utilities, disk utilities and networking commands with different options available for solving problems.	Understand
CO 2	Make use of bourne shell constructs, decision structures and loops in designing programs for complex problems.	Apply
СО 3	Analyze the process of parent and child relationships using fork(), vfork(), wait() and exec() system calls.	Analyze
CO 4	Interpret to write, compile, debug and run C language program in linux shell environment for implementing kernel level concepts.	Understand
CO 5	Identify basic methods and techniques used in solving simple programming tasks in the area of execution environment, processes signals and threads.	Apply
CO 6	Experiment with IPC mechanisms such as pipes, named pipes, shared memory, message queues, semaphores and sockets for interprocess communication.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE / SEE/ Lab Exercises
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	CIE / SEE/ Lab Exercises
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	CIE / SEE/ Lab Exercises
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	CIE / SEE/ Lab Exercises
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	CIE / SEE/ Lab Exercises

³ = High; **2** = Medium; **1** = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	Lab Exercises
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	2	Lab Exercises
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies	2	Lab Exercises

³ = High; **2** = Medium; **1** = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Demonstrate shell commands for creating and searching files in engineering fundamentals , and an engineering specialization to the solution of complex engineering problems .	3
CO 2	PO 1	Make use of the following bourne shell constructs: test, if then, if then else, if then elif, for, while, until, and case to find the solution of complex engineering problems.	1
CO 3	PO 1	Analyze the process of parent and child relationships using system calls to apply the knowledge of engineering fundamentals , and an engineering specialization to the solution of complex engineering problems .	3
	PO 3	Analyze the process of parent and child relationships used for designing solutions for complex engineering problems .	2
CO 4	PO 1	Interpret to write, compile, debug and run C language program in linux shell environment to apply the knowledge of engineering fundamentals , and an engineering specialization to the solution of complex engineering problems .	3
	PO 3	Interpret to write, compile, debug and run C language program in linux shell environment for designing solutions for complex engineering problems .	1
CO 5	PO 1	Identify basic methods and techniques used in solving simple programming tasks in the area of execution environment, processes and signals, threads and asynchronous I/O using engineering fundamentals for the solutions of complex engineering problems.	2
CO 6	PO 1	Apply the knowledge of IPC mechanisms for interprocess communication in engineering fundamentals , and an engineering specialization to the solution of complex engineering problems .	3
	PO 2	Experiment with IPC mechanisms for inter process communication to analyze complex engineering problems reaching substantiated conclusions using principles of engineering sciences .	3
	PSO 1	Design next-generation computer systems , networking devices using IPC mechanisms for inter process communication	2
CO 7	PO 1	Find the effective solution of complex engineering problems by choosing the appropriate protocol for effective communication in client-server applications.	1
	PSO 2	Focus on web applications development and learn the emerging technologies for effective communication in client-server applications.	2

CO 8	PO 1	Test for different bash shell scripts and programs to solve real-world problems, or automate repetitive and complex tasks by applying the knowledge of engineering fundamentals , and an engineering specialization to the solution of complex engineering problems .	3
	PO 3	Test for different bash shell scripts and programs to solve real-world problems for designing solutions for complex engineering problems .	2
	PO 12	Use shell scripts and programs to solve real-world problems in linux which is needed for life-long learning in the broadest context of technological change in commercial and non-commercial distributions.	3

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTCOMES			PROGRAI	M OUTCOM	IES	
OUTCOME	PO 1	PO 2	РО 3	PO 12	PSO 1	PSO 2	PSO 3
CO 1	3						
CO 2	1						
CO 3	3		2				
CO 4	3		1				
CO 5	2						
CO 6	3	3			2		
CO 7	1					2	
CO 8	3		2	3			3

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1, PO 2,	SEE Exams	PO 1,PO 2,	Seminars	-
	PO 3		PO 3		
Laboratory Practices	PO 1,PO 2, PO 3	Student Viva	PO 1, PO 2, PO 3	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

С	Early Semester Feedback	С	End Semester OBE Feedback	
X	Assessment of Mini Projects by Experts			

XIV SYLLABUS:

WEEK 1	BASIC COMMANDS I				
	Study and Practice on various commands like man, passwd, tty, script, clear, date, cal, cp, mv, ln, rm, unlink, mkdir, rmdir, du, df, mount, umount, find, unmask, ulimit, ps, who, w.				
WEEK 2	BASIC COMMANDS II				
	Study and Practice on various commands like cat, tail, head, sort, nl, uniq, grep, egrep, fgrep, cut, paste, join, tee, pg, comm, cmp, diff, tr, tar, cpio.				
WEEK 3	SHELL PROGRAMMING I				
	a) Write a Shell Program to print all .txt files and .c files. b) Write a Shell program to move a set of files to a specified directory. c) Write a Shell program to display all the users who are currently logged in after a specified time. d) Write a Shell Program to wish the user based on the login time.				
WEEK 4	SHELL PROGRAMMING II				
	a) Write a Shell program to pass a message to a group of members, individual member and all. b) Write a Shell program to count the number of words in a file. c) Write a Shell program to calculate the factorial of a given number. d) Write a Shell program to generate Fibonacci series.				
WEEK 5	SIMULATING COMMANDS I				
	a) Simulate cat command b) Simulate cp command				
WEEK 6	SIMULATING COMMANDS II				
	a) Simulate tail command b) Simulate head command				
WEEK 7	SIMULATING COMMANDS III				
	a) Simulate mv command b) Simulate nl command				
WEEK 8	SIGNAL HANDLING				
	Write a program to handle the signals like SIGINT, SIGDFL, SIGIGN				
WEEK 9	INTERPROCESS COMMUNICATIONS				
	Implement the following IPC forms a) FIFO b) PIPE				
WEEK 10	MESSAGE QUEUES				
	a) Write a C program(sender.c) to create a message queue with read and write permissions to write 3 messages to it with different priority numbers. b) Write a C program(receiver.c) that receives the messages (from the above message queue as specified and displays them.				
WEEK 11	SHARED MEMORY				
	Implement shared memory form of IPC.				
WEEK 12	SOCKET PROGRAMMING				

a) Write client and server programs (using c) for interaction between server and client processes using TCP elementary functions. b) Write client and server programs (using c) for interaction between server and client processes using UDP elementary functions.

TEXTBOOKS

- 1. Sumitabha Das, "Your Unix The Ultimate Guide", Tata McGraw-Hill, New Delhi, India, 2007.
- 2. B. A. Forouzan and R. F. Gilberg, "Unix and Shell Programming", Cengage Learning.

REFERENCE BOOKS:

- 1. Robert Love, "Linux System Programming", O'Reilly, SPD.
- 2. Stephen G. Kochan, Patrick Wood, "Unix Shell Programming", Sams publications, 3rd Edition, 2007.
- 3. T. Chan, "Unix System Programming using C++", Prentice Hall India, 1999

Web References:

- 1. http://spoken-tutorial.org/tutorialsearch/?search_foss=Linux&search_language=English
- 2. https://www.redhat.com/en/files/resources/en-rhel-whats-new-in-rhel-712030417.pdf
- 3. http://www.tutorialspoint.com/unix/4. http://cseo9-iiith.virtual-labs.ac.in

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Basic Commands I	CO 1	T2: 4.7-4.8, 5.3-5.4
2	Basic Commands II.	CO 1	T2: 4.7-4.8, 5.3-5.4
3	Shell Programming I	CO 2	T2: 8.5, 14.14
4	Shell Programming II	CO 2	T2: 8.5, 14.14
5	Simulating Commands I	CO ₃ , CO ₄	T2: 12.3-12.9, 15.9-15.10
6	Simulating Commands II	CO ₃ , CO ₄	T2: 3.10,15.6, 17.5-17.6
7	Simulating Commands III	CO ₃ , CO ₄	T2: 3.10,15.6, 17.5-17.6
8	Signal Handling	CO ₄ , CO ₅	R4: 10.4-10.19
9	Inter process Communications.	CO 6	R4: 14.1-14.5
10	Message Queues	CO4, CO6	R4: 14.1-14.5
11	Shared Memory	CO4, CO6	R4: 14.7
12	Socket Programming	CO ₇ , CO ₈	R2: 15.5

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Write a C program to create a child process and allow the parent to display parent and the child to display child on the screen.
2	Write a C program to create a Zombie process.
3	Write a Shell script that receives any number of file names as arguments checks if every argument supplied is a file or a directory and reports accordingly. Whenever the argument is a file, the number of lines on it is also reported.
4	Write a C Program that makes a copy of a file using standard I/O and system calls.
5	Write a C program in which a parent writes a message to a pipe and the child reads the message.
6	Write a C program that illustrates how an orphan is created.
7	Write a C program that illustrates how an orphan is created.

Signature of Course Coordinator Ms K.Aishwarya Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING				
Course Title	LINUX P	ROGRAMMIN	1G			
Course Code	AITB12					
Program	B.Tech					
Semester	VI	VI				
Course Type	CORE	CORE				
Regulation	R-18					
	Theory Practical					
Course Structure	Lecture Tutorials Credits Laboratory Credits			Credits		
	2	1	3	-	-	
Course Coordinator	Dr B.J.D Kalyani, ASSOCIATE PROFESSOR					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS001	I	Computer Programming
B.Tech	AIT003	IV	Computer Networks

II COURSE OVERVIEW:

This course provides a deep understanding of the operating system architecture and low-level interfaces (principally, system calls and library functions) that are required to build system-level, multithreaded, and network applications on Linux and UNIX systems. The course consists of a mixture of detailed presentations coupled with a large number of carefully designed practical exercises that allow participants to apply the knowledge learned in the presentations. By the completion of the course, participants will have the mastery needed to write complex system, network, and multithreaded applications on a Linux or UNIX system.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks		
Linux Programming	70 Marks	30 Marks	100		

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point Presentations	>	Chalk & Talk	>	Assignments	✓	MOOC
✓	Open Ended Experiments	x	Seminars	x	Mini Project	х	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
70 %	Understand
20 %	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	AAT	TOTAL IVIALES	
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the averageof two quiz examinations for every course.

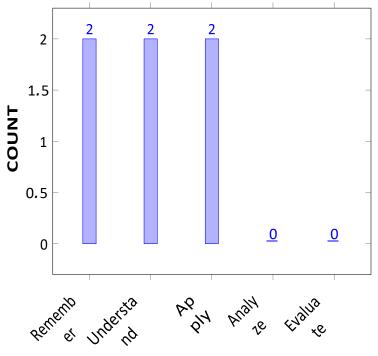
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The features and architecture of Linux operating system along with linux utilities and shell scripting language to solve problems.
11	The concepts of Low-Level system call for file handling and process management.
III	To develop skills the necessary for systems programming including file system programming, process and signal management.
IV	Mechanisms for establishing communication in client- server applications.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate operations using file handling, text processing and linux utilities.	Understand
CO 2	Outline the different shell scripts to execute systems programs and application programs.	Remember
CO 3	Make use of different system calls for file I/O operations and managing the file systems.	Apply
CO 4	Demonstrate the concepts of process and signal system calls for process creation, scheduling, controlling and termination.	Understand
CO 5	Outline IPC mechanisms such as pipes, shared memory, message queues, semaphores for performing inter process communication	Remember
CO 6	Utilize socket concepts for connection-oriented and connectionless communication between client and server systems.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering	3	SEE/CIE, Quiz/AAT
	fundamentals, and an engineering specialization to the solution of complex engineering problems.		ζωι2,7 ω τι
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	SEE/CIE, Quiz/AAT
PO 3	Design / development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	SEE/ CIE, AAT, QUIZ
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	SEE/ CIE, AAT, QUIZ

^{3 =} High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	3	Assignments
PSO 2	Focus on mobile and web applications development and learn the emerging technologies and frameworks in demand with employers and contemporary challenges.	2	Assignments
PSO 3	Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	-	-

3 = High; **2** = Medium; **1** = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\	-	-	-	~	-	-	-	-	-	-	-	/	-	-	
CO 2	\	-	-	-	✓	-	-	-	-	-	-	-	-	-	-	
CO 3	\	-	-	-	✓	-	-	-	-	-	-	-	-	-	-	
CO 4	\	✓	-	-	✓	-	-	-	-	-	-	-	-	\	-	
CO 5	\	-	✓	-	~	-	-	-	-	-	-	-	\	-	-	
CO 6	✓	-	~	-	✓	-	-	-	-	-	-	-	✓	-	-	

XII JUSTIFICATIONS FOR CO - PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
	PSO 1	Understand, analyze and develop computer programs to implement own operating systems using system calls and utilities.	3
CO 2	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
CO 3	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
CO 4	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 2	Identify and analyze complex engineering problems for accessing operating services.	2
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 2	Ability to apply standard practices and strategies in software project devleopment using open ended programming to design client server applications.	2
CO 5	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 3	Design solutions for complex engineering problems using inter process communication mechanisms.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
	PSO 1	Understand, analyze and develop computer programs to implement own operating systems using system calls and utilities.	3
CO 6	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 3	Design solutions for complex engineering problems using inter process communication mechanisms.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
	PSO 1	Understand, analyze and develop computer programs to implement own operating systems using system calls and utilities.	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES								PSO'S					
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	3	-	-	-	-	-	-	1	3	-	
CO 2	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	-	3	-	-	-	-	-	-	-	-	2	-
CO 5	3	-	2	-	3	-	-	-	-	-	-	-	3	-	-
CO 6	3	-	2	-	3	-	-	-	-	-	-	-	3	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	ı	-	-	100	ı	-	-	-	-	-	1	100	ı	-
CO 2	100	-	-	-	100	-	-	-	-	-	-	-	-	-	-
CO 3	100	-	-	-	100	-	-	-	-	-	-	-	-	-	-
CO 4	100	40	-	-	100	-	-	-	-	-	-	-	-	40	-
CO 5	100	-	40	-	100	-	-	-	-	-	-	-	100	-	-
CO 6	100	ı	40	-	100	ı	-	-	-	-	-	-	100	ı	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $0 - 0 \le C \le 5\%$ – No correlation

1 -5 < C≤ 40% – Low/ Slight

2 - 40 % <C < 60% -Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

	PROGRAM OUTCOMES								PSO'S						
COURSE	РО	PO					РО	PSO	PSO	PSO					
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	1	-	3	-	-	-	-	-	-	-	3	1	ı
CO 2	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	-	3	-	-	-	-	-	-	-	-	2	-
CO 5	3	-	2	-	3	-	-	-	-	-	-	-	3	-	-
CO 6	3	-	2	-	3	-	-	-	-	-	-	-	3	-	-
TOTAL	18	4	4	-	18	-	-	-	-	-	-	-	9	2	-
AVERAGE	3	2	2	-	3	-	-	-	-	-	-	-	3	2	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	
Laboratory Practices		Student Viva		Certification	
Term Paper		5 Minutes Video	✓	Open Ended Experiments	
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

X	Assessment of mini projects by experts	>	End Semester OBE Feedback
---	--	-------------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION AND LINUX UTILITIES					
	Introduction to Linux operating system: History of Linux, features of Linux, architecture of Unix/Linux, Linux Utilities-File handling utilities, Security by file permissions, Process utilities, Disk utilities, Networking commands, Filters, Text processing utilities and Backup utilities; Applications: Shell programming with Bourne again shell(bash)- Introduction, shell responsibilities, pipes and Redirection, here documents, running a shell script, the shell as a programming language, shell meta characters, file name substitution, shell variables, command substitution, shell commands, the environment, quoting, test command, control structures, arithmetic in shell, shell script examples, interrupt processing, functions, debugging shell scripts.					
MODULE II	FILES AND DIRECTORIES SYSTEM CALLS					
	Files and Directories: File Concept, File types, File System Structure, File metadata- Inodes, kernel support for files, System calls for file I/O operations-open, create, read, write, close, Iseek,dup2, file status informationstat family, file and record locking- fcntl function, permission- chmod, fchmod, file ownership- chown, Ichown, links- soft links and hard links- symlink, link, unlink; Directories: creating, removing and changing directories- mkdir, rmdir, chdir, obtaining current working directory- getcwd, directory contents, scanning directories- opendir, readdir, closedir, rewinddir functions.					
MODULE III	PROCESS AND SIGNALS					
	Process – Process concept, Layout of a C program, image in main memory, process environment- environment list, environment variables, getenv, setenv, Kernel support for process, process identification, process control - process creation, replacing a process image, waiting for a process, process termination, zombie process, orphan process, system call interface for process management- fork, vfork, exit, wait, waitpid, exec family, process groups, sessions and controlling terminal, differences between threads and processes. Signals— Introduction to signals, Signal generation and handling, Kernel support for signals, Signal function, unreliable signals, reliable signals, kill, raise, alarm, pause, abort, sleep functions.					
MODULE IV	INTERPROCESS COMMUNICATION					
	Inter process Communication: Introduction to IPC, IPC between processes on a single computer system, IPC between processes on different systems, Pipescreation, IPC between related processes using unnamed pipes, FIFOscreation, IPC between unrelated processes using FIFOs(named pipes), differences between unnamed and named pipes. Message Queues- Kernel support for messages, APIs for message queues, client/server example; Semaphores-Kernel support for semaphores, APIs for semaphores, file locking with Semaphores.					
MODULE V	SHARED MEMORY AND SOCKETS					
	Shared Memory- Kernel support for shared memory, APIs for shared memory, shared memory example. Sockets: Introduction to Berkeley Sockets, IPC over a network, client/server model, Socket Address structures (UNIX domain and internet domain), Socket system calls for connection oriented protocol and connectionless protocol, example-client / server programs- single client/server connection, Multiple simultaneous clients.					

TEXTBOOKS

- 1. Sumitabha Das, "Your Unix The Ultimate Guide", Tata McGraw-Hill, New Delhi, India, 2012.
- 2. W. Richard. Stevens, "Advanced Programming in the UNIX Environment" Pearson Education, New Delhi, India, 2013.

REFERENCE BOOKS:

- 1. T. Chan, "Unix System Programming using C++" PHI. 4 th Edition, 2007.
- 2. N. Mathew, R. Stones, Wrox, "Beginning Linux Programming", Wiley India Edition, 4 th Edition, 2014.
- 3. Graham Glass, King Ables, "Unix for Programmers and Users", Pearson Education, 3 rd Edition, 2008.
- 4. A. Hoover, "System Programming with C and Unix", 3 rd Edition, 2008.
- 5. K. A. Robbins, "System Programming, Communication, Concurrency and Threads", Pearson Education, 4 thEdition, 2014.

WEB REFERENCES:

- 1. https://www.edx.org/course/introduction-linux-linuxfoundationx-lfs101x-0
- 2. http://www.tutorialspoint.com/listtutorials/linux/1
- 3. http://www.compsci.hunter.cuny.edu/ sweiss/course_materials/unix_lecture_notes.php.

COURSE WEB PAGE:

https://www.youtube.com/playlist?list=PLzkMouYverAL-n5gSzmx00aAusHgyzfGD

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1					
	OBE DISCUSSION							
1	In Outcome-Based Education (OBE), we discussed about cours	•						
	are planned to achieve stated objectives and outcomes. We will focuses on measuring							
	student performance i.e. outcomes at different levels. Course outcomes(CO),Program							
	Outcomes(PO)and Program Specific Outcomes(PSO) and also mapping of CO's to PO's							
	PSO's and their attainments are discussed.							
	CONTENT DELIVERY (THEORY)							
2	Understand history of Linux and its features	CO 1	T2:					
			1.1-1.5,					
			T1: 4.1					
3	Architecture of Unix/Linux	CO 1	T2:					
			4.7-4.8,					
			5.3-5.4					
4-5	Linux Utilities-File handling utilities,	CO 1	T2:					
			3.10,15.6,					
			17.5-17.6					

	Convitu by file permissions Dranes williams	CO 1	тэ.
6	Security by file permissions, Process utilities,	CO 1	T2:
			3.10,15.6, 17.5-17.6
7.0	Dial. utilities Naturalises serviced Filters	60.1	
7-8	Disk utilities, Networking commands, Filters.	CO 1	T2: 12.3-12.9
			15.9-
			15.10
9	Text processing utilities and Backup utilities.	CO 1	T2: 13.4
		CO 1	
10-11	Demonstrate pattern scanning and processing in problem solving.		T2: 18.1, T2:18.12
12-13	Understand basic shell scripting.	CO 2	T2: 8.5
14	Understand shell script execution.	CO 2	T2: 14.14
15	Classify use of special characters.	CO 2	T2: 8.9
16-17	Illustrate forwarding the command output into another	CO 2	T2: 8.4,
	context		8.10
18-19	Develop solutions to complex tasks.	CO 2	T2: 14.5-
	·		14.17
20	Demonstrate the use of the formatting Specifies of IO.	CO 3	R4:
			4.1-4.14
21-22	Demonstrate standard stream and buffer based input and	CO 3	R4:
	output system calls.		5.1-5.9
23	Demonstrate layout of what's being printed.	CO 3	R4:
			5.10-5.11
24-25	Demonstrate modification and editing.	CO 2	R4:
			3.1-3.12,
			4.2
26-27	Demonstrate security concepts in files.	CO 3	T2: 5.2
28	Discuss scanning and linking methods.	CO 3	R4:
			4.20-4.22,
			4.15-4.17
29-31	Understand internal procedures and states of IPC	CO 4	R4: 8.6
32-33	Illustrate daemons and varieties.	CO 4	R4: 8.6
34	Classify processes to respond to asynchronous events.	CO 4	R4:
			10.1-10.3
35-36	Understand and to handle exceptional situations.	CO 4	R4: 10.4-
			10.19
37-38	Demonstrate inter related process communication	CO 5	R4:
			14.1-14.4
39	Demonstrate named pipes.	CO 5	R4: 14.5
40	Discuss types of restricting and accessing different resources.	CO 5	R4: 14.6
41-43	Demonstrate dividing up work among to balance work over multiple processes.	CO 5	R4: 14.7
44	Demonstrate user variables and semaphore operations, provided at the kernel level.	CO 5	R4: 14.8
45-46	Solve security hurdles using programming interface of Linux	CO 5	R4: 14.8
47	Demonstrate common memory portion which other processes	CO 6	R4: 14.9
48-49	Illustrate common memory sharing interfacing example.	CO 6	R4: 14.9
40-43	mustrate common memory snaring interracing example.	CO 6	N4. 14.9

50-51	Demonstrate parallelism in Linux based system calls.	CO 6	T1:						
30-31	Demonstrate paramensin in Linux based system cans.		13.1-13.2						
52	Demonstrate concurrency in Linux APIs.	CO 6	T1: 13.4						
53-54	Demonstrate multiple processes to a common resource in Linux based parallel	CO 6	T1: 13.5						
55-57	Demonstrate multiple threads access the same resource for read and write.	CO 6	T1: 13.5						
58	Understand end to end network communication	CO 6	R2: 15.1						
59-60	Understand TCP based system calls	CO 6	R2: 15.5						
61-62	Understand UDP protocol system calls	CO 6	R2: 15.5						
63-64	Demonstrate connection oriented, connectionless communications in two and three	CO 6	R2: 15.5						
	PROBLEM SOLVING/ CASE STUDIES								
1	Problems on shell scripting in linux operating system to do various operations.	CO 3	R2:7.5						
2	Problems on file system calls to implement utilities in linux operating system.	CO 2	R2:7.5						
3	Problems on directory system calls to create and access directory files in linux operating system.	CO 3	R2:7.5						
4	Problems on process for creating and terminating of linux operating system.	CO 2	R2:7.5						
5	Problems on signals to control the process in linux.	CO 2	R2:7.5						
6	Problems on Interprocess communication using pipes, fifo mechanisms.	CO 3	R2:7.5						
7	Problems on Interprocess communication using message queues system calls.	CO 3	R2:7.5						
8	Problems on Interprocess communication using shared memory and semaphores.	CO 3	R2:7.5						
9	Problems on connection oriented and connection less to exchange data between process using system calls.	CO 3	R2:7.5						
	DISCUSSION OF DEFINITION AND TERMI	NOLOGY							
1	Definitions on linux operating system and utilities	CO 1	T1:1.2						
2	Definitions on shell responsibilities	CO 2	T1:1.6						
3	Definitions on process system calls	CO 3	T1:8,9						
4	Definitions on signal system calls	CO 4	T1:9.1						
5	Definitions on inter process communication mechanisms	CO 5	T1:10,11						

	DISCUSSION OF QUESTION BANK								
1	Linux architecture and utilities, shell programming	CO 1	T1:1.2						
2	Files and Directory system calls	CO 2	T1:1.5						
3	Process and Signals	CO 3	T1:8,9						
4	Inter Process Communication mechanisms of pipes, fifo, message queues	CO 4	T1:9.1						
5	Inter Process Communication using TCP and UDP protocols	CO 5,6	T1:10,11						

Signature of Course Coordinator
Ms B.Geetavani, Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING						
Course Title	PRINC	PRINCIPLES OF ARTIFICAL INTELLIGENCE						
Course Code	ACSB13	ACSB13						
Program	B.Tech	B.Tech						
Semester	VI	VI						
Course Type	Core	Core						
Regulation	R-18							
		Theory		Practical				
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	3 - 3							
Course Coordinator	Dr.Ch.Sa	Dr.Ch.Santhaiah, Associate Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	
UG	AHSC08	II	Probability and Statistics	
UG	ACSB03	II	Data Structures	
UG	ACSB04	III	Discrete Mathematical Structures	
UG	AITB05	IV	Design and Analysis of Algorithms	

II COURSE OVERVIEW:

Driven by the combination of increased access to data, computational power, and improved sensors and algorithms, Artificial Intelligence (AI) technologies are entering the mainstream of technological innovation. These technologies include search, machine learning, natural language processing, robotics and image processing.

Artificial intelligence (AI) is a study field that examines how to achieve intelligent human behaviours on a computer. An ultimate objective of AI is to make a PC that can learn, plan, and take care of issues independently.

In spite of the fact that AI has been thought for many years, we can't make a PC that is as clever as a human in all perspectives. Still, we do have several successful applications. In some cases, the computer implemented with AI technology can be even more clever than us. The Deep Blue system which won against the world chess champion is a great example.

Presentation of artificial intelligence is though, ideas and methods to familiarize the student with the basic programs in the field and their underlying theory. Students will explore this through problem-solving paradigms, logic and theorem proving, language and image understanding, search and control methods and learning.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Principles of Artificial	70 Marks	30 Marks	100
Intelligence			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point Presentations	✓	Chalk & Talk	/	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	x Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level	
%	Remember	
%	Understand	
%	Apply	
0 %	Analyze	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Theory		Total Marks
Type of Assessment	CIE Exam	Quiz	AAT	10tal Walks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

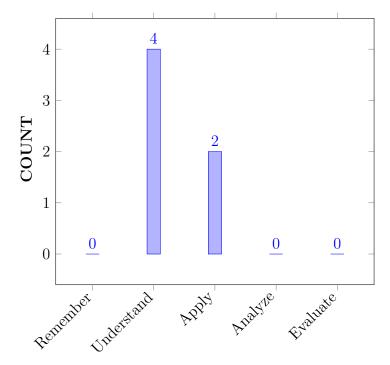
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	Gain a historical perspective of AI and its foundations.
II	Become familiar with basic principles of AI toward problem solving, inference, knowledge representation, and learning.
III	Investigate applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
IV	Experience AI development tools such as Prolog (AI language), expert system shell, and/or data mining tool.
V	Explore the current scope, potential, limitations, and implications of intelligent systems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize knowledge representation and issues in AI and Related	Understand
	fields.	
CO 2	Demonstrate knowledge reasoning with predicate logic and inference	Understand
	rules in the presence of incomplete and/or uncertain information.	
CO 3	Choose Heuristic, Adversarial search and game playing algorithms for	Apply
	addressing a particular AI problem and implement the selected strategy.	
CO 4	Experiment with uncertainty issues by using statistical and	Apply
	symbolic reasoning approaches.	
CO 5	Outline subfields and applications of AI such as planning, learning,	Understand
	and expert systems in specific domain problems.	
CO 6	Demonstrate knowledge representation with the help of AI	Understand
	languages and tools.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering	3	CIE/Quiz/AAT
	fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	CIE/Quiz/AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	1	CIE/Quiz/AAT
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	1	CIE/Quiz/AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	CIE/Quiz/AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

PROGRAM SPECIFIC OUTCOMES		Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Artificial Intelligence, Machine Learning and Networking.	3	CIE / Quiz / AAT
PSO 2	Focus on improving software reliability, network security and Information retrieval systems.	2	CIE / Quiz / AAT

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	3	CIE / Quiz / AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s),PSO(s):

		PROGRAM OUTCOMES												PSO'S	
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	-	-	-	-	-	-	1	-	1	-		\	-	-
CO 2	-	-	✓	-	-	-	-	-	-	-	-	-	-	✓	-
CO 3	✓	-	-	-	-	-	-	-	-	-	-	-	/	-	-
CO 4	✓	-	-	-	-	-	-	-	-	-	-	-	/	-	-
CO 5	✓	✓	✓	-	-	-	-	-	-	✓	-	-	-	✓	-
CO 6	✓	✓	-	-	-	-	-	-	-	-	-		/	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Learn definition of AI and its underlying assumptions. The approaches also evolved from the foundation of AI algorithms to the paradigm slot in symbolic algorithms and expert system development, Machine learning and Deep learning to support study of their own engineering discipline applying mathematical and scientific principles.	3
	PSO 1	Understand Early works in AI to design System Software and make use of these in the areas related to Web design, Machine learning and Networking.	4
CO 2	PO 3	Relate Knowledge and understand approaches to knowledge representation in commercial and economic context of engineering process to Various problems, customer and user needs, cost effective and creative solutions, design process and Management techniques.	7
	PSO 2	Understand Issues in Knowledge Representation in improving Software reliability, security and information retrieval systems.	2
CO 3	PO 1	Compare procedural and declarative knowledge in solving complex engineering problems.	3
	PSO 1	Demonstrate algorithms for solving logic programming.	4
CO 4	PO 1	Recall steps of algorithm to convert casual forms with scientific principles and mathematical principles.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Make use of algorithms to convert casual forms relating formula in proof.	4
CO 5	PO 1	Explain axioms and rules of inference in nonmonotonic reasoning to extend some kind of numeric measure of certainty using scientific principles and mathematical principles.	2
	PO 2	Explore techniques for solving problems with incomplete and uncertain models by identifying the problem statement, information collection and develop a solution and documentation	4
	PO 3	Design solutions for uncertainty problems in any AI system that seeks to model and reasoning by investigating, identifying constraints to establish innovative solutions evaluate outcomes and promote sustainability.	5
	PO 10	Understand the techniques for solving problems and communicate effectively with the engineering community and with society at large.	3
	PSO 2	Understand the techniques of uncertainty for improving software reliability and information retrieval.	2
CO 6	PO 1	Apply inference and resolution for conversion of facts into first order logic, statements into CNF(Conjunctive Normal form) using scientific, mathematical principles and support study of their own engineering discipline	3
	PO 2	Build refutation proofs that are proofs by contradiction by identifying, formulating and analysing complex engineering problems with the help of basic mathematics and engineering sciences.	7
	PSO 1	Make use of inference and resolution to design and analyze computer programs for converting the facts and statements	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES												PSO'S	
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	_	-	-		4	-	-
CO 2	-	-	7	-	-	-	-	-	-	-	-	-	-	2	-
CO 3	3	-	ı	-	-	-	ı	ı	-	-	-	ı	4	-	-
CO 4	2	-	ı	-	-	-	ı	ı	-	-	ı	ı	4	ı	-
CO 5	2	4	5	-	-	-	-	-	-	3	-	-	-	2	-
CO 6	3	7	ı	-	-	-	-	-	-	-	-		3	_	_

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.6	0.0	0.0
CO 2	0.0	0.0	70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100	0.0
CO 3	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.6	0.0	0.0
CO 4	66.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.6	0.0	0.0
CO 5	66.6	40	50	0.0	0.0	0.0	0.0	0.0	0.0	60	0.0	0.0	0.0	100	0.0
CO 6	100	70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50	0.0	0.0

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{0}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C $\le 40\%$ – Low/ Slight

 $\boldsymbol{2}$ - 40 % <C < 60% –Moderate

3 - 60% < C < 100% - Substantial / High

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	0	0	0	0	0	0	0	0	0	0	0	3	0	0
CO 2	0	0	3	0	0	0	0	0	0	0	0	0	0	3	0
CO 3	3	0	0	0	0	0	0	0	0	0	0	0	3	0	0
CO 4	3	0	0	0	0	0	0	0	0	0	0	0	3	0	0
CO 5	3	2	2	0	0	0	0	0	0	3	0	0	0	3	0
CO 6	3	3	0	0	0	0	0	0	0	0	0	0	2	0	0
TOTAL	15	5	5	0	0	0	0	0	0	3	0	0	11	6	0
AVERAGE	2.5	0.83	1.6	0	0	0	0	0	0	0.5	0	0	1.8	1.0	0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	~	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	✓	Open Ended Experiments	-
Assignments	✓				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

X	Assessment of mini projects by experts	✓	End Semester OBE Feedback
---	--	----------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION OF AI AND KNOWLEDGE
	REPRESENTATION
	Definition of AI, The AI Problems, The Underlying Assumption, AI Techniques, The Level of the Model, Criteria for Success, The importance of AI, Early works in AI, AI and Related fields, The Foundations of Artificial Intelligence, The History of Artificial Intelligence. Defining the Problem as a State Space Search, Production Systems, Problem Characteristics, Production System Characteristics, Issues in the Design of Search Programs. Knowledge Representation Issues: Representations and Mappings, Approaches to Knowledge Representation, Issues in Knowledge Representation. AI Languages and Tools: Lisp, Prolog, CLIPS.
MODULE II	FIRST ORDER LOGIC AND INFERENCE
	Using Predicate Logic: Representing Simple Facts in Logic, Representing Instance and ISA Relationships, Computable Functions and Predicates, Properties of Wff, Clausal Forms, Conversion to clausal forms, Resolution. Representing Knowledge Using Rules: Procedural Versus Declarative Knowledge, Logic Programming, Forward Versus Backward Reasoning, Matching, Control Knowledge.
MODULE III	SEARCH TECHNIQUES
	Heuristic Search Techniques: Generate-and-Test, Hill Climbing, Best-first Search, A* algorithm, AO* algorithm, Problem Reduction, And-Or search, Constraint Satisfaction, Means-ends Analysis. Adversarial Search and Game Playing: Optimal Decision in Games, The minimax algorithm, Alpha-Beta pruning, Iterative Deepening, Expectimax search.
MODULE IV	HANDLING UNCERTANITY
	Symbolic Reasoning Under Uncertainty: Introduction to Non monotonic Reasoning, Logics for Non monotonic Reasoning, Implementation Issues, Augmenting a Problem-solver. Statistical Reasoning: Probability and Bayes' Theorem, Certainty Factors and Rule-based Systems, Bayesian Networks, Dempster-Shafer Theory, Fuzzy Logic.
MODULE V	PLANNING, LEARNING AND EXPERT SYSTEMS
	Planning: Overview, An Example Domain: The Blocks World, Components of a Planning System, Goal Stack Planning, Nonlinear Planning Using Constraint Posting, Hierarchical Planning, Reactive Systems. Learning: What is learning, Rote learning, Learning by taking Advice, Learning from example: Induction, Explanation based learning (EBL), Discovery, Clustering, Analogy, Neural net and genetic learning, Reinforcement learning. Expert System: Representing and Using Domain Knowledge, Expert System Shells, Explanation, Knowledge Acquisition, Expert System Architectures, Rule based systems, Non production system, knowledge acquisition.

TEXTBOOKS

- 1. Elaine Rich, Kevin Knight and Shivashankar B Nair, Artificial Intelligence, Tata McGraw Hill, 3rd Edition, 2009.
- 2. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems, Prentice-Hall, 2007

REFERENCE BOOKS:

- 1. Nils J.Nilsson, Principles of Artificial Intelligence, Narosa Publishing House, 1990.
- 2. Stuart Russell and Peter Norvig, Artificial Intelligence A Modern Approach, Pearson Education, 2nd Edition, 2010.
- 3. VS Janakiraman K, Sarukesi Gopalakrishnan, Foundations of Artificial Intelligence & Expert Systems, Macmillan.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Cours	se Objectives,
1	Course Outcomes (CO), Program Outcomes (PO) a	and CO - PO	Mapping
	CONTENT DELIVERY (THEOR	RY)	
1	Definition of AI, The AI Problems, The Underlying Assumption	CO 1	T1:1.1-1.8, 2.2
2	AI Techniques, The Level of the Model, Criteria for Success	CO 1	T1:1.10
3	The importance of AI, Early works in AI	CO 2	T2:2.7
4	AI and Related fields, The Foundations of Artificial Intelligence	CO 3	T2:2.8
5	The History of Artificial Intelligence.	CO 4	T3:2.8
6	Defining the Problem as a State Space Search.	CO 1	
7	Production Systems, Problem Characteristics,	CO 4	T1:3.1-3.2
8	Production System Characteristics,	CO 4	T1:4.2,7.1-7.4
9	Issues in the Design of Search Programs.	CO 5	T1:3.3-3.7
10	Representations and Mappings.	CO 5	T1:4.2,7.1-7.4
11	Approaches to Knowledge Representation	CO 1	T2:2.8
12	Issues in Knowledge Representation.	CO 4	T1:1.3 T1:1.7,7.4
13	Representing Simple Facts in Logic,	CO 6	T1: 7.6 7.7, 8.9-8.10
14	Representing Instance and ISA Relationships,	CO 4	T1:1.3 T1:1.7,7.4
15	Computable Functions and Predicates,.	CO 3	T1:1.1 T1:1.1-1.4
16	Properties of Wff, Clausal Forms, Conversion to clausal forms, Resolution	CO 5	T1: 7.6 7.7, 8.9-8.10
17	Procedural Versus Declarative Knowledge, Logic Programming,	CO 4	T1:1.1-1.2 T1:1.5-1.7
18	Forward Versus Backward Reasoning,	CO 1	T1:1.3 T1:1.7,7.4
19	Matching, Control Knowledge.	CO 4	T1:1.1-1.2 T1:1.5-1.7
20	Generate-and-Test, Hill Climbing,	CO 1	T1:3.1-3.4 T1:2.1-2.4

Best-first Search, Problem Reduction,	CO 5	T1:5.1-5.3 T1:2.8,3.7-3.8
And-Or search, Constraint Satisfaction, Means-ends Analysis.	CO1	T1:1.1-1.2 T1:1.5-1.7
A* algorithm, AO* algorithm	CO 2	T1:3.3-3.5 T1:2.6
Optimal Decision in Games,	CO 3	T1:5.1-5.3 T1:2.8,3.7-3.8
The minimax algorithm, Alpha-Beta pruning,	CO 5	T1:3.3-3.5 T1:2.6
Iterative Deepening, Expectimax search.	CO 4	T1:5.15.10 T1:3.6
Introduction to Non monotonic Reasoning,	CO 4	T1:4.4-4.6 T1: 5.11 T1:3.10
Logics for Non monotonic Reasoning,	CO 1	T1:5.1-5.3 T1:2.8,3.7-3.8
Probability and Bayes' Theorem,	CO 5	T1:3.3-3.5 T1:2.6
Certainty Factors and Rule-based Systems,.	CO1	T1: 5.11 T1:3.10
Bayesian Networks, Dempster-Shafer Theory, Fuzzy Logic	CO2	T1:3.3-3.5 T1:2.6
Overview, An Example Domain: The Blocks World,	CO 5	T1:6.1,6.4 T1:4.1-4.5
Components of a Planning System,	CO 5	T1:6.3,6.10 T1:4.9-4.10
Goal Stack Planning, Nonlinear Planning Using Constraint Posting,	CO1	T1:5.1-5.3 T1:2.8,3.7-3.8
Hierarchical Planning, Reactive Systems. What is learning, Rote learning,	CO 1	T1:3.3-3.5 T1:2.6
learning by taking Advice, learning from example:	CO 5	T1:6.2-6.3,6.7 T1:4.8,4.11
Induction, Explanation based learning (EBL),	CO1	T1: 7.6 7.7, 8.9-8.10
Discovery, Clustering, Analogy, Neural net and genetic learning, Reinforcement learning.	CO2	T1:6.1,6.4 T1:4.1-4.5
Representing and Using Domain Knowledge,	CO3	T1:5.15.10 T1:3.6
Expert System Shells, Explanation, Knowledge Acquisition, Expert System Architectures,	CO 6	T1:6.3,6.10 T1:4.9-4.10
Rule based systems, Non production system, knowledge acquisition	CO 1	T1:1.3 T1:1.7,7.4
PROBLEM SOLVING		
Enumerate Classical "Water jug Problem". Describe the state space for this problem and also give the solution	CO 1	T1:6.1,6.4 T1:4.1-4.5
Illustrate Knowledge Organization and Manipulation IN AI	CO1	T1:6.1,6.4 T1:4.1-4.5
	And-Or search, Constraint Satisfaction, Means-ends Analysis. A* algorithm, AO* algorithm Optimal Decision in Games, The minimax algorithm, Alpha-Beta pruning, Iterative Deepening, Expectimax search. Introduction to Non monotonic Reasoning, Logics for Non monotonic Reasoning, Probability and Bayes' Theorem, Certainty Factors and Rule-based Systems,. Bayesian Networks, Dempster-Shafer Theory, Fuzzy Logic Overview, An Example Domain: The Blocks World, Components of a Planning System, Goal Stack Planning, Nonlinear Planning Using Constraint Posting, Hierarchical Planning, Reactive Systems. What is learning, Rote learning, learning by taking Advice, learning from example: Induction, Explanation based learning (EBL), Discovery, Clustering, Analogy, Neural net and genetic learning, Reinforcement learning. Representing and Using Domain Knowledge, Expert System Shells, Explanation, Knowledge Acquisition, Expert System Architectures, Rule based systems, Non production system, knowledge acquisition PROBLEM SOLVING Enumerate Classical "Water jug Problem". Describe the state space for this problem and also give the solution Illustrate Knowledge Organization and Manipulation	And-Or search, Constraint Satisfaction, Means-ends Analysis. A* algorithm, AO* algorithm CO 2 Optimal Decision in Games, CO 3 The minimax algorithm, Alpha-Beta pruning, Iterative Deepening, Expectimax search. CO 4 Introduction to Non monotonic Reasoning, CO 4 Logics for Non monotonic Reasoning, CO 1 Probability and Bayes' Theorem, CO 5 Certainty Factors and Rule-based Systems,. CO1 Bayesian Networks, Dempster-Shafer Theory, Fuzzy Logic Overview, An Example Domain: The Blocks World, CO 5 Components of a Planning System, CO 5 Goal Stack Planning, Nonlinear Planning Using Constraint Posting, Hierarchical Planning, Reactive Systems. What is learning, Rote learning, Iearning by taking Advice, learning from example: CO 1 Discovery, Clustering, Analogy, Neural net and genetic learning, Reinforcement learning. Representing and Using Domain Knowledge, CO3 Expert System Shells, Explanation, Knowledge Acquisition, Expert System Architectures, Rule based systems, Non production system, knowledge acquisition PROBLEM SOLVING Enumerate Classical "Water jug Problem". Describe the state space for this problem and also give the solution Illustrate Knowledge Organization and Manipulation

43	Imagine that you had been to an aquarium and seen a shark and an octopus .Describe these to a child who has never seen one. What resources and mechanisms does the child use to comprehend the nature of these marine animals?	CO2	T1: 7.6 7.7, 8.9-8.10
44	Analyze each of them with respect to the seven problem characteristics, Chess, 8-puzzle, Missionaries and cannibals, Monkey and bananas, Tower of Hanoi, Crypt arithmetic	CO1	T1:6.3,6.10 T1:4.9-4.10
45	Find a good state space representation for the following. Water jug, Traveling salesman, Tower of Hanoi, Crypt arithmetic, Chess, 8-puzzle.	CO2	T1:5.15.10 T1:3.6
46	Trace the operation of the unification algorithm on each of the following pairs of literals: $f(Marcus)$ and $f(Caesar)$ ii. $f(x)$ and $f(g(y))$ $f(Marcus,g(x,y))$ and $f(x,g(Caesar,Marcus))$	CO3	T1:6.1,6.4 T1:4.1-4.5
47	Convert the following well formed formula into clause from with sequence of steps: x: [Roman(x) Know (x, Marcus)] [hate(x, Caesar) v (y: z: hate(y,z) thinkcrazy(x,y))]	CO4	T1: 7.6 7.7, 8.9-8.10
48	Assume the following facts: Steve only likes easy courses. Science courses are hard. All the courses in the basketweaving department are easy BK301 is a basketweaving course. Use resolution to answer the question, "What course would Steve like?"	CO3	T1:6.2-6.3,6.7 T1:4.8,4.11
49	Imagine a Robot trying to move from one place in a city to other. It has complete knowledge of the connecting roads in the city. As it moves the road condition keep changing. If the robot is to reach its destination with in a prescribed time, Suggest an algorithm for the same [HINT:Split the roadmap into a set of connected nodes and imagine that the costs of moving from one node to another change based on sometime dependent conditions].	CO2	T1: 7.6 7.7, 8.9-8.10
50	What are the Implementation Issues and explain about Augmenting a Problem-solver.	CO2	T1:5.1-5.3 T1:2.8,3.7-3.8
51	Use Fuzzy logic. For example, you might want to define such fuzzy sets as honest people or greedy people and describe Abott, Babbit, and Cabot's memberships in those sets.	CO1	T1:6.3,6.10 T1:4.9-4.10
52	Show how a JTMS could be used in medical diagnosis. Consider rules such as, "If you have a runny nose, assume you have a cold unless it is allergy season."	CO4	T1:6.1,6.4 T1:4.1-4.5
53	Explain in detail about STRIPS and write the components of STRIPS for the given scenario: "Consider a flight journey in a luxurious flight fom India to US"	CO3	

54	Consider the problem of building a program to learn a grammar for a language such as English. Assume that such a program would be provided, as input, with a set of pairs, each consisting of a sentence and a representation of the meaning of the sentence. This is	CO4	T1: 7.6 7.7, 8.9-8.10
	analogous to the experience of a child who hears a sentence and sees something at the same time. How could such a program be built using the techniques		
55	Consider the problem of devising a plan for cleaning the kitchen. (a) Write a set of STRIPS-style operators that might be used. When you describe the operators, take into account such considerations as: Cleaning the stove or the refrigerator will get the floor dirty. To clean the oven, it is necessary to apply oven cleaner and then to remove the cleaner. Before the floor can be washed, it must be swept. Before the floor can be swept, the garbage must be taken out. Cleaning the refrigerator generates garbage and messes up the counters. Washing the counters or the floor gets the sink dirty. (b) Write a description of a likely initial state of a kitchen in need of cleaning. Also write a description of a desirable (but perhaps rarely obtained) goal state. (c) Show how the technique of planning using a goal stack could be used to solve this problem.	CO3	T1:5.1-5.3 T1:2.8,3.7-3.8
	DEFINITION AND TERMINOLO	OGY	
56	Define Artificial Intelligence	CO1	T1:6.2-6.3,6.7 T1:4.8,4.11
57	What is a Support Vector Machine?	CO2	T1:6.1,6.4 T1:4.1-4.5
58	What is Disjunctive normal form?	CO4	T1: 7.6 7.7, 8.9-8.10
59	Why is Depth-first search used?	CO2	T1:6.3,6.10 T1:4.9-4.10
60	Define the term STRIPS	CO5	T1:6.3,6.10 T1:4.9-4.10
	DISCUSSION OF TUTORIAL QUESTION	ON BANK	
61	Solve the Water Jug problem: you are given 2 jugs, a 4-gallon one and 3-gallon one. Neither has any measuring maker on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of water into 4-gallon jug? Explicit assumptions: A jug can be filled from the pump, water can be poured out of a jug onto the ground, water can be poured from one jug to another and that there are no other measuring devices available.	CO1	T1:5.1-5.3 T1:2.8,3.7-3.8

62	What problems would be encountered in attempting to represent the following statements in predicate logic? It should be possible to deduce the final statement from the others John only likes to see French movies. It's safe to assume a movie is American unless explicitly told otherwise The playhouse really shows the Foreign films People don't do things that will cause them to be in situations that they don't like	CO3	T1:6.2-6.3,6.7 T1:4.8,4.11
63	The constraint satisfaction procedure we have described performs depth-first search whenever some kind of search is necessary.But depth-first search is not the only way to conduct such a search (a) Rewrite the constraint satisfaction procedure to use breadth first search (b) Rewrite the constraint satisfaction procedure to use best first search	CO2	T1: 7.6 7.7, 8.9-8.10
64	Construct a Bayesian Network and define the necessary CPTs for the given scenario. We have a bag of three biased coins a,b and c with probabilities of coming up heads of 20%, 60% and 80% respectively. One coin is drawn randomly from the bag (with equal likelihood of drawing each of the three coins) and then the coins flipped three times to generate the outcomes X1, X2 and X3.	CO4	T1:6.3,6.10 T1:4.9-4.10
65	Explain in detail about STRIPS and write the components of STRIPS for the given scenario: "Consider a flight journey in a luxurious flight fom India to US"	CO5	T1:6.1,6.4 T1:4.1-4.5

Signature of Course Coordinator Dr. Ch Santhaiah, Associate Professor $_{
m HOD,CSE}$

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	INTERNET OF THINGS					
Course Code	AITB20					
Program	B.Tech					
Semester	VI CSE					
Course Type	Elective					
Regulation	IARE - R18					
		Theory		Praction	Practical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	_	3	-	-	
Course Coordinator	Ms. B Anupama, Assistant Professor					

I COURSE OVERVIEW:

Internet of things (IoT) is a network of things that are embedded with software and sensors to process data. This course include physical and logical design of IoT systems, M2M systems, SDN, IoT Architecture components such as physical devices and endpoints, physical servers and cloud offerings. This is used in various applications such as Smart Refrigerator, Smart Homes and Smart environments.

II COURSE PRE-REQUISITES:

Level Course Code		Semester	Prerequisites
B.Tech	B.Tech AITB10		Computer Networks

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Internet of Things	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

√	PPT	✓	Chalk & Talk	✓	Assignments	x	MOOC
x	Open Ended Experiments	х	Seminars	х	Mini Project	х	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

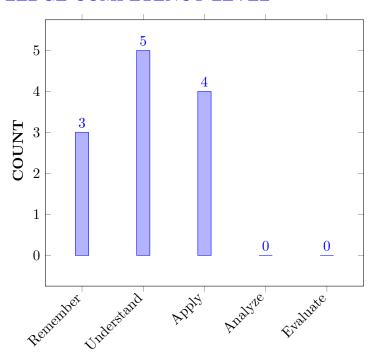
The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level	
10%	Remember	
70 %	Understand	
20 %	Apply	
0 %	Analyze	
0 %	Evaluate	
0 %	Create	

VI COURSE OBJECTIVES:

The students will try to learn:

I	The significance of the Internet of Things		
II	The sensors, actuators and communication protocols used for establishing		
	communication in M2M.		
III	The real time IoT applications related to smart environments.		


VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Recall design and characteristics of IoT for reuse of deployed IoT	Remember
	resources across application domains.	
CO 2	Illustrate levels of IoT for storage of data either in local server or	Understand
	cloud.	
CO 3	Relate most common ways of communication models for accessing	Understand
	data from sensors and actuators.	
CO 4	Identify the differences between Machine to Machine and IoT for data	Apply
	exchange between devices.	
CO 5	Recall network control functions (SDN &NFV) for communication	Remember
	with hardware infrastructure and direct traffic on a network.	

CO 6	Demonstrate device management with NETCONFG-YANG for configuration data and manipulating configuration data on network.	Understand
CO 7	Relate architectural reference model for managing access control of IoT devices and the data they publish.	Understand
CO 8	Identify the necessity of communication protocols for overcoming issues like failure of any connected devices.	Apply
CO 9	Demonstrate importance of raspberry Pi interfaces (SPI, I2C) for connecting other devices/sensors to communicate with pi.	Understand
CO 10	How to set up the Raspberry Pi environment, get a Linux operating system running, for executing some basic Python code on the Raspberry Pi.	Remember
CO 11	Choose cloud storage models that are scalable & available on Demand	Apply
CO 12	Identify application program interface (REST, Communication) for better interchange of data between devices.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	CIE/Quiz/AAT
	mathematics, science, engineering fundamentals,		
	and an engineering specialization to the solution of		
	complex engineering problems.		

PO 2	Problem analysis: Identify, formulate, review	3	CIE/Quiz/AAT
	research literature, and analyze complex engineering		
	problems reaching substantiated conclusions using		
	first principles of mathematics, natural sciences,		
	and engineering sciences.		
PO 3	Design/Development of Solutions: Design	3	CIE/Quiz/AAT
	solutions for complex Engineering problems and		
	design system components or processes that meet		
	the specified needs with appropriate consideration		
	for the public health and safety, and the cultural,		
	societal, and Environmental considerations		
PO 4	Conduct Investigations of Complex	3	CIE/Quiz/AAT
	Problems: Use research-based knowledge and		
	research methods including design of experiments,		
	analysis and interpretation of data, and synthesis of		
	the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply	3	CIE/Quiz/AAT
	appropriate techniques, resources, and modern		
	Engineering and IT tools including prediction and		
	modelling to complex Engineering activities with an		
	understanding of the limitations		
PO 10	Communication: Communicate effectively on	3	CIE/Quiz/AAT
	complex engineering activities with the engineering		, , ,
	community and with society at large, such as, being		
	able to comprehend and write effective reports and		
	design documentation, make effective presentations,		
	and give and receive clear instructions.		
PO 12	Life-long learning: Recognize the need for and	2	CIE/Quiz/AAT
	have the preparation and ability to engage in		
	independent and life-long learning in the broadest		
	context of technological change.		

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PSO 1	Understand, design and analyse computer programs in the areas related to Algorithms, System Software, Web design, Bigdata, Artificial Intelligence, Machine	3	CIE/Quiz/AAT
	Learning and Networking.		
PSO 2	Focus on improving software reliability, network security and information retrieval systems.	2	CIE/Quiz/AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	3	CIE/Quiz/AAT

3 = High; 2 = Medium; 1 = Low

X MAPPING OF EACH CO WITH PO(s),PSO(s):

COURSE				PR	OGR	AM	OUT	CON	IES]	PSO'S	8
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	√	✓	√	-	-	-	-	-	-	-	✓	✓	√	-
CO 2	-	✓	-	✓	-	-	-	-	-	✓	-	-	-	-	-
CO 3	-	✓	✓	-	-	-	-	-	-	✓	-	-	-	-	-
CO 4	-	✓	-	✓	-	-	-	-	-	✓	-		-	-	-
CO 5	✓	✓	-	✓	-	-	-	-	-	✓	-	-	-	-	-
CO 6	✓	✓	✓	✓	-	-	-	-	-	-	-	✓	-	-	-
CO 7	✓	✓	-	✓	-	-	-	-	-	-	-	-	-		-
CO 8	✓	-	-	-	-	-	-	-	-	✓	-	-	-	-	-
CO 9	✓	✓	-	-	✓	-	-	-	-	✓	-	√	-	-	-
CO 10	✓	✓	-	-	✓	-	-	-	-	√	-	✓	-	-	-
CO 11	✓	✓	-	-	-	-	-	-	-	✓	-	✓	-	✓	✓
CO 12	✓	✓	-	-	-	-	-	-	-	√	ı	√	-	√	✓

XI JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Understand characteristics and architecture of IoT in solving Engineering problems by applying Understand characteristics and architecture of IoT in solving Engineering problems by applying scientific principals and methodology	1
	PSO 1	Explain design and analyze of architecture of IoT in areas of Artificial Intelligent and Machine Learning for developing Modern computer tools.	2
	PSO 2	Develop communication protocols applications for specific problems with a major focus on improving software reliability, network security and information retrieval systems.	1
CO 2	PO 1	Identify the Level of IoT for storage of data in interpretation of results and apply them to analyze key engineering processes	2

CO 3	PO 2	Explain types of communication models required for effective data collection and information	1
	PO 3	Understand model for communication in design process and evaluate outcomes and Knowledge of management techniques which may be used to achieve engineering objectives	3
	PO 10	Explain communication models with reference of real time examples	1
CO 4	PO 2	Identify the definition and differences between machine to machine and Internet of things	1
	PO 4	Understand the difference of technologies and ability to apply them to analyze key engineering processes	2
	PO 10	Make use of different parameters to differentiate M2M and IoT with reference of Make use of different parameters to differentiate M2M and IoT with reference of real time examples	1
CO 5	PO 1	Explain the differences between Machine to Machine and IoT by applying Engineering specialization and computer science methodologies	2
	PO 2	Understand the data exchange and apply the appropriate preprocessing techniques to solve real time data specific problems by including variant sizes of information and data collection, validation, experimental design, solution development and interpretation of results.	4
	PO 4	Explain network control functions, using mathematical principles and computer science methodologies	2
	PO 10	Understand the communication with hardware infrastructure and direct traffic on a network on transaction of data collection, validation, experimental design, solution development and interpretation of results.	3
CO 6	PO 1	Make use of network and data communication concepts on huge volume data used to develop analytical solutions related to cloud computing and Networking.	4
	PO 2	Explain the device management using the mathematical principles and computer science methodologies	2
	PO 3	Make use of NETCONFG-YANG for configuration data to model construction with consideration of related information and data collection, validation, experimental design, solution development and interpretation of results.	5
	PO 4	Develop advice management with development of solution of data on network	1
	PO 12	Explain Architectural reference model extending classification model with the help of mathematical and scientific principles by integrating computer science knowledge.	3

CO 7	PO 1	Extend a created data model for specific prediction problems by including specific problems by including variant sizes of information and data collection, validation, experimental design, solution development and interpretation of results.	6
	PO 2	Develop a managing access control by investigating and defining various problems, understanding customer and user needs, with cost effective and creative solutions with variant algorithms by managing the design process, knowledge on economic context, management techniques.	5
	PO 4	Develop data model applications for specific problems by including huge volume of data and related to Algorithms, Artificial Intelligence, Machine Learning.	3
CO 8	PO 1	Develop managing access control applications for specific problems with a major focus on improving software reliability, network security and information retrieval systems.	2
	PO 10	Develop applications by using modern computer tools related to create innovative career paths, to be an entrepreneur and desire for higher studies.	3
CO 9	PO 1	Understand the necessity of communication protocols by applying mathematical and scientific principles by integrating computer science knowledge.	3
	PO 2	Identify the appropriate measures for finding model accuracy to specific problems by including variant sizes of information and data collection, validation, experimental design, Solution development and interpretation of results.	6
	PO 4	Design solutions for overcoming issues like failure of any connected devices.by investigating and defining various problems, understanding customer and user needs, with costeffective and creative solutions by managing the design process, knowledge on economic context, management techniques.	4
	PO 10	Develop communication models applications for specific problems by including huge volume of data and related to Algorithms, Artificial Intelligence, Machine Learning.	4
	PSO 2	Develop communication protocols applications for specific problems with a major focus on improving software reliability, network security and information retrieval systems.	1
CO 10	PO 1	Develop applications by using modern computer tools related to create innovative career paths, to be an entrepreneur and desire for higher studies.	3
	PO 2	Understand the importance of raspberry Pi interfaces by using computer science methodologies and scientific principles.	3

	PO 4	Demonstrate the connection between sensors and other devices for specific problems by including huge volume of information and data collection , file structure translation, validation and solution development with proper documentation .	6
	PO 10	Explain the communication process with Raspberry Pi including various problems, customer and user needs, with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques.	4
	PO 12	Explain the data communicating features and services for analyzing programs in the areas related to algorithms, cloud computing and networking.	5
CO 11	PO 1	Make use of tools for developing unsupervised models through laboratory skills, technical literature, technical uncertainty and quality issues. Identify, classify and describe the performance of systems in computer software by applying quantitative methods through analytical methods and techniques	6
	PO 2	Develop and analyze real time applications through laboratory skills and considering technical literature, technical uncertainty and quality issues.	4
	PO 10	Understand the importance of application program interface by using computer science methodologies and scientific principles.	3
	PO 12	Demonstrate the connection between sensors and other devices for specific problems by including huge volume of information and data collection, file structure translation, validation and solution development with proper documentation.	6
	PSO 2	Develop interchange of data between devices applications for specific problems with a major focus on improving software reliability, network security and information retrieval systems.	1
	PSO 3	Develop communication protocols applications for specific problems with a major focus on improving software reliability, network security and information retrieval systems.	1
CO 12	PO 1	Identify the definition and differences between machine to machine and Internet of things	1
	PO 2	Explain types of communication models required for effective data collection and information	1
	PO 10	Explain communication models with reference of real time examples	1
	PO 12	Explain Architectural reference model extending classification model with the help of mathematical and scientific principles by integrating computer science knowledge.	3

PSO 2	Develop interchange of data between devices applications	1
	for specific problems with a major focus on improving	
	software reliability, network security and information	
	retrieval systems.	
PSO 3	Develop communication protocols applications for specific	1
	problems with a major focus on improving software	
	reliability, network security and information retrieval	
	systems.	

XII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

COURSE	Pro	gram	Out	come	es/N	o. of	Key	Con	pete	ncies	Mat	ched]	PSO'S	8
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2
CO 1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 2	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0
CO 3	2	6	7	0	0	0	0	0	0	0	0	0	0	0	0
CO 4	2	4	7	0	0	0	0	0	0	5	0	5	4	0	0
CO 5	2	3	0	3	1	0	0	0	0	5	0	0	4	0	0
CO 6	2	6	0	0	1	0	0	0	0	3	0	5	0	0	0
CO 7	3	6	7	5	1	0	0	0	0	3	0	5	4	1	2
CO 8	3	6	7	8	1	0	0	0	0	3	0	5	4	1	3
CO 9	3	6	7	0	0	0	0	0	0	3	0	0	5	0	0
CO 10	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0
CO 11	0	0	0	9	1	0	0	0	0	2	0	5	4	1	3
CO 12	1	1	0	0	0	0	0	0	0	1	0	3	0	1	1

XIII PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE				PR	OGR	\mathbf{AM}	OUT	COM	1ES				PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2	
CO 1	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 2	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	0.0	0.0	
CO 3	66.7	60.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 4	66.7	40.0	0.0	70.0	0.0	0.0	0.0	0.0	0.0	100	0.0	41.6	66.7	0.0	0.0	
CO 5	66.7	30.0	0.0	27.2	100	0.0	0.0	0.0	0.0	100	0.0	0.0	0.0	0.0	0.0	
CO 6	66.7	60.0	0.0	0.0	100	0.0	0.0	0.0	0.0	60.0	0.0	41.6	0.0	0.0	0.0	
CO 7	100	60.0	70.0	45.4	100	0.0	0.0	0.0	0.0	60.0	0.0	41.6	66.7	33.3	66.7	

CO 8	100	60.0	70.0	72.7	100	0.0	0.0	0.0	0.0	60.0	0.0	41.6	66.7	33.3	66.7
CO 9	100	60.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0	0.0	0.0	66.7	0.0	0.0
CO 10	0.0	0.0	0.0	72.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 11	0.0	0.0	0.0	81.9	100	0.0	0.0	0.0	0.0	40.0	0.0	41.6	66.7	100	66.7
CO 12	0.0	0.0	0.0	81.9	100	0.0	0.0	0.0	0.0	40.0	0.0	41.6	66.7	100	66.7

XIV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\textit{0}}$ - 0 \leq C \leq 5% - No correlation

 $\boldsymbol{\mathcal{2}}$ - 40 % < C < 60% – Moderate

1-5 <C≤ 40% – Low/ Slight

3 - $60\% \leq C < 100\%$ – Substantial /High

COURSE				PR	OGR	AM	OUT	CON	1ES]	PSO'S	8
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 2	3	0	0	0	0	0	0	0	0	0	0	0	3	0	0
CO 3	3	3	3	0	0	0	0	0	0	0	0	0	0	0	0
CO 4	3	2	3	0	0	0	0	0	0	3	0	2	3	0	0
CO 5	3	1	0	1	3	0	0	0	0	3	0	0	0	0	0
CO 6	3	3	0	0	3	0	0	0	0	3	0	2	0	0	0
CO 7	3	3	3	2	3	0	0	0	0	3	0	2	3	1	3
CO 8	3	3	3	3	3	0	0	0	0	3	0	2	3	1	3
CO 9	3	3	3	0	0	0	0	0	0	3	0	0	3	0	0
CO 10	0	0	0	3	0	0	0	0	0	0	0	0	0	0	-
CO 11	0	0	0	3	3	0	0	0	0	2	0	2	3	3	3
CO 12	0	0	0	3	3	0	0	0	0	2	0	2	3	3	3
TOTAL	27	18	15	12	15	0	0	0	0	20	0	10	1.5	1.5	1.5
AVERAGE	3	2.5	3	2.4	3	0	0	0	0	2.8	0	2	3	2.5	3

XV ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1,PO 2,	SEE Exams	PO 1,PO 2,	Seminars	PO10,
	PO 3, PO 4,		PO 3, PO 4,		PO12
	PO 5		PO 5		
Laboratory	-	Student Viva	-	Certification	-
Practices					
Term Paper	-	5 Minutes	PO10, PO12	Open Ended	-
		Video		Experiments	
Assignments	PO 1, PO12				

XVI ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
\mathbf{X}	Assessment of Mini Projects by Experts		

XVII SYLLABUS:

MODULE I	INTRODUCTIONTO INTERNET OF THINGS (IoT)
	Definition and characteristics of IoT, physical design of IoT, logical design of IoT, IoT Enabling technologies, IoT levels and deployment, domain specific IoTs.
MODULE II	IoT AND M2M
	Introduction, M2M, difference between IoT and M2M, software defined networking (SDN) and network function virtualization (NFV) for IoT, basics of IoT system management with NETCONF-YANG
MODULE III	IoT ARCHITECTURE AND PYTHON
	IoT Architecture: State of the art introduction, state of the art; Architecture reference model:Introduction, reference model and architecture, IoT reference model. Logical design using Python: Installing Python, Python data types and data structures, control flow, functions, modules, packages, file handling.
MODULE IV	IoT PHYSICAL DEVICES AND ENDPOINTS
	Introduction to Raspberry Pi interfaces (Serial, SPI, I2C), programming Raspberry PI with Python, other IoT devices.
MODULE V	IoT PHYSICAL SERVERS AND CLOUD OFFERINGS
	Introduction to cloud storage models and communication APIs; WAMP: AutoBahn for IoT, Xively cloud for IoT; Case studies illustrating IoT design: Home automation, smart cities, smart environment.

TEXTBOOKS

- 1. ArshdeepBahga, Vijay Madisetti, "Internet of Things: A Hands-on-Approach", VPT, 1st Edition, 2014.
- 2. MattRichardson, Shawn Wallac, "Getting Started with Raspberry Pi, O Reilly, (SPD)", 3rd Edition, 2014.
- 3. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", Springer.

REFERENCE BOOKS:

- 1. Adrian McEwen, Hakim Cassimally, "Designing the Internet of things", John Wiley and sons, 1stedition, 2014.
- 2. Francis DaCosta, "Rethinking "The Internet of Things": A Scalable Approach to Connecting Everything", A press Publications, 1st Edition, 2013.

XVIII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lec.No	Topics to be covered	CO's	Reference
1	Understanding the basics concepts of IoT	CO1	T1:19
2	Motivations of IoT and various Applications of IoT	CO1	T1:22
3	Describe the Things of IoT and characteristics of IoT	CO1	T1:24
4-6	Analysis and Design of IoT in physical view	CO2	T1:24
7-8	Understandings the Logical design of IoT	CO4	T1:31
9-10	Describing various IoT enabling technologies	CO4	T1:34-49
11-12	Identifying specific Domains IoTs	CO5	T1:53-72
13	Understanding the basic differences between IoT and M2M	CO5	T1: 6.16.4
14	Implementation of SDN and NFV architecture in IoT	CO6	T1:80-85
15	Identifying IoT system management with NETCONF-YANG	CO6	T1:91-92
16	Uses of SNMP in IoT protocols	CO7	T1:93-94
17-18	Implementation of NETCONF-YANG by using Python	CO7	T1:96-97
19-21	Development of IoT Architecture with standards	CO8	T3:170-86
22-27	Logical design of IoT using Python	CO9	T1:141-50
28-35	Describe the physical endpoints used in IoT	CO10	T1:186-96
36-38	Identifying the various IoT physical servers and cloud offerings	CO11	T1:197-98
39-45	Real time applications of IoT with Case studies design	CO12	T1:254-64

Course Coordinator Ms. B Anupama HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING				
Course Title	DATA WAR	EHOUSING	AND DATA	MINING	
Course Code	ACSB14				
Program	B.Tech				
Semester	VI	CSE			
Course Type	Core				
Regulation	IARE-R18				
		Theory Practical			ical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Mr. V.Muniraju Naidu, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB08	III	Database Management System
B.Tech	AHSB12	II	Probability and statistics

II COURSE OVERVIEW:

Data mining refers to extracting or mining knowledge from large amounts of data. It emphasizes various techniques and algorithms used to explore, analyze and leverage data and turn it into valuable and actionable information. It includes data warehousing and data mining functionalities such as analytical processing, descriptive analysis, association mining, classification, clustering and outlier analysis. The techniques are used to tackle data centric applications in various domains such as financial analysis, telecommunication industry, intrusion detection, and complex data mining applications in stream, web, text, spatial and other scientific applications.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Data Warehousing and	70 Marks	30 Marks	100
Data Mining			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point Presentations	✓	Chalk & Talk	✓	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
20 %	Understand
60 %	Apply
10 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam	Quiz \AAT	10tai Waiks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

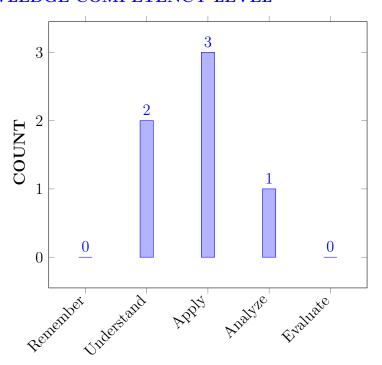
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving	
40%	40%	20%	

VI COURSE OBJECTIVES:

The students will try to learn:


I	The scope and essentiality of data warehousing and mining.
II	The analysis of data, choosing relevant models and algorithms for respective
	applications.
III	The process and mining of complex data types such as streams, spatial, web and
	multimedia
IV	The research perspectives towards advances in data mining

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Relate knowledge discovery in databases (KDD) process with the help	Understand
	of data warehouse fundamentals and data mining functionalities	
CO 2	Select appropriate preprocessing techniques on real time data for usage	Apply
	of data mining algorithms	
CO 3	Apply Apriori and FP growth methods on transaction data for	Apply
	frequent pattern mining	
CO 4	Choose classification or clustering algorithm for building a	Apply
	classification or prediction model.	
CO 5	Infer complex data models with respect to multimedia, streams,	Understand
	spatial and web mining	
CO 6	Examine data mining algorithms for solving real world problems	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	CIE/Quiz/AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIE/Quiz/AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	CIE/Quiz/AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	CIE/Quiz/AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyse computer programs in the areas related to Algorithms, System Software, Web design, Bigdata, Artificial Intelligence, Machine Learning and Networking.	3	Quiz
PSO 2	Focus on improving software reliability, network security and information retrieval systems	1	Quiz
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	CIE/Quiz/ AAT

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	✓	-	-	-	-	-	-	-	-	-	-		-	-	-		
CO 2	✓	✓	-	-	-	-	-	-	-	✓	-	✓	✓	-	✓		
CO 3	✓	✓	✓	-	-	-	-	-	-	-	-	-	-	-	✓		
CO 4	✓	✓	✓	✓	✓	-	-	-	-	✓	-	✓	✓	✓	✓		
CO 5	✓	✓	✓	/	✓	-	-	-	-	✓	-	-	✓	✓	✓		
CO 6	✓	/	✓	✓	✓	-	-	-	-	✓	-	-	✓	✓	-		

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the knowledge extraction Process by using mathematical ,computer science principles by integrating computer science knowledge.	3
CO 2	PO 1	Explain the data preprocessing techniques by applying mathematical principles and computer science principles by integrating computer science knowledge	3
	PO 2	Understand the data and apply the appropriate preprocessing techniques to solve real time data specific Problem statement and system definition, Problem formulation and abstraction, Information and data collection by including variant sizes of information and data collection, validation, experimental design, solution development and interpretation of results.	8

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Communicate in written form by comprehending and writing effective reports and design documentation of prediction data model with the engineering community by having major focus on clarity on content with appropriate References and good Speaking style.	3
	PO 12	Recognize the need for advanced concepts in classification and prediction for developing data centric applications through continuing education efforts with ongoing learning stays up with industry trends/ new technology	1
	PSO 1	Develop data mining applications for specific problems by including huge volume of data and related to Algorithms, Artificial Intelligence, Machine Learning.	3
	PSO 2	Develop data mining applications for specific problems with a major focus on improving software reliability, network security and information retrieval systems.	1
	PSO 3	Develop applications by using modern computer tools related to create innovative career paths.	1
CO 3	PO 1	Select appropriate frequent pattern mining method for finding associations among attributes of data in transaction data using mathematical principles and computer science principles by integrating computer science knowledge.	3
	PO 2	Make use of Apriori or FP growth methods on transaction Problem statement and system definition, Problem formulation and abstraction, Information and data collection validation, experimental design, Solution development and interpretation of results.	6
	PO 3	Identify the appropriate model for various problems, by understanding customer and user needs, with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques for the requirement engineering activities to promote sustainable development.	8
	PSO 1	Make use of data mining concepts on huge volume data used to develop analytical solutions related to Machine Learning.	1
CO 4	PO 1	Develop a prediction model by extending classification model with the help of mathematical and scientific principles by integrating computer science knowledge.	3
	PO 2	Extend a created data model for specific prediction problems by including specific problems by including variant sizes of information and data collection, validation, experimental design, solution development, Implementation, and interpretation of results and documentation is used as a sample data for new projects	8

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Develop a data model by investigating and defining various problems, understanding customer and user needs, with cost effective and creative solutions with variant algorithms by managing the design process, knowledge on economic context, management techniques.	7
	PO 4	Develop a prediction and classification data model with laboratory skills, technical literature and quality issues to Identify, classify and describe the performance of systems through analytical methodsfor quantitative methodsand technical uncertainty	8
	PO 5	Make use of software / libraries for developing prediction model	1
	PO 10	Communicate effectively in orally and written by comprehend and write effective reports and design documentation and presentations on data exploration with the engineering community by having major focus on clarity on content, Grammar/Punctuation, appropriate References, good Speaking style and depth in subject matter.	5
	PO 12	Recognize the need for advanced concepts in big data technologies for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change.	5
	PSO 1	Develop data mining applications for specific problems by including huge volume of data and related to Algorithms, Artificial Intelligence, Machine Learning	3
	PSO 2	Develop data mining applications for specific problems with a major focus on improving software reliability, network security and information retrieval systems.	1
	PSO 3	Develop applications by using modern computer tools related to create innovative career paths	1
CO 5	PO 1	Select any data models with respect to multimedia, streams, spatial and web mining using mathematical principles and computer science principles by integrating computer science knowledge.	3
	PO 2	Make use of spatial and web mining methods on transaction data collection, validation, experimental design, Solution development and interpretation of results.	5
	PO 3	Select appropriate frequent pattern mining methodfor investigating and defining various problems, understanding customer and user needs, with cost effective and creative solutions with variant algorithms by managing the design process, knowledge on economic context, management techniques.	8

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Develop a text based model with laboratory skills, technical literature and quality issues to Identify, classify and describe the performance of systems through analytical methodsfor quantitative methodsand technical uncertainty	7
	PO 5	Make use of software / libraries for finding text based and web based mining	1
	PO 10	Communicate in written form by comprehending and writing effective reports and design documentation of multimedia data model with the engineering community by having major focus on clarity on content	1
	PSO 1	Explain the complex data models used to process and querying the data in the areas related to Algorithms, Artificial Intelligence, Machine Learning	3
	PSO 2	Develop applications using data mining concepts with a major focus on improving software reliability, network security and information retrieval systems.	1
	PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies	1
. CO 6	PO 1	Understand the data mining model and examine the accuracy of the model by applying mathematical and scientific principles by integrating computer science knowledge.	3
	PO 2	Extend a created data model for specific real time problems by including specific problems by including variant sizes of information and data collection, validation, experimental design, solution development, Implementation, and interpretation of results and documentation is used as a sample data for new projects	8
	PO 3	Develop a real time model by investigating and defining various problems, understanding customer and user needs, with variant algorithms by managing the design process, knowledge on economic context, management techniques	6
	PO 4	Develop a data model with laboratory skills, technical literature and quality issues to Identify, classify and describe the performance of systems through analytical methods	6
	PO 5	Make use of software / libraries for developing mining model.	1
	PO 10	Communicate in orally form by comprehending and writing effective reports and design documentation data mining applications with the engineering community by having major focus content with good Speaking style.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Categorize various data mining concepts in the areas related to Algorithms, Artificial Intelligence, Machine Learning.	3
	PSO 2	Develop applications using data mining concepts with a major focus on improving software reliability, network security and information retrieval systems.	1

TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-XIIIPING:

		PROGRAM OUTCOMES													PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	-	-	-	-	-	-	-	-	-	-		-	-	-		
CO 2	3	8	-	-	-	-	-	-	-	1	-	2	3	-	2		
CO 3	3	6	8	-	-	-	-	-	-	-	-	-	-	-	1		
CO 4	3	8	7	8	1	-	-	-	-	3	-	1	3	1	1		
CO 5	3	5	8	7	1	-	-	-	-	1	-	-	3	1	1		
CO 6	3	8	6	6	1	-	-	-	-	1	-		3	1	-		

PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO XIV

		PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	100	-	-	-	-	-	-	-	-	-	-		-	-	-	
CO 2	100	80	-	-	-	-	-	-	-	20	-	16.6	50	-	100	
CO 3	100	60	80	-	-	-	1	-	-	-	-	-	-	-	50	
CO 4	100	80	70	72.7	100	-	-	-	-	60	-	8.3	50	50	50	
CO 5	100	50	80	63.6	100	-	-	-	-	20	-	-	50	50	50	
CO 6	100	80	60	54.5	100	-	-	-	-	20	_		50	50	-	

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{0}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C $\le 40\%$ – Low/ Slight

 $\boldsymbol{2}$ - 40 % <C < 60% – Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

	PROGRAM OUTCOMES							PSO'S							
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	ı	-		-	-	-
CO 2	3	3	-	-	-	-	-	-	-	1	-	1	2	-	3
CO 3	3	2	3	-	-	-	-	-	-	_	_	-	-	-	2
CO 4	3	3	3	3	3	-	-	-	-	2	1		2	2	1
CO 5	3	2	3	3	3	-	-	-	-	1	_	-	2	2	2
CO 6	3	3	2	2	3	-	-	-	-	1	-	-	2	2	-
TOTAL	18	13	11	8	9	-	-	-	-	5	-	2	8	6	8
AVERAGE	3	2.6	2.75	2.6	3.0	-	-	-	-	1.25	-	1	2.0	2.0	2.0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	~
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	✓	Open Ended Experiments	-
Assignments	~				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts	✓	End Semester OBE Feedback
--	----------	---------------------------

XVIII SYLLABUS:

MODULE I	DATA WAREHOUSING
	Introduction to Data warehouse, A Multi-dimensional data model- Star, Snow flake and Fact constellationschemas, Measures, Concept hierarchy, Data warehouse architecture- A three tier Data warehouse architecture, types of OLAP servers, Data warehouse Implementation, Data Marts, Differences between OLAT and OLTP.
MODULE II	DATA MINING
	Introduction, What is Data Mining, Definition, Knowledge Discovery in Data (KDD), Kinds of data bases, Data mining functionalities, Classification of data mining systems, Data mining task primitives, Data Preprocessing: Data cleaning, Data integration and transformation, Data reduction, Data discretization and Concept hierarchy.

MODULE III	ASSOCIATION RULE MINING
	Association Rules: Problem Definition, Frequent item set generation, The APRIORI Principle, support and confidence measures, association rule generation; APRIORI algorithm. FP-Growth Algorithms, Compact Representation of Frequent item Set-Maximal Frequent item set, closed frequent item set.
MODULE IV	CLASSIFICATION AND PRIDICTION
MODULE V	Issues Regarding Classification and Prediction, Classification by Decision Tree Induction, Bayesian Classification, Classification by Back propagation, Classification Based on Concepts from Association Rule Mining, Other Classification Methods, Prediction, Classifier Accuracy. CLUSTERING
	Types of data, categorization of major clustering methods, K-means partitioning methods, hierarchical methods, density based methods, grid based methods, model based clustering methods, outlier analysis. Mining Complex Types of Data: Multidimensional Analysis and Descriptive Mining of Complex, Data Objects, Mining Spatial Databases, Mining Multimedia Databases, Mining Time-Series and Sequence Data, Mining Text Databases, Mining the World Wide Web.

TEXTBOOKS

- 1. Jiawei Han, Michelin Kamber, "Data Mining-Concepts and techniques", Morgan Kaufmann Publishers, Elsevier, 2nd Edition, 2006
- 2. Alex Berson, Stephen J.Smith, "Data warehousing Data mining and OLAP", Tata McGraw- Hill, 2nd Edition, 2007

REFERENCE BOOKS:

- 1. Arum K Pujari, "Data Mining Techniques", 3rd Edition, Universities Press, 2005
- 2. Pualraj Ponnaiah, Wiley, "Data Warehousing Fundamentals", Student Edition, 2004
- 3. Ralph Kimball, Wiley, "The Data Warehouse Life Cycle Toolkit", Student Edition, 2006.
- 4. Vikram Pudi, P Radha Krishna, —Data Mining, Oxford University, 1st Edition, 2007.

WEB REFERENCES:

- 1. https://onlinecourses.nptel.ac.in/noc21_cs06/preview
- 2. http://www.anderson.ucla.edu
- 3. https://www.smartzworld.com

COURSE WEB PAGE:

https://www.youtube.com/watch?v=IID7-ipjQUk

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1						
OBE DISCUSSION									
1	In Outcome-Based Education (OBE), we discussed about course delivery assessment that								
	are planned to achieve stated objectives and outcomes. We will focuses on measuring								
	student performance i.e. outcomes at different levels. Course outcomes(CO),Program								
	Outcomes(PO) and Program Specific Outcomes(PSO) and also mapping of CO's to PO's								
PSO's and their attainments are discussed.									
	CONTENT DELIVERY (THEORY)								
2	Introduction to Data warehouse	CO1	T1: 3.1						
3	Difference between operational database systems and datawarehouses	CO1	T1: 3.1						
4	Data warehouse architecture- A three tier Data warehouse architecture	CO1	T1: 3.3						
5	Types of OLAP servers	CO1	T1: 3.3						
6	Data warehouse Implementation	CO1	T1: 3.3						
7	Data Marts, Differences between OLAT and OLTP.	CO1	T1: 3.3						
8	Multi-dimensional data model: Star Schema	CO5	T1: 3.2						
9	Multi-dimensional data model: Snow Flake Schema	CO5	T1: 3.2						
10	Fact Consultation, Fact Table, Dimension Table	CO5	T1: 3.2						
11	OLAP Cube and OLAP Operations	CO2	T1: 3.4-3.5						
12	OLAP Server Architecture-ROLAP	CO2	T1: 3.4-3.5						
13	OLAP Server Architecture- MOLAP	CO2	T1: 3.4-3.5						
14	OLAP Server Architecture- HOLAP.	CO2	T1: 3.4-3.5						
15	Data Mining: Introduction, Fundamentals of Data Mining, Definition	CO1	T1: 1.1-1.7						
16	KDD, Challenges, Data Mining Tasks.	CO1	T1: 1.1-1.7						
17	Data Processing	CO2	T1: 2.1-2.5						
18	Data Cleaning	CO2	T1: 2.1-2.5						
19	Dimensionality Reduction	CO2	T1: 2.1-2.5						
20	Feature Subset Selections	CO4	T1: 2.3-2.4						
21	Data Transformation.	CO4	T1: 2.3-2.4						

22	Discretization and Measures of Similarity and Dissimilarity-Basics.	CO4	T1: 2.3-2.4
23	Association Rules	CO5	T1: 5.3
24	Problem definition	CO5	T1: 5.3
25	Frequent item set generation,	CO5	T1: 5.3
26	The APRIORI Principle, Support and confidence measures	CO3	T1: 5.2
27	Association rule generation; APRIORI algorithm.	CO3	T1: 5.2
28	The partition algorithms	CO3	T1: 5.2.2
29	FP-growth Algorithm.	CO3	T1: 5.2.2
30	Compact Representation of Frequent item Set- Maximal Frequent item set closed frequent itemset.	CO5	T1: 5.2.4
31	Classification and prediction	CO4	T1: 6.1-6.2
32	Basic concepts	CO4	T1: 6.1-6.2
33	Classification by Decision Tree Induction	CO4	T1: 6.1- 6.2
34	Classification by Back propagation	CO4	T1: 6.1-6.2
35	Issues Regarding Classification and Prediction	CO4	T1: 6.1- 6.2
36	Introduction about Bayesian classification	CO4	T1: 6.4
37	Types of Bayesian classification	CO4	T1: 6.4
38	Rule based classification C	CO4	T1: 6.5
39	Classification by back propagation	CO4	T1: 6.5
40	Classification Based on Concepts from Association Rule Mining	CO4, CO6	T1: 6.6
41	Other Classification Methods	CO4, CO6	T1: 6.6
42	Prediction, Classifier Accuracy	CO4, CO6	T1: 6.6
43	Clustering Analysis, Hierarchical methods	CO4	T1: 7.1-7.3
44	Density based methods	CO5	T1: 7.5
45	Grid based methods, outlier analysis	CO5	T1: 7.6
46	Mining Complex Types of Data	CO5	T1: 7.11
47	Multi dimensional Analysis and Descriptive Mining of Complex	CO5	T1: 7.11
48	Types of Data: Data Objects	CO5	T1: 7.11
49	Mining Spatial Databases	CO5	T1: 7.11
50	Mining Multimedia Databases	CO5	T1: 7.11
51	Mining Time-Series and Sequence Data	CO5	T1: 7.11
52	Mining Text Databases	CO6	T1: 7.11
53	Mining The World Wide Web	CO6	T1: 7.11
54	Real Time Applications	CO6	T1: 7.11
55	Example Systems	CO6	T1: 7.11

	PROBLEM SOLVING/ CASE STUDIES						
1	Problems on Hierarchical and lattice structures of attributes in warehouse dimensions for location and time.	CO 3	R2:7.5				
2	Problems on Multi-dimensional modelling	CO 2	R2:7.5				
3	Problems on Analytical processing	CO 3	R2:7.5				
4	Problems on Implementation techniques of data warehouse	CO 2	R2:7.5				
5	Problems on OLAP operations on multi-dimensional data cube at possible levels.	CO 2	R2:7.5				
6	Problems on preprocessing techniques and relate to the given data to perform summarization and visualization	CO 3	R2:7.5				
7	Problems on applications of frequent pattern mining methods	CO 3	R2:7.5				
8	Problems on frequent item set methods and pattern growth approach	CO 3	R2:7.5				
9	Problems on Basic Classification Methods	CO 3	R2:7.5				
	DISCUSSION OF DEFINITION AND TERMI	NOLOGY					
1	Definitions on Data Warehousing	CO 1	T1:1.2				
2	Definitions on Data Mining	CO 2	T1:1.6				
3	Definitions on Association Rule Mining	CO 3	T1:8,9				
4	Definitions on Classification and Prediction	CO 4	T1:9.1				
5	Definitions on Clustering	CO 5	T1:10,11				
	DISCUSSION OF QUESTION BANK						
1	Data warehouse architecture	CO 1	T1:1.2				
2	Classification of data mining systems	CO 2	T1:1.5				
3	FP-Growth Algorithms	CO 3	T1:8,9				
4	Issues Regarding Classification and Prediction	CO 4	T1:9.1				
5	Clustering Methods	CO 5,6	T1:10,11				

Signature of Course Coordinator

 $_{
m HOD,CSE}$

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	DATA WAREHOUSING AND DATA MINING LABORATORY						
Course Code	ACSB15	ACSB15					
Program	B.Tech	B.Tech					
Semester	VI	VI CSE					
Course Type	CORE						
Regulation	IARE - R18						
		Theory			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	3		1	
Course Coordinator	Ms.M Geetha	Yadav, As	sistant Pr	ofessor			

I COURSE OVERVIEW:

Data mining techniques allow predicting future trends and behaviors of businesses to make proactive, knowledge-driven decisions. The data mining laboratory course is designed to practice the data mining techniques such as classification, clustering, pattern mining etc. with varied datasets and dynamic parameters on weka machine learning tool.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSB12	II	Probability and Statistics
B.Tech	ACSC08	III	Database Management Systems

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Data Warehousing and	70 Marks	30 Marks	100
Data Mining Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab Worksheets		Viva		Probing further
✓		✓		✓	Questions	✓	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of of of the final assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based Programming based	
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	Total Walks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

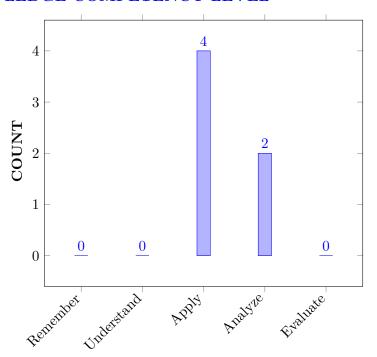
Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	The data set understanding with visualizations and needed preprocessing.
II	The demonstration of data mining tasks such as classification.
III	The analysis on data models with variant parameters.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Apply pre-processing statistical methods for any given raw data	Apply
CO 2	Apply Association rule process for a given dataset by using Apriori	Apply
	algorithm.	
CO 3	Apply Association rule process for a given dataset by using	Apply
	FP-Growth algorithm.	
CO 4	Analyze Classification rule process for a given raw data Decision	Analyze
	tree and ID3 algorithm	
CO 5	Analyze Classification rule process for a given raw data Decision tree	Analyze
	and ID3 algorithm	
CO 6	Apply Clustering on a given dataset by using k-means algorithm.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Problem analysis: Engineering knowledge: Apply	3	Lab Exercise,
	the knowledge of mathematics, science, engineering		CIE, SEE
	fundamentals, and an engineering specialization to		
	the solution of complex engineering problems.		

PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab Exercise, CIE, SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	Lab Exercise, CIE, SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Lab Exercise, CIE, SEE

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Profi-
			ciency
			Assessed
			by
PSO 1	Professional Skills: The ability to research,	1	Lab
	understand and implement computer programs in the		Exercises
	areas related to algorithms, system software,		
	multimedia, web design, big data analytics, and		
	networking for efficient analysis and design of		
	computer-based systems of varying complexity.		
PSO 3	Career and Entrepreneurship: The ability to	2	Lab
	employ modern computer languages, environments,		Exercises
	and platforms in creating innovative career paths, to		
	be an entrepreneur, and a zest for higher studies.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Apply the Pre-processing method for the given dataset by using mathematical and computer science and related methodologies.	3
	PO 2	Analyze the problem of a given dataset and apply the Pre-processing method to solve the problem.	3
	PO 3	Apply the Pre-processing method for the given dataset by using weka tool.	1

	PO 5	Apply the Pre-processing method for the given dataset by using weka tool.	1
CO 2	PO 3	Analyze solution for Association rule to the given dataset by applying Apriori algorithm	4
	PO 5	Apply the Association rule by using Apriori algorithm with weka tool.	1
	PSO1	Analyze solution for Association rule to the given dataset by applying Apriori algorithm.	2
	PSO3	Applythe Pre-processing method by using weka tool.	1
CO 3	PO 3	Analyze solution for Association rule to the given dataset by applying FP-Growth algorithm	4
	PO 5	Apply the Association rule by using FP-Growth algorithm with weka tool.	1
	PSO1	Analyze solution for Association rule to the given dataset by applying FP-Growth algorithm.	2
	PSO3	Applythe Pre-processing method by using weka tool.	1
CO 4	PO 2	Analyze the problem of a given dataset and apply the Classification method to solve the problem.	3
	PO 5	Apply the Classification method for a given raw dataset by using weka tool	1
	PSO3	Apply the Classification method for a given raw dataset by using weka tool	1
CO 5	PO 2	Implement Decision tree for the given raw dataset by using ID-3 algorithm.	2
	PO 3	Analyze solutions for Classification method to the given dataset by applying ID3-algorithm.	2
	PO 5	Apply the Classification method for a given raw dataset by using weka tool	1
	PSO1	Analyze solution for Classification method to the given dataset by applying ID-3 algorithml	1
	PSO3	Apply the Classification method for a given raw dataset by using weka tool	1
CO 6	PO 3	Analyze solution for Clustering method to the given dataset by applying K-means algorithm	3
	PO 5	Apply the Clustering method for a given raw dataset by using weka tool	1
	PSO 1	Analyze solution for Clustering method to the given dataset by applying K-means algorithm	2
	PSO 3	Applythe Clustering method for a given raw dataset by using weka tool	1

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course Outcomes	Program Outcomes			Program Specific Outcomes		
	PO1	PO2	P03	PO5	, PSO1	PSO3
CO1	3	3	2		1	
CO2	3	1	2		1	
CO3	2	2	2	1		1
CO4	3	3	2	1		
CO5	2	3	3			1
CO6	2	1	3		1	1

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1, PO 2,	SEE Exams	PO 1, PO 2,	Seminars	-
	PO 3, PO 5		PO 3, PO 5		
Laboratory Practices	PO 2,PO 3, PO 5	Student Viva	PO 2, PO 3	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
\mathbf{X}	Assessment of Mini Projects by Expe	erts	

XIV SYLLABUS:

WEEK I	PREPROCESSING
	Simulate preprocessing methods dataset student and labor in weka
WEEK II	ASSOCIATION RULES
	1. Simulate association rule process on dataset contact lenses. arff using apriori algorithm in weka
	2. Simulate Association rule process on dataset test. arff using apriori algorithm in weka
WEEK III	CLASSIFICATION RULE BY J48
	Simulate of classification rule process on dataset student. arff using j48 algorithm in weka
WEEK IV	CLASSIFICATION RULE BY J48
	Demonstration of classification rule process on dataset employee. arff using id3 algorithm.

WEEK V	CLASSIFICATION RULE BY J48
	CDemonstration of classification rule process on dataset employee. arff using
	id3 algorithm.
WEEK VI	CLASSIFICATION RULE BY NAIVE BAYES
	Demonstration of classification rule process on dataset employee. arff using naive bayes
WEEK VII	CLASSIFICATION RULE BY K-MEANS
	Demonstration of clustering rule process on dataset student. arff using simple
	k- means this macro to print the elements of the array.
WEEK VIII	CLUSTERING
	Demonstration of clustering rule process on dataset iris. arff using simple k-
	means this macro to print the elements of the array
WEEK IX	CLUSTERING BY K-MEANS
	Implement k-means algorithm.
WEEK X	DECISION TREE
	Implement decision tree classification algorithm
WEEK XI	ASSOCIATION RULE MINING BY APRIORI ALGORITHM.
	Implement Apriori algorithm.
WEEK XII	ASSOCIATION RULE MINING BY FP- GROWTH
	ALGORITHM
	Implement FP- growth algorithm.

TEXTBOOKS

- 1. J.Han, M.Kamber, Data Mining: Concept and Technique, Academic Press, Morgan Kanfman Publishers, 3rd Edition, 2008.
- 2. Alex Berson, Stephen J. Smith, —Data Warehousing, Data Mining and OLAP, Tata McGraw-Hill, 10th Edition, 2007

REFERENCE BOOKS:

1. Craig Larman, Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design and Iterative Development , Pearson Education, 3rd Edition, 2005.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer-
			ence
1	Preprocessing.	CO 1	R1: 1.1
2	Association rule.	CO 1, CO 2	R1: 2.3
3	Classification rule by j48.	CO 1, CO 2	R1: 4.1
4	Classification rule by j48	CO 1, CO 2	R1: 5.1
5	Classification rule by id3.	CO 3 ,CO 4	R2: 6.1
6	Classification rule by naive bayes.	C,CO 4 ,CO 5	R1: 7.1

7	Clustering rule by k-means.	CO 3, CO 5 ,CO 6	R2: 11.4
8	Clustering.	CO 3, CO 5 ,CO	R1: 12.5
9	Clustering rule by k-means.	CO 3, CO 5 ,CO	R2: 14.3
10	Decision tree.	CO 3, CO 5 ,CO 6	R1: 15.1
11	Association rule mining by apriori algorithm.	CO 3	R2:16.4
12	Association rule mining by fp-growth algorithm.	CO 6	R1:20.5

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Finding Association Rules for buying data.
2	FindingAssociation Rules for Banking data
3	Construct Decision Tree for location.
4	Write a procedure for Visualization of Weather Table.
5	Write a procedure for Visualization of Banking Table.

Signature of Course Coordinator Ms .M Geetha Yadav Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING					
Course Title	E-COM	E-COMMERCE					
Course Code	AITB35	AITB35					
Program	B. Tech	B. Tech					
Semester	Seven	Seven					
Course Type	Elective	Elective					
Regulation	R-18	R-18					
		Theory		Pract	ical		
Course Structure	Lecture	Lecture Tutorials Credits Laboratory Credits					
3 - 3					-		
Course Coordinator	Ms.K.Asv	Ms.K.Aswini, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHS015	V	Business Economics and financial
			analysis

II COURSE OVERVIEW:

This course encompasses the marketing of products using the internet. It provides ultimate knowledge and skills to become an e-commerce whizz and resolve the organizational problems to succeed as an entrepreneur. The concepts include anatomy of e-commerce applications, electronic payment mechanisms, inter and intra organizational networks, resource discovery paradigm and multimedia involvement in e-commerce.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks		
E-COMMERCE	70 Marks	30 Marks	100		

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

x	Chalk & Talk	x	Quiz	x	Assignments	х	МООС
\	LCD / PPT		Seminars	x	Mini Project	х	Videos
х	Open Ended Experiments						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
%	Remember
%	Understand
%	Apply
%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Thec	Total Marks		
Type of Assessment	CIE Exam	AAT	Total Ivial KS	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part—A shall have five compulsory questions of one mark each. In part—B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

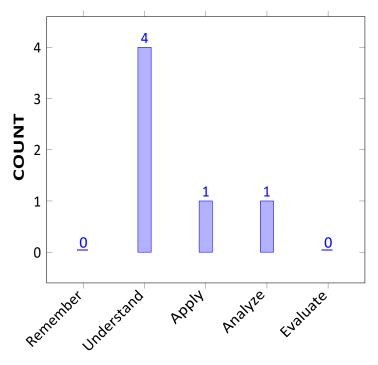
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The foundations and importance of E-commerce and its technology for business.
П	The steps, tools, and network mechanisms needed to start selling online.
Ш	The techniques and principles in Electronic Payment System and its environment.
IV	The main business and marketplace models for Electronic Communications and
	Trading.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain Explain business-to-consumer, business-to-business, and intra organizational models to develop an internet trading relationships.	Understand
CO 2	Demonstrate the retailing procedure in E-commerce to expertise in market research effectively	Understand
CO 3	List out the key features of internet, intranets and extranets to explain the use network systems in e-commerce business.	Analyze
CO 4	Explain digital library and supply chain management concepts to develop best management practices	Understand
CO 5	Make use of the major E-commerce revenue models to evaluate existing websites	Apply
CO 6	Explain theoretical and practical issues of conducting business over the internet and the Web to understand the multimedia effects on e- commerce .	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	CIE / Quiz / AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIE / Quiz / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	CIE / Quiz / AAT

3 = High; **2** = Medium; **1** = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	Quiz
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	2	CIE / Quiz / AAT

^{3 =} High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	<	-	-	-	-	-	-	-	-	-	ı	-		\	-
CO 2	\	✓	✓	-	-	-	-	-	-	~	-	-	-	-	-
CO 3	\	✓	-	-	-	-	-	-	-	✓	-	-	-	-	-
CO 4	\	-	✓	✓	-	-	-	-	-	-	-	-	\	-	-
CO 5	/	-	~	-	-	-	-	-	-	-	-	-	✓	-	-
CO 6	-	-	-	✓	-	-	-	-	-	-	-	-	-	-	-

XII JUSTIFICATIONS FOR CO - PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain Business to Consumer, Business-to-Business, and Intra organizational on Internet trading relationships by Applying the knowledge of science, engineering fundamentals	2
	PSO 2	Focus on mobile applications and explain the components in the construction, operation and types of insulators and underground cables.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 2	PO 1	Understand the key issues and applications effectiveness of market research by applying mathematical principles and computer science methodologies	2
	PO 2	Understand the key issues in problems identification and analyse complex Engineering problems in optimizing business decisions like Information and data collection and Interpretation of results	5
	PO 3	Make use of retailing procedure in E-commerce to expertise in market research effectively define a problem identify constraints including environmental and risk assessment issues andManage the design process innovative solutionsand environmental and sustainability limitations	7
	PO 10	Classify the key issues in terms of defining various problems, customer and user needs, cost effective and creative solutions, design process, economic context and management techniques.	5
CO 3	PO 1	List out the key features of Internet, Intranets and Extranets and explain how they relate to each other using computer science methodologies	1
	PO 2	Make use of internet information and data collected from various sources and perform model translation and validation by Experimental design and check Interpretation of results	5
	PO 10	Make use of different internet components for developing applications based on technical literature and quality issues. Identify, classify and describe the performance of systems through analytical methods and techniques.	5
CO 4	PO 1	discuss modern computing infrastructures from the perspective of the internet and organizations computer science methodologies, mathematical and scientific principles.	3
	PO 3	make use of digital library and supply chain management concepts to develop best management practices safety and risk assessment issues Identify and manage cost drivers and Manage the design process and evaluate outcomes	5
	PO 4	discuss modern computing infrastructures from the perspective of the internet and organizations Conduct Investigations of Complex Problems for Understanding of appropriate codes of practice and industry standards and Ability to work with technical uncertainty and the use of analytical methods— and modeling techniques	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Make use of next-generation computer systems and networking devices to develop management practices for knowledge discovery tools	4
CO 5	PO 1	Make use of the major e-commerce revenue models to evaluate existing websites mathematical and scientific principles by integrating computer science knowledge.	3
	PO 3	Major e-commerce revenue models to evaluate existing websites by investigating and defining various problems, understanding customer and user needs, with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques.	7
	PSO 1	Make use of networking devices, search engines and E-Commerce revenue models for existing websites to develop web browsers	4
CO 6	PO 4	make use of theoretical and practical issues of conducting business over the internet and the multimedia effects on e- commerce Knowledge of management and Understanding of commercial and economic context of engineering processes including personnel, health, safety, and risk issues	7

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

COURSE	Program Outcomes/ No. of Key Competencies Matched											PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	1	-
CO 2	2	5	7	-	-	-	-	-	-	5	-	-	-	-	-
CO 3	1	5	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 4	3	-	5	5	-	-	-	-	-	-	-	-	4	-	-
CO 5	3	-	7	-	-	-	-	-	-	-	-	-	4	-	-
CO 6	-	-	-	7	-	-	-	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - (PO, PSO):

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	. 2 3 4 5 6 7 8 9 10 11 12							1	2	3				
CO 1	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50	0.0	0.0
CO 2	66.7	50	70	0.0	0.0	0.0	0.0	0.0	0.0	100	0.0	0.0	0.0	0.0	0.0
CO 3	33.3	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100	0.0	0.0	0.0	0.0	0.0
CO 4	100	50	0.0	0.0	45.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	0.0	0.0
CO 5	100	0.0	70	0.0	0.0	0.0	0.0	0.0	0.0	60.0	0.0	0.0	40	0.0	0.0
CO 6	0.0	0.0	0.0	63.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

XV COURSE ARTICULATION MATRIX (PO - PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0}$ - $0 \le C \le 5\%$ – No correlation

2 - 40 % <C < 60% –Moderate

1-5 <C≤ 40% – Low/ Slight

 $3 - 60\% \le C < 100\% - Substantial / High$

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	ı	ı	ı	ı	ı	-	-	ı	ı	ı	2	-
CO 2	3	2	3	1	-	-	-	-	-	3	-	-	-	-	-
CO 3	1	2	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 4	3	-	2	2	-	-	-	-	-	-	-	-	3	-	-
CO 5	3	-	3	1	-	-	-	-	-	-	-	-	3	-	-
CO 6	-	-	-	3	-	-	-	-	-	-	-	-	-	-	-
TOTAL	13	4	8	5	-	-	-	ı	-	6	ı	-	6	2	-
AVERAGE	2.6	2.0	2.6	2.5	-	-	-	-	-	3.0	-	-	3.0	2.0	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	x
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	x	Open Ended Experiments	-
Assignments	x				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts	✓	End Semester OBE Feedback
--	----------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO ELECTRONIC COMMERCE
	Electronic Commerce: Frame work, media coverage; anatomy of e-commerce applications: E-commerce Consumer applications, E-ecommerce organization applications
MODULE II	ELECTRONIC PAYMENT SYSTEMS
	Types of electronic payment systems; Digital token based electronic payment system: E-cash, properties of e-cash, electronic cash in action, business issues and electronic cash, operational risk and electronic Cash, electronic checks; smart cards and electronic payment system; Credit card based electronic payment system; Risk and electronic payment system; Designing electronic payment system
MODULE III	PERFORMANCE OF TRANSMISSION LINES
	Inter organizational commerce: Electronic data interchange, electronic data interchange implementation, and value added networks; Intra organizational commerce: Work flow, automation customization and internal commerce, supply chain management. Corporate digital library: Document library, digital document types, corporate data warehouses; Advertising and marketing: Information based marketing, advertising on internet, on-line marketing Process, market research.
MODULE IV	CONSUMER SEARCH AND RESOURCE DISCOVERY
	Search and resource discovery paradigms, information search and retrieval, commerce catalogues, Information filtering.
MODULE V	MULTIMEDIA
	Multimedia: Key multimedia concepts, digital video and electronic commerce, desktop video processing, desktop video conferencing.

TEXTBOOKS

1. Ravi Kalakata, Whinston Andrew B, Frontiers of Electronic Commerce, Pearson, 1st Edition, 1996.

REFERENCE BOOKS:

1. David Whitley, E-Commerce-Strategy, Technologies and Applications, Tata McGraw-Hill, 2nd Edition, 2000.

- 2. Kamlesh K. Bajaj, E-Commerce the Cutting Edge of Business, Tata McGraw-Hill, 1st Edition, 2005
- 3. Christopher Westland, Theodore H. K Clark, Global Electronic Commerce- Theory and Case Studies, University Press, 1st Edition, 1999.

WEB REFERENCES:

1. www.engr.sjsu.edu/gaojerry/course/cmpe296u/296z/introduction.pdf

COURSE WEB PAGE:

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	-
	CONTENT DELIVERY (THEORY)		
1	Electronic Commerce: Frame work, media coverage anatomy of e-commerce	CO 1	R1:1.1
2	anatomy of e-commerce	CO 1	R1:1.1
3	consumer applications E-ecommerce organization applications	CO 2	T1:1.2
4	E-ecommerce organization applications	CO 2	T1:1.2
5	Types of electronic payment systems.	CO 3	T1:1.3
6	Digital token based electronic payment system: E-cash.	CO 3	T1:1.3
7	Electronic Cash In Action	CO 4	R1:1.5
8	Business Issues And Electronic Cash	CO 4	R1:1.5
9	operational risk and electronic Cash, electronic checks	CO 4	R1:1.5
10	Smart cards and electronic payment system.	CO 5	T1:3.2
11	Credit card based electronic payment system.	CO 5	T1:3.2
12	Risk and electronic payment system	CO 3	T1:3.5
13	Designing electronic payment system	CO 3	T1:3.5
14	PERFORMANCE OF TRANSMISSION LINES	CO 3	T1:4.3
15	Inter organizational commerce: Electronic data Interchange	CO 3	T1:4.3
16	Electronic Data Interchange Implementation	CO 8	T1:5.2
17	And Value Added Networks	CO 3	T1:5.2
18	Intra organizational commerce	CO 3	T1:5.2
19	Work flow, automation customization	CO 3	T1:5.2
20	internal commerce, supply chain management	CO 3	T1:5.2
21	Corporate digital library: Document library, digital document types, corporate data warehouses	CO 4	T1:6.2
22	digital document types, corporate data warehouses	CO 4	T1:6.2
23	Advertising and marketing: Information based marketing	CO 6	T1:6.5

24	advertising on internet, on-line marketing process, market research	CO6	T1:6.5
25	Search and resource discovery paradigms	CO 5	T1:10.2
26	information search and retrieval	CO 5	T1:10.2
27	Commerce Catalogues, Information Filtering	CO 2	T1:10.2
28	Information Filtering	CO 2	T1:10.2
29	MULTIMEDIA	CO 3	T1:10.4
30	Multimedia: Key Multimedia Concepts	CO 3	T1:10.4
31	Digital Video and Electronic Commerce	CO 3	T1:10.4
32	Desktop Video Processing, Desktop Video Conferencing.	CO 3	T1:10.4
	PROBLEM SOLVING/ CASE STUDIES	5	
1	how to develop the data processing technology of Big Data banking systems improve the credit risk management process?	CO 1	R1:1.5
2	what are the tools and techniques of Artificial Intelligence (AI) that can help in improving electronic commerce (E-commerce)?	CO 1	R1:1.5
3	Will the social aspects of interpersonal contacts be a barrier to the creation of electronic banks without staff?	CO 1	R1:1.5
4	Write use of electronic brokerages?	CO 1	T1:3.2
5	List the New forms of organizational structures?	CO 4	T1:3.2
6	What are the main characteristics of cash payment in contrast with cheque payment?	CO 4	T1:3.2
7	Why is a certifying authority required in E Commerce?	CO 4	T1:4.3
8	Define Trade cycle and describe the different stages of a Trade cycle.	CO 5	T1:4.3
9	What are the necessary conditions a hash function used in digital signature should satisfy?	CO 1	T1:4.3
10	Why is security important in E-Commerce?	CO 3	T1:6.2
11	how should merchants promote their ecommerce sites?	CO 1	T1:6.2
12	what security risk does ecommerce involve?	CO 1	T1:6.2
13	what are Internet Security Services? explain each one of them with an example	CO 5	T1:6.5
14	Write about the security service that are to be offered in E-Payment system in detail.	CO 5	T1:6.5
15	Once a company has acquired customer, the key to maximizing revenue is keeping them. explain how e-commerce is helpful in customer retention?	CO 5	T1:6.5
	DISCUSSION OF DEFINITION AND TERMIN	1	
1	Discussion of definition and terminology on Introduction to electronic commerce	CO 1	R1:1.5
2	Discussion of definition and terminology on Electronic payment systems	CO 2	T1:3.2
3	Discussion of definition and terminology on Performance of transmission lines	CO 3	T1:5.2
4	Discussion of definition and terminology on Consumer Search and Resource discovery	CO 4,5	T1:6.2,6.5

5	Discussion of definition and terminology on Multimedia	CO 5,6	T1:10.2,4						
	DISCUSSION OF QUESTION BANK								
1	Discussion of Question on Introduction to electronic commerce	CO 1	R1:1.5						
2	Discussion of Questionon Electronic payment systems	CO 2	T1:3.2						
3	Discussion of Question on Performance of transmission lines	CO3	T1:5.2						
4	Discussion of Question on Consumer Search and Resource discovery	CO 4,5	T1:6.2,6.5						
5	Discussion of Question on Multimedia	CO 5,6	T1:10.2,4						

Signature of Course Coordinator Ms K.Aswini Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING				
Course Title	CLOUD	CLOUD APPLICATION DEVELOPMENT				
Course Code	ACSB17	ACSB17				
Program	B.Tech	B.Tech				
Semester	VII	VII				
Course Type	CORE	CORE				
Regulation	R-18					
		Theory		Pract	etical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	dinator Ms K.Sreeveda , Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AITB04	IV	Operating Systems
B.Tech	ACSB08	IV	Database Management Systems
B.Tech	AITB10	V	Computer Networks

II COURSE OVERVIEW:

This Course emphasizes on transformation of the IT industry with high elastic scalability (EC) in the delivery of enterprise applications and capabilities across the various cloud service models. This course covers the concepts of cloud infrastructures, cloud service providers, virtualization, software-defined networks and cloud storage, cloud resource scheduling and management, programming models, and cloud security.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Cloud Application	70 Marks	30 Marks	100
Development			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	Power Point Presentations	/	White board	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
40 %	Understand
25%	Apply
15 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Theory		Total Marks
Type of Assessment	CIE Exam	Quiz	AAT	10tal Marks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

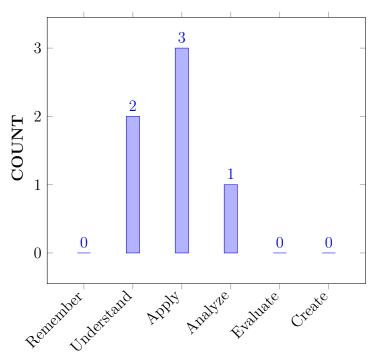
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The fundamental concepts of various services deployed with cloud models for solving current and future challenges.
II	The principles in data centre design and services provided with virtualization techniques.
III	The scaling and load balancing solutions for developing business models with appropriate cloud infrastructure, services and programming models.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Choose appropriate CSP based on user demanded services among	Apply
	AWS, GCP, MS Azure, and Apache Cloud Stack.	
CO 2	Identify the cloud architecture style and infrastructure in providing	Apply
	services with high elastic scalability as per user requirement.	
CO 3	Summarize Virtual Machine concepts for running different	Under-
	applications on different operating systems concurrently.	stand
CO 4	Make use of resource scheduling and management methods for	Apply
	finding the best match of combined resources as per user requirement.	
CO 5	Outline system security issues and vulnerabilities for reducing	Under-
	system-specific attacks under a virtualization environment.	stand
CO 6	Inspect various cloud services, programming models for developing a	Analyze
	business model according to customer requirements.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIA/SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	CIA/SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	CIA/SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations	3	CIA/SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	Tech Talk/Concept Videos
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	Tech Talk/Concept Videos

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	CIA/SEE
PSO 2	Focus on improving software reliability, network security and information retrieval systems.	3	CIA/SEE
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	CIA/SEE

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PRO)GR.	$\overline{\mathbf{AM}}$	$\overline{ ext{OUI}}$	COI	MES					PSO'S	
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	<	-	-	-	-	1	ı	-	✓	-	/	-	-	/
CO 2	✓	✓	✓	-	-	-	-	-	-	✓	-	✓	-	✓	✓
CO 3	✓	/	✓	-	-	-	-	-	-	✓	-	/	-	✓	-
CO 4	✓	✓	✓	-		-	-	-	-	✓	-	✓	✓	✓	✓
CO 5	✓	-	-	-	-	-	-	-	-	✓	-	✓	-	✓	-
CO 6	✓	/	✓	-	✓	-	-	-	-	✓	-	/	✓	✓	/

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Apply scientific principles and methodologies, other engineering disciplines in selection of best cloud service provider based on customer requirements.	2
	PO 2	Problem Analysis in selection of best cloud service provider based on customer requirements	7
	PO 10	Subject matter and speaking style assessed in explanation of selecting best cloud service provider based on customer requirements	2
	PO 12	Keeping current in CSE and advanced engineering concepts in selecting best cloud service provider based on customer requirements	1
	PSO 3	Make use of modern computer tools for selecting best cloud service provider based on customer requirements	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 2	PO 1	Apply scientific principles and methodologies, other engineering disciplines to select infrastructures and architectural styles of the system as per cloud user and organizational requirements.	2
	PO 2	Problem Analysis in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements.	9
	PO 3	Design solutions for architectural styles and infrastructure for providing services with high elastic scalability as per user requirement.	8
	PO 10	Subject matter and speaking style assessed in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements.	2
	PO 12	Keeping current in CSE and advanced engineering concepts in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements by tech talk, concept videos and open ended experiments.	1
	PSO 2	Focus on improving Network Security and IRS in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements.	2
	PSO 3	Make use of modern computer tools in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements.	1
CO 3	PO 1	Understand scientific principles and methodologies, other engineering disciplines in developing virtual machines to run different applications on different OSs.	2
	PO 2	Problem Analysis in developing virtual machines to run different applications on different OSs.	5
	PO 3	Design solutions for development of virtual machines to run different applications on different operating systems concurrently.	8
	PO 10	Subject matter and speaking style assessed in developing virtual machines to run different applications on different OSs.	2
	PO 12	Keeping current in CSE and advanced engineering concepts of advanced topics on virtual machines by tech talk, concept videos and open ended experiments.	1
	PSO 2	Focus on improving Network Security and IRS in developing virtual machines to run different applications on different OSs.	2
CO 4	PO 1	Apply scientific principles and methodology, mathematical principles and, other engineering disciplines on different types of resource scheduling algorithms for efficient utilization of pool of resources.	3
	PO 2	Problem Analysis in selecting different types of resource scheduling algorithms for efficient utilization of pool of resources.	8

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	PO 3 Design solutions for resource scheduling and management methods to find the best match of combined resources as per user requirement.	8
	PO 10	Subject matter and speaking style assessed in explanation of resource scheduling algorithms for efficient utilization of pool of resources.	2
	PO 12	Keeping current in CSE and advanced engineering concepts of advanced topics on efficient utilization of pool of resources by tech talk, concept videos and open ended experiments	1
	PSO 1	Understand, Design and Analyze Computer Programs used in resource scheduling for efficient utilization of pool of resources.	6
	PSO 2	Focus on improving Network Security and in selecting different types of resource scheduling for efficient utilization of pool of resources.	1
	PSO 3	Make use of modern computer tools in selecting different types of resource scheduling algorithms for efficient utilization of pool of resources.	1
CO 5	PO 1	Understand scientific principles and methodologies, other engineering disciplines to handle security and vulnerabilities for reducing system-specific attacks.	2
	PO 10	Subject matter and speaking style assessed in explanation of security and vulnerabilities in virtualization environment	2
	PO 12	Keeping current in CSE and advanced engineering concepts of advanced topics on security and vulnerabilities by tech talk, concept videos and open ended experiments	1
	PSO 2	Focus on improving Network Security and IRS in handling security and vulnerabilities for reducing system-specific attacks.	1
CO 6	PO 1	Analyze scientific principles and methodology, mathematical principles and, other engineering disciplines to use various cloud services and programming models to develop business model based on customer requirements	3
	PO 2	Problem Analysis in various cloud services and programming models to develop business model based on customer requirements	10
	PO 3	Design solutions for various cloud services and programming models by Defining and understanding cloud user and organizational requirements, identifying various cloud infrastructure and services, managing design process and evaluate the outcomes.	9
	PO 5	Usage of Cloud Management tool for modeling simple to complex engineering activities with understanding cloud user requirements and limitations.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Subject matter and speaking style assessed in explanation of various cloud services and programming models to develop business model based on customer requirements	2
	PO 12	Keeping current in CSE and advanced engineering concepts of advanced topics on various cloud services and programming models by tech talk, concept videos and open ended experiments	4
	PSO 1	Understand, Design and Analyze Computer Programs used in various cloud services and programming models to develop business model based on customer requirements	6
	PSO 2	Focus on improving Network Security and IRS in various cloud services and programming models to develop business model based on customer requirements	2
	PSO 3	Make use of modern computer tools for various cloud services and programming models to develop business model based on customer requirements	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	7	-	-	-	-	-	-	-	2	-	1	-	-	1
CO 2	2	9	8	-	-	-	-	-	-	2	-	1	-	2	1
CO 3	2	5	4	-	-	-	-	-	-	2	-	1	-	2	-
CO 4	3	8	5	-		-	-	-	-	2	-	1	6	1	1
CO 5	2	-	-	-	-	-	-	-	-	2	-	1	-	1	-
CO 6	3	10	9	-	1	-	-	-	-	2	-	1	6	2	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				PRO)GR	$\overline{\mathbf{AM}}$	$\overline{ ext{OUI}}$	COI	MES					PSO'S	
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.6	70.0	-	-	-	-	-	-	-	40.0	1	12.5	-		50.0
CO 2	66.6	90.0	80.0	-	-	-	-	-	-	40.0	-	12.5	-	100	50.0
CO 3	66.6	50.0	40.0	-	-	-	-	-	-	40.0	-	12.5	-	100	-
CO 4	100	80.0	50.0	-	-	-	-	-	-	40.0	-	12.5	100	50.0	50.0
CO 5	66.6	-	-	-	-	-	-	-	-	40.0	-	12.5	-	50.0	-
CO 6	100	100	90.0	-	100	-	-	-	-	40.0	-	12.5	100	100	50

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \le C \le 5\%$ – No correlation

1 -5 <C $\le 40\% - Low/ Slight$

2 - 40 % < C < 60% –Moderate

 $\boldsymbol{3}$ - $60\% \leq C < 100\%$ – Substantial /High

				PRO)GR	\mathbf{AM}	$\overline{ ext{OU1}}$	CON	MES					PSO'S	
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	-	-	-	-	-	-	2	-	1	-	-	2
CO 2	3	3	3	-	-	-	-	-	-	2	-	1	-	3	2
CO 3	3	2	2	-	-	_	-	-	-	2	_	1	-	3	-
CO 4	3	3	2	-	-	_	-	-	-	2		1	3	2	2
CO 5	3	_	-	-	-	_	-	-	-	2	_	1	-	2	-
CO 6	3	3	3	-	3	-	-	-	-	2	-	1	3	3	2
TOTAL	18	14	10	-	3	-	-	-	-	12	-	6	6	15	8
AVER- AGE	3.0	2.8	2.5	-	3.0	-	-	-	-	2.0	-	1	3	2.6	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	_	5 Minutes Video		Open Ended	_
Term raper		9 Williams Video	•	Experiments 5 cm.	
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by	experts \checkmark	End Semester OBE Feedback
--------------------------------	----------------------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION AND CLOUD APPLICATION DEVELOPMENT
	Introduction: Definition, Characteristics, Benefits, challenges of cloud computing, cloud models: IaaS (infrastructure as service),PaaS(platform as a service),SaaS(software as a service), deployment models-public, private, hybrid, community; Types of cloud computing: Grid computing utility computing, cluster; computing Cloud services: Amazon, Google, Azure, online services, open source private clouds, SLA; Applications of cloud computing: Healthcare, energy systems, transportation, manufacturing, education, government, mobile communication, application development.

MODULE II	CLOUD ARCHITECTURE, PROGRAMMING MODEL
	Cloud Architecture, programming model: NIST reference architecture, architectural styles of cloud applications, single, multi, hybrid cloud site, redundant, non redundant, 3 tier, multi tier architectures; Programming model: Compute and data intensive.
MODULE III	CLOUD RESOURCE VIRTUALIZATION
	Cloud resource virtualization: Basics of virtualization, types of virtualization techniques, merits and demerits of Virtualization. Full vs Para - virtualization, virtual machine monitor/hypervisor; Virtual machine basics, taxonomy of virtual machines, process vs system virtual machines.
MODULE IV	CLOUD RESOURCE MANAGEMENT AND SCHEDULING
	Cloud Resource Management and Scheduling: Policies and mechanisms for resource management, resource bundling, combinatorial, fair queuing, start time fair queuing, borrowed virtual time, cloud scheduling subject to deadlines, scheduling map reduce applications subject to deadlines, resource management and application scaling.
MODULE V	CLOUD SECURITY
	Cloud Security: Risks, privacy and privacy impacts assessments; Multi-tenancy issues, security in VM, OS, virtualization system security issues and vulnerabilities; Virtualization system-specific attacks: Technologies for virtualization-based security enhancement, legal.

TEXTBOOKS

- 1. Dan Marinescu, Cloud Computing: Theory and Practice||, M K Publishers, 1st Edition, 2013
- 2. Kai Hwang, Jack Dongarra, Geoffrey Fox, Distributed and Cloud Computing, From Parallel Processing to the Internet of Things, M K Publishers, 1st Edition, 2011.

REFERENCE BOOKS:

- 1. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing: A Practical Approach||, McGraw Hill, 1st Edition, 2009.
- 2. Arshdeep Bahga, Cloud Computing: A Hands on Approach , Vijay Madisetti Universities Publications, 1st Edition, 2013.

WEB REFERENCES:

- 1. https://www.oracle.com/in/cloud/application-development
- 2. http://computingcareers.acm.org/?page_id=12
- 3. http://en.wikibooks.org/wiki/cloud application

COURSE WEB PAGE:

https://www.iare.ac.in/? q = courses/computer-science-and-engineering-autonomous/cloud-application-development

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1:				
	OBE DISCUSSION						
1	Course Overview, Objectives , Course Outcomes an	d POs/PSO	S				
CONTENT DELIVERY (THEORY)							
2-3	Cloud Computing definition, characteristics, benefits, challenges	CO 1, CO 6	T1: 1.1, 1.2				
4-5	Cloud computing models and its deployment models	CO 1, CO 6	T1: 1.2				
6-7	Types of cloud computing techniques	CO 1, CO 6	T1: 1.2				
8-9	Different types of cloud services and Cloud Service Providers	CO 1, CO 6	T1: 1.3				
10-11	Various applications of cloud computing	CO 1, CO 6	T1: 3.6				
12-13	Cloud architecture concepts and selection criteria	CO 2, CO 6	T1: 1.1				
14-15	NIST reference architecture and various architectural styles of cloud applications	CO 2, CO 6	T1: 1.1, 3.8				
16	Programming model and Compute intensive model	CO 2, CO 6	T1: 4.2,4.3				
17-18	Virtualization and types of virtualization techniques	CO 3	R2: 4.7				
19-20	Merits and demerits of virtualization ; Full vs Para-virtualization	CO 3	T1: 4.9				
21-22	Virtual machine monitor/hypervisor and its types	CO 3	T1: 4.9				
23-24	Cloud resource management and scheduling	CO 4	T1: 6.1				
25-26	Various policies and mechanisms for resource management, resource bundling, combinatorial	CO 4	T1: 6.1				
27-28	Fair queuing, start time fair queuing, borrowed virtual time	CO 4	T1: 6.9, 6.10, 6.11				
29-30	Map reduce applications subject to deadlines	CO 4	T1: 6.13				
31-32	Resource management and application scaling.	CO 4	R1: 6.14				
33-34	Cloud Security: Risks, privacy	CO 5	T1:9				
35-36	Privacy impacts assessments; Multi-tenancy issues	CO 5	T1: 9.5				
37-38	Security in VM, OS	CO 5	R2: 9.6				
39-40	Virtualization system security issues	CO 5	T1: 9.1				
41-42	Virtualization system security vulnerabilities	CO 5	T1: 9.1				
43-44	Virtualization system-specific attacks: Technologies for virtualization-based security enhancement legal	CO 5	R1: 9.9				

PROBLEM SOLVING/ CASE STUDIES				
1	Cloud computing delivery models with security and the reliability of each model.	CO 1, CO 2	T1:3.6	
	Peer-to-peer systems and clouds the in terms of architecture, resource management, scope, and security			
2	Is cloud elasticity based on over provisioning sustainable? Give arguments to support.	CO 1, CO 2	T1:3.6	
	Debating whether to install a private cloud or to use a public cloud (e.g., the AWS) for its computational and storage needs for an organization.			
3	Mobile devices could benefit from cloud computing; explain the reasons.	CO 1, CO 2	T1:3.6	
4	Tips for managing multi-cloud environment with real time example.	CO 2, CO 6	T1:4.3	
	Deploying a multi-tenant application across multiple cloud platforms.			
5	Usage of apache zookeeper to build distributed apps and describe how Zookeeper works.	CO 2, CO 6	T1:4.3	
	Case study on Hadoop distributed file system used in cloud Computing.			
	Solving redundancy problems using different architectural styles			
6	Create a Map Reduce Application model by using data intensive model.	CO 2, CO 6	T1:4.3	
	Compare the latest Top 500 list with the Top 500 Green List of HPC systems based on publicly reported data.			
7	Discuss Virtualization Middleware for Scientific Cloud Computing in Open Source Offerings.	CO 3	T1:4.9, R2:4.7	
	Identify a hybrid cloud allows a company to maintain critical, confidential data and money on the new resources.			
	Design a large-scale virtual cluster system			
8	VMs practically share all resources of the virtual infrastructure including virtual switch. Using Virtualization analyze memory virtualization, processor virtualization, and virtualization of a communication channel. Analyze the results of the performance comparison by using virtual machines.	CO 3	T1:4.9, R2:4.7	
9	Virtualization of the processor combined with virtual Memory management poses multiple challenges.	CO 3	T1:4.9, R2:4.7	
	Describe the approaches used to exchange data among the domains of Xen and design experiments to compare the performance of data communication between the domains.			
10	Implementation of resource management policies: control theory, machine learning, utility-based, and market-oriented.	CO 4	T1:6.1, R1:6.14	
	Optimal strategies for one could be in conflict with optimal strategies for one or more of the other classes.			

and the mechanisms for resource management. Workflow of cloud application use XML to describe this workflow, including the instances and the storage required for each task.	CO 4	T1:6.1, R1:6.14
workflow, including the instances and the storage required for each task.		
12 Set up Hadoop-YARN cluster with ports to start each		
worker.	CO 4	T1:6.1, R1:6.14
Itanium architecture, and identify several possible reasons.	G0 F	T1 0 1
Identify the main security threats for the SaaS cloud delivery model on a Public cloud.	CO 5	T1:9.1, R1:9.9
Analyze Amazon's privacy policies and design a service-level agreement.		
Cloud service to analyze images and sign them before being listed and made available to the general public.		
Analyze the implications of the two-level security model of commodity operating systems.	CO 5	T1:9.1, R1:9.9
Virtualization security on public, private, and hybrid clouds.		
Security risk posed by XenStore?		
15 Six attack surfaces are illustrated cloud delivery models.	CO 5	T1:9.1,
Impact of international agreements regarding privacy laws on cloud computing.		R1:9.9
Security and functionality in a hypervisor" and discuss the performance of the system.		
Virtual machine security and its application with an real		
time example by considering any one cloud service provider.		
DISCUSSION OF DEFINITION AND TERMINOL		
, , , , , , , , , , , , , , , , , , , ,	CO 1, CO 6	T1:3.6
	CO 2, CO 6	T1:4.3
Basics of virtualization, types of virtualization techniques, merits and demerits of virtualization, virtual machine basics, taxonomy of virtual machines, process vs system virtual machines.	CO 3	T1:4.9, R1:4.7
Policies and mechanisms for resource management, resource bundling, combinatorial, fair queuing, start time fair queuing, borrowed virtual time.	CO 4	T1:6.1, R1:6.14
5 Multi-tenancy issues, security in VM, OS, virtualization system security issues and vulnerabilities, technologies for virtualization.	CO 5	T1:9.1, R1:9.9

DISCUSSION OF QUESTION BANK					
1	Challenges of cloud computing ,Cloud services and Applications of cloud computing	CO 1, CO 6	R4:2.1		
2	Cloud Architecture and programming model	CO 2, CO 6	T4:7.3		
3	Cloud resource virtualization	CO 3	R4:5.1		
4	Cloud Resource Management and Scheduling	CO 4	T1:7.5		
5	Cloud Security	CO 5	T1: 4.1		

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMP	COMPUTER SCIENCE AND ENGINEERING				
Course Title	ADVAN	ADVANCED DATABASES				
Course Code	ACSB26	ACSB26				
Program	B.TECH	B.TECH				
Semester	VI	VI				
Course Type	ELECTI	ELECTIVE				
Regulation	R-18					
		Theory		Pract	ical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Ms P.Harika, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS005	III	Database Management Systems

II COURSE OVERVIEW:

This course provides theoretical knowledge and practical skills in advanced topics in database systems, big data and modern data-intensive systems. The specific topics include indexing methods, query processing and optimization strategies for relational database systems, Object Relational Mapping and Object Database design, distributed database systems, spatial access and uncertainty in databases.It provides tools and techniques to implement and administer complex database systems including backup and recovery.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Advanced Databases	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	Power Point Presentations	/	Chalk & Talk	✓	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
20 %	Understand
40 %	Apply
20 %	Analyze
0 %	Evaluate

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component	Theory			Total Marks
Type of Assessment	ype of Assessment CIE Exam		AAT	10tai marks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

I	Query languages to support temporal and object databases.
II	Internals of database management system.
III	Data processing paradigms.
IV	Research and usage of emerging technologies for solving existing database problems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Compare different database techniques to defining the concept of	Under-
	Time domain and associating facts with time for representing queries	stand
	for constructing a database	
CO 2	Model the real world database systems for open problems from the	Apply
	requirement specification for optimal real world databases.	
CO 3	Implement queries in transact-SQL and recursive queries using query	Remember
	optimization techniques for retrieving desired information from	
	hierarchical data	
CO 4	Describe spatial data access methods to apply different data	Apply
	processing techniques for satisfying the exact need of the user for	
	effective data retrieval	
CO 5	Compare different lattice based and probabilistic based approaches for	Apply
	efficient relational databases	
CO 6	Analyze a full real size database system for an industry or business	Analyze
	scenario	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	2	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization to the solution of complex engineering problems.		
DO 0		2	CIE/O-:-/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex	3	CIE/Quiz/AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	8	CIE/Quiz/AAT
	solutions for complex Engineering problems and	Ü	
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 4	Conduct Investigations of Complex	8	Assignments/
	Problems: Use research-based knowledge and		SEE /CIE,
	research methods including design of		AAT, QUIZ
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		
PO 12	Life-Long Learning: Recognize the need for	4	SEE/ CIE,
	and having the preparation and ability to		AAT, QUIZ
	engage in independent and life-long learning in		
	the broadest context of technological change.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

PROGRAM SPECIFIC OUTCOMES		Strength	Proficiency Assessed by
PSO 2	Focus on improving software reliability, network security and information retrieval systems.	2	Quiz
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies	2	Quiz

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	-	-	-	-	-	-	-	-	-	-		-	✓	-
CO 2	✓	✓	-	-	-	-	1	1	-	-	-	-	-	-	-
CO 3	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	✓	/	-	-		-	-	-	-	-	-		✓	✓	-
CO 5	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	✓	/	-	-		-	-	-	-	-	-	-	-	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Compare different database techniques for constructing a database using the knowledge of mathematics, science, and engineering fundamentals.	3
	PO 4	Demonstrate open problems on active databases by applying Workshop and laboratory skills, through understanding of contexts, in which engineering knowledge can be applied, by understanding of appropriate codes of practice and industry standards and by understanding of and ability to apply a systems approach to engineering problems.	4
CO 2	PO 1	Model the real world database systems by discussing open problems from the requirement specification using the knowledge of mathematics, science, and engineering fundamentals.	3
	PO 2	Model active databases and its various applications, with the Problem statement, system definition, Problem formulation, abstraction, Information, data collection and model translation.	4
	PO 3	Identify a real world scenario to Investigate and define a problem and identify constraints, Manage the design process and evaluate outcomes	2
	PO 12	Identify open issues related to various databases by working on advanced degree, keeping current in CSE and advanced engineering concepts, personal continuing education efforts and by ongoing learning - stays up with industry trends/ new technology	4
	PSO 2	Identify open issues related to various databases by keeping focus emerging technologies and frameworks in demand with employers and contemporary challenges.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 3	Identify open issues related to various databases by by making use of computational and experimental tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2
CO 3	PO 1	Describe concept of time domain and associating facts with time using principles of mathematics, science, and engineering fundamentals.	3
CO 4	PO 1	Build queries in transact-SQL the using knowledge ofmathematics, science and engineering fundamentals.	3
	PO 2	Build queries in different databases with the Problem statement and system definition, Problem formulation, abstraction, Information and data collection	3
	PO 3	Apply temporal query language support for TSQL2 by investigating and defining a problem, identifying constraints, managing the design process and evaluating the outcomes	3
	PO 4	Identify different levels of queries by applying Workshop and laboratory skills, through understanding of contexts, in which engineering knowledge can be applied, by understanding of appropriate codes of practice and industry standards and by understanding of and ability to apply a systems approach to engineering problems	4
	PO 12	Choose query optimization techniques by working on advanced degree, keeping current in CSE and advanced engineering concepts, personal continuing education efforts and by ongoing learning – stays up with industry trends/ new technology	4
	PSO 2	Apply query languages by keeping focus e emerging technologies and frameworks in demand with employers and contemporary challenges.	4
CO 5	PO 1	Apply hierarchical data concept with knowledge of mathematics, science and Engineering Fundamentals.	3
	PO 2	Use recursive queries in SQL with respect to the Problem statement and system definition	1
CO 6	PO 2	Identify query optimization technique with respect to the Problem statement, system definition, Problem formulation, abstraction, Information, data collection and model translation	4
	PO 3	Analyze optimization process by identifying constraints, manage the design process and evaluate outcomes	2
	PO 4	Examine different levels of queries by understanding contexts in which engineering knowledge can be applied	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	COURSE PO								РО	PSO	PSO	PSO			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-		-	2	-
CO 2	3	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	5	-	-	-	_	-	-	-	-	-	-	-	-	-
CO 4	3	5	-	-		-	-	-	-	-	-		2	2	-
CO 5	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	4	-	-	-	-	-	-	-	-	-		-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	-	-	-	-	-	-	-	-	-	-		-	100	-
CO 2	100	50	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	100	50	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	100	50	-	-		-	-	-	-	-	-		100	100	-
CO 5	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	100	40	1	-		-	-	-	-	-	-	·	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \le C \le 5\%$ – No correlation

 $-1.5 < C \le 40\% - Low/ Slight$

 $\boldsymbol{2}$ - 40 % <C < 60% – Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

	PROGRAM OUTCOMES											PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	ı	-	-	1	-	1	-	-	-	1	-	-	3	
CO 2	2	2	-	-	-	_	_	-	-	-	_	-	-	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	1	-	-	1	-	-	-	-	-	3	3	-
CO 5	3	1	-	-	-	_	-	-	-	-	_	-	-	-	-
CO 6	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	28	16	2	4	-	-	-	-	-	-	-	-	3	9	6
AVER- AGE	2.9	1.6	2	2	-	-	-	-	-	=	-	-	3	3	3

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	-
Laboratory	-	Student Viva	-	Certification	-
Practices					
Tech Talk	✓	Concept Video	✓	Open Ended	-
				Experiments	
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

	Assessment of mini projects by experts	✓	End Semester OBE Feedback
--	--	----------	---------------------------

XVIII SYLLABUS:

MODULE I	ACTIVE DATABASES
	Syntax and Semantics (Starburst, Oracle, DB2): Taxonomy, applications, integrity management, workflow management, business rules, design principles, properties, rule modularization, rule debugging, IDEA methodology, open problems.
MODULE II	TEMPORAL AND OBJECT DATABASES
	Overview: Time domain, data types, associating facts with time, temporal query language; Transact - SQL (T-SQL): Time ontology, data model, language constructs; Implementation: System architecture, temporal support, support for TSQL2.
MODULE III	COMPLEX QUERIES AND REASONING
	Logic of Query Languages: Relational calculi, relational algebra, recursive rules, syntax and semantics of data log, fix point semantics. Implementation Rules and Recursion: Rule rewriting methods, compilation and optimization, recursive queries in SQL, open issues.
MODULE IV	SPATIAL, TEXT AND MULTIMEDIA DATABASE
	Traditional Indexing Methods: Secondary keys, spatial access methods, text retrieval; Multimedia indexing: 1D time series, 2D color images, sub pattern matching.
MODULE V	UNCERTAINTY IN DATABASES AND KNOWLEDGE BASES
	Introduction: Uncertainty in image database, uncertainty in temporal database, uncertainty in null value; Models of uncertainty; Uncertainty in relational databases: Lattice based relational databases, probabilistic relational databases

TEXTBOOKS

- 1. Carlo Zaniolo, Stefano Ceri, -Advanced Database Systems∥, Morgan Kauffmann Publishers, VLDB Journal, 1st Edition, 1997
- 2. Abraham Silberschatz, Henry F. Korth and S.Sudarshan, -Database System Concepts, Tata McGraw-Hill, 6thEdition, 2010

REFERENCE BOOKS:

1. Raghu Ramakrishnan, Database Management System ||, McGraw-Hill Publications, 3rd Edition, 2000

2. Silberschatz A, Database Systems Concepts McGraw-Hill Publications, 6 th Edition, 2000

WEB REFERENCES:
1. https://nptel.ac.in/courses/112105171/1

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1:
	OBE DISCUSSION		
1	Outcome based eductaion, course outcomes, course	e objectives	
	CONTENT DELIVERY (THEORY)		
2	Syntax and Semantics Starburst, Syntax and Semantics Starburst	CO 1	T2: 1.1-1.3, T1: 4.1
3-4	Syntax and Semantics DB2, Taxonomy.	CO 1	T2: 1.4,1.5, R1: 3.1
5-6	Applications ,integrity management, Workflow management	CO 1	T2: 1.8, T2: 1.8.1
7-8	Business rules, Design principles, properties	CO 1	T2: 1.10, T1: 2.1
9-10	Rule modularization, rule debugging, IDEA methodology	CO 1	T2: 2.2, T1: 2.4
11-12	Open problems, Overview: temporal and object databases	CO 2	T1: 3.2, T1: 19.1, 19.1.3
13-14	Time domain, data types	CO 3	T1: 3.5
15-16	Associating facts with time, temporal query language, Overview :Transact-SQL (T-SQL)	CO3, CO4	T1: 3.7, T1: 4.1
17-18	Time ontology, data model, language constructs, Implementation: System architecture, temporal support, support for TSQL2	CO 04	T1: 4.2.2 - 4.2.5, T1:4.3, 4.4
19-21	Logic of Query Languages, Relational calculi, relational algebra, recursive rules,	CO5	T1: 19.1, T1:19.1.3
22-25	Syntax and semantics of data log, fix point semantics.	CO 5	T1: 19.4
26-29	Implementation Rules and Recursion	CO 5	T1:19.4, 19.5
30-33	Compilation and optimization, recursive queries in SQL	CO 6	T1: 19.7, 19.8.1
34-37	Open issues, Traditional Indexing Methods, Secondary keys, spatial access methods	CO 4	T1: 19.8.2, T2: 15.1-15.3

38-39	Text retrieval, Multimedia indexing, 1D time series, 2D color images, sub pattern matching	CO 5	T2: 15.4 - 15.6, 16.1-16.4
40-42	Uncertainty in image database, uncertainty in temporal database, Uncertainty in null value, Models of uncertainty	CO 6	T2: 17.1-17.6
43-45	Uncertainty in relational databases, Lattice based relational databases, Probabilistic relational databases	CO 5, CO6	T2: 17.7, 17.8, T1: 8.1,8.3.1
	PROBLEM SOLVING/ CASE STUDIES	S	
1	Syntax and Semantics (Starburst, Oracle, DB2): Taxonomy, applications, integrity management, workflow management, business rules, design principles, properties, rule modularization, rule debugging, IDEA methodology, open problems.	CO 1	R4:2.1
2	Overview: Time domain, data types, associating facts with time, temporal query language; Transact - SQL (T-SQL): Time ontology, data model, language constructs; Implementation: System architecture, temporal support, support for TSQL2.	CO 2	R:8.1
3	Logic of Query Languages: Relational calculi, relational algebra, recursive rules, syntax and semantics of data log, fix point semantics. Implementation Rules and Recursion: Rule rewriting methods, compilation and optimization, recursive queries in SQL, open issues.	CO3, CO4	R:9.4
4	Traditional Indexing Methods: Secondary keys, spatial access methods, text retrieval; Multimedia indexing: 1D time series, 2D color images, sub pattern matching.	CO5	R:11.6
5	Introduction: Uncertainty in image database, uncertainty in temporal database, uncertainty in null value; Models of uncertainty; Uncertainty in relational databases: Lattice based relational databases, probabilistic relational databases	CO6	R: 13.6
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	Syntax and Semantics (Starburst, Oracle, DB2): Taxonomy, applications, integrity management, workflow management, business rules, design principles, properties, rule modularization, rule debugging, IDEA methodology, open problems.	CO 1	R4:2.1
2	Overview: Time domain, data types, associating facts with time, temporal query language; Transact - SQL (T-SQL): Time ontology, data model, language constructs; Implementation: System architecture, temporal support, support for TSQL2.	CO 2	R:8.1
3	Logic of Query Languages: Relational calculi, relational algebra, recursive rules, syntax and semantics of data log, fix point semantics. Implementation Rules and Recursion: Rule rewriting methods, compilation and optimization, recursive queries in SQL, open issues.	CO3, CO4	R:9.4
4	Traditional Indexing Methods: Secondary keys, spatial access methods, text retrieval; Multimedia indexing: 1D time series, 2D color images, sub pattern matching.	CO5	R:11.6

5	Introduction: Uncertainty in image database, uncertainty in temporal database, uncertainty in null value; Models of uncertainty; Uncertainty in relational databases: Lattice based relational databases, probabilistic relational databases	CO6	R: 13.6
	DISCUSSION OF QUESTION BANK		
1	Syntax and Semantics (Starburst, Oracle, DB2): Taxonomy, applications, integrity management, workflow management, business rules, design principles, properties, rule modularization, rule debugging, IDEA methodology, open problems.	CO 1	R4:2.1
2	Overview: Time domain, data types, associating facts with time, temporal query language; Transact - SQL (T-SQL): Time ontology, data model, language constructs; Implementation: System architecture, temporal support, support for TSQL2.	CO 2	R:8.1
3	Logic of Query Languages: Relational calculi, relational algebra, recursive rules, syntax and semantics of data log, fix point semantics. Implementation Rules and Recursion: Rule rewriting methods, compilation and optimization, recursive queries in SQL, open issues.	CO3, CO4	R:9.4
4	Traditional Indexing Methods: Secondary keys, spatial access methods, text retrieval; Multimedia indexing: 1D time series, 2D color images, sub pattern matching.	CO5	R:11.6
5	Introduction: Uncertainty in image database, uncertainty in temporal database, uncertainty in null value; Models of uncertainty; Uncertainty in relational databases: Lattice based relational databases, probabilistic relational databases	CO6	R: 13.6

Course Coordinator Ms P.Harika, Assistant Professor $_{\rm HOD,CSE}$

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	COMPUTE	COMPUTER SCIENCE AND ENGINEERING				
Course Title	SOFTWAI	SOFTWARE ENGINEERING				
Course Code	ACSB26	ACSB26				
Program	B.Tech	B.Tech				
Semester	VI	VI CSE				
Course Type	Core	Core				
Regulation	IARE - R18					
		Theory		Practi	cal	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Ms .M Geeth	Ms .M Geetha Yadav, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	-	-	Basic knowledge of computer
			Hardware and Software

II COURSE OVERVIEW:

This course concentrates on developing basic understanding about various activities that are involved in a software development. This course enables the student to develop necessary skills for developing a product or applications. The course focuses on all activities involved in software development (communication, planning, modeling, construction, deployment). In this course; students will gain a broad understanding of the discipline of software engineering and its application to the development and management of software systems. Student can implement and get knowledge about development of the software and gains knowledge of basic engineering methods and practices, and their appropriate application.

III MARKS DISTRIBUTION:

Total Marks
100
_

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	PPT	✓	Chalk & Talk	/	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level	
33.30%	Remember	
50%	Understand	
16.66%	Apply	
0 %	Analyze	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component	Theory			Total Marks
Type of Assessment	CIE Exam	10tai Waiks		
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

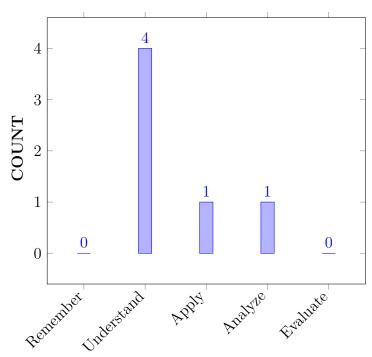
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	Learn how to elicitate requirements and develop software life cycles.
II	Understand the design considerations for enterprise integration and deployment.
III	Analyze quality assurance techniques and testing methodologies.
IV	Prepare a project plan for a software project that includes estimates of size and effort, a schedule, resource allocation, configuration control, and project risk.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Describe process models, approaches and techniques for managing a	Under-
	software development process.	stand
CO 2	Recognize the importance project planning activities that accurately	Under-
	help in selection and initiation of individual projects and of portfolios	stand
	of projects in the enterprise.	
CO 3	Explain software model and behavior of a software system.	Under-
		stand
CO 4	Develop the approaches to verification and validation including static	Apply
	analysis and reviews.	
CO 5	Demonstrate the concept of risk management through risk	Under-
	identification, risk measurement and mitigation.	stand
CO 6	Make use of earned value analysis and project metric for scheduling	Analyze
	and improving the quality of software.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 10	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	CIE / Quiz / AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIE / Quiz / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	CIE / Quiz / AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3	CIE / Quiz / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PSO 1	Understand, design and analyse computer	3	CIE / Quiz /
	programs in the areas related to Algorithms,		AAT
	System Software, Web design, Bigdata, Artificial		
	Intelligence, Machine Learning and Networking.		
PSO 2	Focus on improving software reliability, network	2	CIE / Quiz /
	security and information retrieval systems.		AAT
PSO 3	Make use of modern computer tools for creating	2	CIE / Quiz /
	innovative career paths, to be an entrepreneur		AAT
	and desire for higher studies.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	✓	-	-	-	-	-	-	-	-	-	-		-	-	-	
CO 2	✓	-	-	-	-	-	-	-	-	-	-	-	/	-	-	
CO 3	✓	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	✓	✓	✓	-	-	-	-	-	-	✓	-		/	-	-	
CO 5	✓	/	/	-	-	-	-	-	-	✓	-	-	✓	-	-	
CO 6	✓	/	-	-	-	-	-	-	-	✓	-	-	-	-	-	

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Explain the evolution of software and its characteristics and challenges by applying	1
		computer science methodologies	
CO 2	PO 1	Compare process models, approaches and techniques to manage a given software development process by using the mathematical principles and computer science methodologies.	3
	PSO 1	Understand the differences between analysis and analytics in the areas related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 3	PO 1	Understand the concept of Earned Value Analysis (EVA) to measure the projects progress at any given point in time by applying mathematical principles and computer science methodologies	2

	PO 2	Understand the key issues in problems identification and formulation, data collection, model translation, validation, interpretation of results and documentation in optimizing business decisions.	6
	PO 3	Classify the key issues in terms of defining various problems, customer and user needs, cost effective and creative solutions, design process, economic context and management techniques.	7
CO 4	PO 1	Explain the concept of data dictionary process and querying the software by applying mathematical principles and computer science methodologies	2
	PO 2	Understand the problem and develop solutions using different data technologies and document the results for interpretation	4
	PO 3	Identify the appropriate technology like black box testing and white box testing. suitable for various problems, by understanding customer and user needs, with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques.	7
	PO 10	Communicate effectively in orally and written by comprehend and write effective reports and design documentation with the	5
	PO 12	Recognize the need for advanced concepts testing technologies for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change.	5
	PSO 1	Explain the technologies used to process and querying the data in the areas related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 5	PO 1	Select appropriate process modelcomponent for finding model the structure and behavior of a software system. using computer science methodologies .	1
	PO 2	Make use of Hadoop components on huge volume of information and data collected from various sources and perform model translation and validation	3
	PO 4	Make use of Hadoop components for developing applications based on technical literature and quality issues. Identify, classify and describe the performance of systems through analytical methods and techniques.	3

	PO 10	Communicate in written and orally by comprehending and writing effective reports and design documentation and presentations on Hadoop components for developing applications with the engineering community by having major focus on clarity on content, Grammar/Punctuation with appropriate References, good Speaking style and depth in subject matter.	5
	PSO 1	Make use of Hadoop components on huge volume data used to develop analytical solutions related to Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 6	PO 1	Translate the data from traditional file system to HDFS for analyzing big data in Hadoop ecosystem using the mathematical principles and computer science methodologies	2
	PO 2	Translation of data structure from traditional to HDFS includes volume of information and data, file structure translation methods, validation and solution development with proper documentation.	6
	PO 10	Communicate in written form by comprehending and writing effective reports and design documentation on HDFS file system applications with the engineering community by having major focus on clarity on content, Grammar/Punctuation with appropriate References, good Speaking style and depth in subject matter.	5

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

				PRO	OGR.	$\overline{\mathbf{AM}}$	$\overline{ ext{OU1}}$	COI	MES				PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-		_	-	-
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	4	-	-
CO 2	6	7	-	-	-	_	-	-	-	_	-	-	-	-	-
CO 4	2	4	7	-	1	-	-	-	-	-	5	-	-	4	-
CO 5	1	3	3	-	-	-	-	-	-	5	-	-	-	-	-
CO 6	2	6	-	-	-	-	-	-	-	3	-		-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	PO								PSO	PSO	PSO			
OUTCOMES	1	1 2 3 4 5 6 7 8 9 10 11 12								1	2	3			
CO 1	33.3	3.3							-	-	-				
CO 2	66.7	_	-	-	-	-	-	-	-	-	-	-	66.7	-	-

CO 3	66.7	60.0	70.0	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.7	40.0	70.0	-	-	-	-	-	-	100	-	60.0	66.7	-	-
CO 5	33.3	30.0	30.0	-	-	-	-	-	-	100	-	-	-	-	-
CO 6	66.7	60.0) –	-	-	-	-	-	-	60.0	-		66.7	-	-

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{0}$ - $0 \le C \le 5\%$ – No correlation

 $\boldsymbol{\mathcal{2}}$ - 40 % <C < 60% –Moderate

1-5 <C≤ 40% – Low/ Slight

3 - $60\% \le C < 100\%$ – Substantial /High

	PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-		-		-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	3	-	-	-	-	-	-	3	_		-	-	-
CO 5	1	1	1	-	-	-	-	-	-	3	-	-	-	-	-
CO 6	3	3	-	-	-	-	-	-	-	3	-		-	-	-
TOTAL	23	18	16	11	9	-	-	-	-	3	_	-	1.5	1.5	1.5
AVER- AGE	2.5	2.5	2.6	2.7	3.0	-	-	-	-	2.6	-	3	30	2.5	3.0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1,PO 2, PO 3, PO 4	SEE Exams	PO 1,PO 2, PO 3, PO 4	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	PO 4	Open Ended Experiments	-
Assignments	PO 1, PO 2, PO 3, PO 4				

XVII ASSESSMENT METHODOLOGY INDIRECT:

/	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Ex	xperts	

XVIII SYLLABUS:

MODULE I	SOFTWARE PROCESS AND PROJECT MANAGEMENT
	Software process and project management: Introduction to software engineering, software process, perspective and specialized process models; Software project management: Estimation: LOC and FP based estimation, COCOMO model; Project scheduling: Scheduling, earned value analysis, risk management.
MODULE II	REQUIREMENT ANALYSIS AND SPECIFICATION
	Requirement Analysis and Specification: Software requirements: Functional and nonfunctional, user requirements, system requirements, software requirements document; Requirement engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management; Classical analysis: Structured system analysis, petri nets, data dictionary.
MODULE III	SOFTWARE DESIGN
	Software Design: Design process: Design concepts, design model, design heuristic, architectural design, architectural styles, accessing alternative architectural designs, and architectural mapping using data flow. User interface design: Interface analysis, interface design; Component level design: Designing class based components, traditional components.
MODULE IV	TESTING AND IMPLEMENTATION
	Testing and Implementation: Software testing fundamentals: Internal and external views of testing, white box testing, basis path testing, control structure testing, black box testing, regression testing, unit testing, integration testing, validation testing, system testing and debugging; Software implementation techniques: Coding practices, refactoring.
MODULE V	PROJECT MANAGEMENT
	Project Management: Estimation: FP based, LOC based, make/buy decision; COCOMO II: Planning, project plan, planning process, RFP risk management, identification, projection; RMMM: Scheduling and tracking, relationship between people and effort, task set and network, scheduling; EVA: Process and project metrics.

TEXTBOOKS

- 1. Roger S. Pressman, "Software Engineering A Practitioner's Approach", McGraw-Hill International Edition, 7th Edition, 2010.
- 2. Ian Somerville, "Software Engineering", Pearson Education Asia, 9th Edition, 2011.

REFERENCE BOOKS:

- 1. Rajib Mall, "Fundamentals of Software Engineering", PHI Learning Private Limited, 3rd Edition, 2009.
- 2. Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 1st Edition, 2010.

WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

COURSE WEB PAGE:

1. lms.iare.ac.in

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Institutions adopting OBE try to bring changes to the curriculum by dynamically adapting to the requirements of the different stakeholders like Students, Parents, Industry Personnel and Recruiters. OBE is all about feedback and outcomes. In this we will discuss about the course outcomes and program outcomes and their attainment		
	CONTENT DELIVERY (THEORY)	901	
1-2	Introduction to Software Engineering	CO1	T2: 1.1-1.3
2-5	Software processes	CO2	T1: 2.2-2.3
6-9	Process models	CO4	T1: 2.1,2-3-2.6
11-12	Software Project Management	CO3	R2: 3.4-3.9
11-12	LOC and FP based estimation COCOMO model	CO5	R2: 4.1-4.3
12-13	Project Scheduling, EVA	CO5	T1: 27.1
14	Risk management	CO5	T1: 28.1
15-17	Software Requirements	CO4	T2: 4.1-4.3
18-19	Requirements Engineering process	CO6, 5	T1: 4.4-4.7
20-21	Classical Analysis	CO2	R1: 1.1-1.4
22-24	Design process	CO2	T1 8.1-8.4
25-28	Architectural design	CO3, CO1	T1:9.1, 9.3,9.4,9.6
29-33	User interface design	CO4	T1:11.3-11.4
34-37	Component level design	CO3	T1:10.2, 10.5
38-44	Software Testing fundamentals	CO2	T1:17.3,17.6- 17.8
45-47	Software implementation techniques	CO1	T1:10.1-1.3
48-51	Project management	CO1	T1: 26.2, 26.6.4,
52-55	COCOMO II	CO1, 2	T1:26.1-26.3 28.1- 28.7
56-59	Project Scheduling	CO3, 4	T1:27.1-27.6
60-62	Project Metrics	CO2	T1:25.1-25.6
	CASE STUDIES	•	

1	Develop a set of actions for the communication activity. Select one action and define a task set for it.	CO 6	T1:11.2.1
2	Developing software in which quality is "good enough"	CO 6	T1:11.2.2
3	Explain why systems developed as prototypes should not normally be used as production systems.	CO 6	T1:11.2.18
4	Software myth	CO 6	T1:11.2.25
5	layered technology of software engineering.	CO 6	T1:11.4.1
6	Software myth.	CO 6	T1:11.4.2
7	Evolutionary process models	CO 6	R2:7.5
8	Spiral model	CO 6	R2:7.5
4	concurrent development model (or) concurrent engineering model.	CO 6	R2:7.5
10	layers of software engineering.	CO 6	R2:7.5
11	COCOMO model.	CO 6	T1:11.4.1
12	component level design and deployment level design elements.	CO 6	T1:11.4.2
13	software architecture	CO 6	T1:11.5.1
14	system representation in architectural context	CO 6	T1:11.5.2
15	Coupling and Cohesion in designing class based components. s	CO 6	T2:7.5
	DISCUSSION OF DEFINITION AND TERMI	NOLOG	Y
1	Definations of Software Process and Poject Management	CO 1	R1:2.1-2.11
2	Definations of Requirement Analysis and Specification	CO 2,	R1:4.2-4.11
3	Definations of Software Design	CO 4	R2:5.6-5.9
4	Definations of Testing and Implementation	CO 5	R4:8.1-8.9
5	Definations of Project Management	CO 6	R2:12.1-12.16
	DISCUSSION OF QUESTION BANK	ζ	
1	Software Process and Poject Management	CO 1,	R1:2.1-2.11
2	Requirement Analysis and Specification	CO 2,	R1:4.2-4.11
		3	
3	Software Design	CO 4	R2:5.6-5.9
4	Testing and Implementation	CO 5	R4:8.1-8.9
5	Project Management	CO 6	R2:12.1-12.16

Signature of Course Coordinator Ms. M Geetha Yadav, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Course Title	CLOUD AI	CLOUD APPLICATION DEVELOPMENT LABORATORY				
Course Code	ACSB19					
Program	B.Tech	B.Tech				
Semester	VII	VII CSE				
Course Type	Core	Core				
Regulation	IARE - R18					
		Theory			Practical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	1.5	
Course Coordinator	Ms K Sreeveda, Assistant Professor					

I COURSE OVERVIEW:

This Laboratory course provides a foundation for which we can access the applications as utilities over the internet. It allows us to create, configure, and customize the business applications online. a cloud application, or cloud app, is a software program where cloud-based and local components work together. This model relies on remote servers for processing logic that is accessed through a web browser with a continual internet connection. Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AITB13	VI	Linux Programming Laboratory
B.Tech	ACSB09	IV	Database Management Systems Laboratory
B.Tech	ACSB02	IV	Programming for Problem Solving Laboratory

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Cloud Application Development Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab		Viva		Probing further
✓		\checkmark	Worksheets	✓	Questions	✓	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of of of the final assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day	Final internal lab	10tai Waiks
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

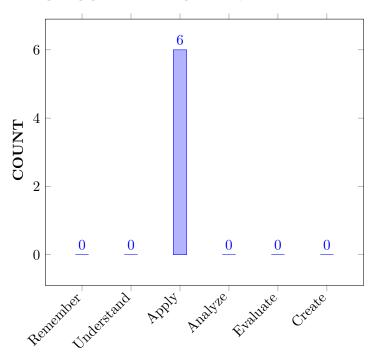
Objective	Analysis	Design	Conclusion	Viva	Total
-	_	-	-	-	-

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	To run virtual machines of different configuration.
II	Big data application using Hadoop under cloud environment.
III	The developing web applications in cloud framework.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of Virtualization and parallel processing on guest and	Apply
	host OS for performing different tasks by installing virtual machines.	
CO 2	Develop Mapper and Reducer on simple applications by using	Apply
	Apache Hadoop on single node setup installation.	
CO 3	Construct simple applications on services rendered by Amazon Web	Apply
	Service Cloud Service Provider.	
CO 4	Build simple applications on services rendered by Google Service	Apply
	Provider.	
CO 5	Utilize simple applications on services rendered by Microsoft Azure	Apply
	cloud Service Provider.	
CO 6	Develop web based App by using Yahoo! pipes.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lab Exercises,CIE,SEE
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Lab Exercises,CIE,SEE
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	3	Lab Exercises,CIE,SEE
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	Lab Exercises,CIE,SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Lab Exercises,CIE,SEE
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	Lab Exercises,CIE,SEE
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	1	Lab Exercises,CIE,SEE
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	1	Lab Exercises,CIE,SEE
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Lab Exercises,CIE,SEE

PO 10	Communication: Communicate effectively on	3	Lab Exer-
	complex engineering activities with the engineering		cises,CIE,SEE
	community and with society at large, such as, being		
	able to comprehend and write effective reports and		
	design documentation, make effective presentations,		
	and give and receive clear instructions.		
PO 12	Life-long learning: Recognize the need for, and	2	Lab Exer-
	have the preparation and ability to engage in		cises,CIE,SEE
	independent and life-long learning in the broadest		
	context of technological change.		

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed
			by
PSO 1	Professional Skills: The ability to understand,	1	Lab
	analyze and develop computer programs in the areas		Exercises
	related to algorithms, system software, multimedia,		
	web design, big data analytics, and networking for		
	efficient design of computer-based systems of varying		
	complexity.		
PSO 2	Problem-Solving Skills: The ability to apply	3	Lab
	standard practices and strategies in software project		Exercises
	development using open-ended programming		
	environments to deliver a quality product for		
	business success.		
PSO 3	Successful Career and Entrepreneurship:	3	Lab
	Practical experience in shipping real world software,		Exercises
	using industry standard tools and collaboration		
	techniques will equip to secure and succeed in first		
	job upon graduation in IT industry		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Apply scientific principles and methodologies, other engineering disciplines to Make use of virtualization and parallel processing on guest and host OS for performing different tasks by installing virtual machines.	2
	PO 2	Experimental design on usage of virtualization and parallel processing on guest and host OS for performing different tasks by installing of virtual machines in cloud computing environment.	8

	PO 3	Understand customer and user needs and the importance of considerations to run virtualization and parallel processing on guest and host OS for performing different tasks by installing virtual machines.	7
	PO 4	Use research-based knowledge and research methods including design of experiments by installing of virtual machines in cloud computing environment.	11
	PO 5	Create, select, and apply appropriate techniques, resources to Make use of virtualization and parallel processing on guest and host OS for performing different tasks by installing virtual machines.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development to run virtualization and parallel processing on guest and host OS for performing different tasks by installing virtual machines.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different tasks by installing virtual machines.	1
	PO 8	Apply professional ethics and responsibilities and norms for performing different tasks by virtual machines in cloud computing environment.	1
	PO 10	Demonstrate the ability for communicating effectively in writing, speaking style subject matter in virtualization and parallel computing.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of virtual machines in cloud computing environment.	3
	PSO 1	Understand, design and analyze computer programs in the areas related to virtualization in cloud computing environment.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in cloud computing environment.	1
	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in virtual machines in cloud computing environment.	1
CO 2	PO 1	Apply scientific principles and methodologies, other engineering disciplines to Mapper and Reducer on simple applications by using Apache Hadoop on single node setup installation.	3
	PO 3	Use creativity to establish innovative solution to develop Mapper and Reducer on simple applications by using Apache Hadoop.	7
	PO 4	Understanding of appropriate codes of practice solution to develop Mapper and Reducer on simple applications by using Apache Hadoop.	11
	PO 5	Create, select, and apply appropriate techniques, resources to develop Mapper and Reducer on simple applications by using Apache Hadoop.	1

Understanding of the requirement for engineering activities to promote sustainable development on simple applications by using Apache Hadoop.	1
Demonstrate the knowledge of, and need for sustainable development for performing different tasks by using Apache Hadoop on single node setup installation.	1
Apply professional ethics and responsibilities and norms by using Apache Hadoop on single node setup installation.	1
Effective teamwork and project management on simple applications by using Apache Hadoop.	6
Demonstrate the ability to communicate effectively in writing, speaking style subject matter in Mapper and Reducer on simple applications by using Apache Hadoop.	4
Keeping current in CSE and advanced engineering concepts of Mapper and Reducer on simple applications by using Apache Hadoop.	3
Understand, design and analyze computer programs in the areas related to Mapper and Reducer on simple applications by using Apache Hadoop.	2
Focus on improving software reliability, network security and information retrieval systems machines in Mapper and Reducer on simple applications by using Apache Hadoop.	1
Make use of modern computer tools for creating innovative paths by using Apache Hadoop.	1
Apply scientific principles and methodologies, other engineering disciplines to construct simple applications on services rendered by Amazon Web Service Cloud Service Provider.	2
Experimental design on usage of Amazon Web Service Cloud Service Provider in cloud computing environment.	8
Use creativity to establish innovative solution to develop simple applications on services rendered by Amazon Web Service Cloud Service Provider.	7
Understanding of appropriate codes of practice solution to develop simple applications on services rendered by Amazon Web Service Cloud Service Provider.	11
Create, select, and apply appropriate techniques, resources to develop simple applications on services rendered by Amazon Web Service Cloud Service Provider.	1
Understanding of the requirement for engineering activities to promote sustainable development on services rendered by Amazon Web Service Cloud Service Provider.	1
Demonstrate the knowledge of, and need for sustainable development for performing different t services rendered by Amazon Web Service Cloud Service Provider.	1
Apply professional ethics and responsibilities and norms different services rendered by Amazon Web Service Cloud Service Provider.	1
	to promote sustainable development on simple applications by using Apache Hadoop. Demonstrate the knowledge of, and need for sustainable development for performing different tasks by using Apache Hadoop on single node setup installation. Apply professional ethics and responsibilities and norms by using Apache Hadoop on single node setup installation. Effective teamwork and project management on simple applications by using Apache Hadoop. Demonstrate the ability to communicate effectively in writing, speaking style subject matter in Mapper and Reducer on simple applications by using Apache Hadoop. Keeping current in CSE and advanced engineering concepts of Mapper and Reducer on simple applications by using Apache Hadoop. Understand, design and analyze computer programs in the areas related to Mapper and Reducer on simple applications by using Apache Hadoop. Focus on improving software reliability, network security and information retrieval systems machines in Mapper and Reducer on simple applications by using Apache Hadoop. Make use of modern computer tools for creating innovative paths by using Apache Hadoop. Apply scientific principles and methodologies, other engineering disciplines to construct simple applications on services rendered by Amazon Web Service Cloud Service Provider. Experimental design on usage of Amazon Web Service Cloud Service Provider in cloud computing environment. Use creativity to establish innovative solution to develop simple applications on services rendered by Amazon Web Service Cloud Service Provider. Understanding of appropriate codes of practice solution to develop simple applications on services rendered by Amazon Web Service Cloud Service Provider. Understanding of the requirement for engineering activities to promote sustainable development on services rendered by Amazon Web Service Cloud Service Provider. Demonstrate the knowledge of, and need for sustainable development for performing different t services rendered by Amazon Web Service Cloud Service Provider.

	PO 9	Effective teamwork and project management services rendered by Amazon Web Service Cloud Service Provider.	6
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in services rendered by Amazon Web Service Cloud Service Provider.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of services rendered by Amazon Web Service Cloud Service Provider.	4
	PSO 1	Understand, design and analyze computer programs in the areas related to services rendered by Amazon Web Service Cloud Service Provider.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in Amazon Web Service Cloud Service Provider.	2
	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in Amazon Web Service Cloud Service Provider.	2
CO 4	PO 1	Apply scientific principles and methodologies, other engineering disciplines to construct simple applications on services rendered by Google Cloud Service Provider.	2
	PO 2	Experimental design on usage of Google Cloud Service Provider in cloud computing environment.	8
	PO 3	Use creativity to establish innovative solution to develop simple applications on services rendered by Google Cloud Service Provider.	7
	PO 4	Understanding of appropriate codes of practice solution to develop simple applications on services rendered by Google Cloud Service Provider.	11
	PO 5	Create, select, and apply appropriate techniques, resources to develop simple applications on services rendered by Google Cloud Service Provider.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on services rendered by Google Cloud Service Provider.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different t services rendered by Google Cloud Service Provider.	1
	PO 8	Apply professional ethics and responsibilities and norms different services rendered by Google Cloud Service Provider.	1
	PO 9	Effective teamwork and project management services rendered by Google Cloud Service Provider.	6
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in services rendered by Google Cloud Service Provider.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of services rendered by Google Cloud Service Provider.	4

	PSO 1	Understand, design and analyze computer programs in the areas related to services rendered by Google Cloud Service Provider.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in Google Cloud Service Provider.	2
	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in Google Cloud Service Provider.	2
CO 5	PO 1	Apply scientific principles and methodologies, other engineering disciplines to construct simple applications on services rendered by Microsoft Azure Cloud Service Provider.	2
	PO 2	Experimental design on usage of Microsoft Azure Cloud Service Provider in cloud computing environment.	8
	PO 3	Use creativity to establish innovative solution to develop simple applications on services rendered by Microsoft Azure Cloud Service Provider.	7
	PO 4	Understanding of appropriate codes of practice solution to develop simple applications on services rendered by Microsoft Azure Cloud Service Provider.	11
	PO 5	Create, select, and apply appropriate techniques, resources to develop simple applications on services rendered by Microsoft Azure Cloud Service Provider.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on services rendered by Microsoft Azure Cloud Service Provider.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different t services rendered by Microsoft Azure Cloud Service Provider.	1
	PO 8	Apply professional ethics and responsibilities and norms different services rendered by Microsoft Azure Cloud Service Provider.	1
	PO 9	Effective teamwork and project management services rendered by Microsoft Azure Cloud Service Provider.	6
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in services rendered by Microsoft Azure Cloud Service Provider.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of services rendered by Microsoft Azure Cloud Service Provider.	4
	PSO 1	Understand, design and analyze computer programs in the areas related to services rendered by Microsoft Azure Cloud Service Provider.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in Microsoft Azure Cloud Service Provider.	2

	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in Microsoft Azure Cloud Service Provider.	2
CO 6	PO 1	Apply scientific principles and methodologies, other engineering disciplines to develop web based App by using Yahoo! pipes.	2
	PO 2	Experimental design on usage of web based App by using Yahoo! pipes in cloud computing environment.	8
	PO 3	Use creativity to establish innovative solution to develop web based App by using Yahoo! pipes.	7
	PO 4	Understanding of appropriate codes of practice solution to develop web based App by using Yahoo! pipes.	11
	PO 5	Create, select, and apply appropriate techniques, resources to develop web based App by using Yahoo! pipes.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on web based App by using Yahoo! pipes.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different web based App by using Yahoo! pipes.	1
	PO 8	Apply professional ethics and responsibilities and norms different web based App by using Yahoo! pipes.	1
	PO 9	Effective teamwork and project management web based App by using Yahoo! pipes.	6
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in web based App by using Yahoo! pipes.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of web based App by using Yahoo! pipes.	4
	PSO 1	Understand, design and analyze computer programs in the areas related to web based App by using Yahoo! pipes.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in web based App by using Yahoo! pipes.	2
	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in web based App by using Yahoo! pipes.	2

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	1	1	1	-	3	-	1	1	2	2
CO 2	3	-	3	3	3	1	1	1	2	3	-	1	1	2	2
CO 3	3	3	3	3	3	1	1	1	2	3	-	2	1	3	3
CO 4	3	3	3	3	3	1	1	1	2	3	-	2	1	3	3
CO 5	3	3	3	3	3	1	1	1	2	3	-	2	1	3	3
CO 6	3	3	3	3	3	1	1	1	2	3	-	2	1	3	3

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	-
Laboratory Practices	√	Student Viva	√	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIV SYLLABUS:

WEEK I	VIRTUALIZATION
	Install Oracle Virtual box and create two VMs on your laptop.
WEEK II	VIRTUALIZATION
	Install Turbo C in guest OS and execute C program.
WEEK III	VIRTUALIZATION
	Test ping command to test the communication between the guest OS and Host OS.
WEEK IV	HADOOP
	Install Hadoop single node setup.
WEEK V	HADOOP
	Develop a simple hadoop application called Word Count. It counts the number of occurrences of each word in a given input set.
WEEK VI	HADOOP
	Develop hadoop application to count no of characters, no of words and each character frequency.

WEEK VII	HADOOP
	Develop hadoop application to process given data and produce results such as finding the year of maximum usage, year of minimum usage.
WEEK VIII	HADOOP
	Develop hadoop application to process given data and produce results such as how many female and male students in both schools the results should be in following format.
	GP-F #number GP-M
	#numbers MS-F
	#number
	MS-M #number
WEEK IX	CLOUD PROGRAMMING
	Establish an AWS account. Use the AWS Management Console to launch an EC2 instance and connect to it.
WEEK X	CLOUD PROGRAMMING
	Design a protocol and use Simple Queue Service(SQS) to implement the barrier synchronization after the first phase.
WEEK XI	CLOUD PROGRAMMING
	Use the Zookeeper to implement the coordination model in Problem 10.
WEEK XII	CLOUD PROGRAMMING
	Develop a Hello World application using Google App Engine
WEEK XIII	CLOUD PROGRAMMING
	Develop a Guestbook Application using Google App Engine.
WEEK XIV	WINDOWS AZURE
	Develop a Windows Azure Hello World application using.
WEEK XV	PIPES
	Create a Mashup using Yahoo! Pipes.

TEXT BOOKS

- 1. Dan Marinescu, —Cloud Computing: Theory and Practice ||, M K Publishers, 1st Edition, 2013.
- 2. Kai Hwang, Jack Dongarra, Geoffrey Foxr, —Distributed and Cloud Computing, FromParallel Processing to the Internet of Things ||, M K Publishers, 1st Edition, 2013.

REFERENCE BOOKS

- 1. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, —Cloud Computing: A Practical Approach ||, McGraw Hill,, 1st Edition, 2009.
- 2. Arshdeep Bahga, Vijay Madisetti, —Distributed and Cloud Computing, Cloud computing A Hands on Approach ||, Universities Publications, 1st Edition, 2013.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	m CO's	Reference
1	Install Virtual Machine on Guest and Host OS	CO1	T1:5.4
2	Single node set up Installation	CO2	T1:5.7
3	Simple applications on services rendered by Amazon Web Service Cloud Service Provider.	CO3	T1:11.1
4	Simple applications on services rendered by Google Service Provider.	CO4	T1:3.2
5	Simple applications on services rendered by Microsoft Azure cloud Service Provider.	CO5	T1:3.3
6	Web based App by using Yahoo! pipes	CO6	R2:2.8

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Install Hadoop in semi-distributed environment.
2	ERP solutions using Google Cloud Service Provider.
3	CRMsolutions using Amazon Web Service Provider.

Signature of Course Coordinator Ms K Sreeveda, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	СОМР	COMPUTER SCIENCE AND ENGINEERING			
Course Title	SOFT COMPUTING				
Course Code	ACSB30	ACSB30			
Program	B.Tech				
Semester	VIII				
Course Type	Elective				
Regulation	R-18				
		Theory		Pract	ical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	K.Aswini,Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
В ТЕСН	AHSB12	П	Probability and Statistic
в тесн	AITB05	IV	Design and Analysis of Algorithms

II COURSE OVERVIEW:

Soft computing course provides students with fundamental theory and applications of heuristics, meta heuristics and evolutionary computations. It is used for approximate calculations to provide imprecise but useable solutions to complex problems. This includes intelligence systems, artificial neural network models, fuzzy logic and its inference system, and neuro-fuzzy system. The applications of Soft Computing across different industries such as kinematics, automobile, image processing and data compression, Decision Support System, Power System Analysis and investment and trading.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Soft Computing	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Power Point Presentations	х	Chalk & Talk	х	Assignments	х	МООС
/	Open Ended Experiments	x	Seminars	x	Mini Project	х	Videos
х	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
%	Remember
%	Understand
%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Theory		Total Marks
Type of Assessment	CIE Exam	Quiz	AAT	Total Ivial KS
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

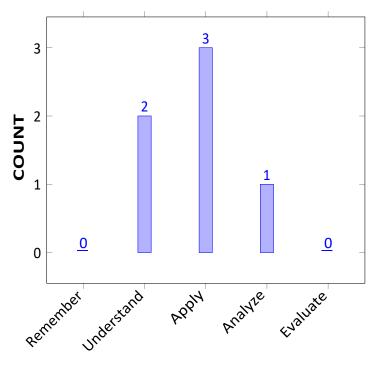
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The basics of intelligence techniques and methodologies of soft computing that differs from conventional artificial computations.
П	The design and analysis of problem solving using concepts of neural networks, neuro-modeling, several neural networks paradigms and its applications.
III	The concepts of fuzzy logic and inference systems, neuro-fuzzy system, and applications to handle uncertainity in engineering problems.
IV	The soft computing techniques used in different applications for optimization.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate the constituents and models of artificial neural network systems for classification of soft computing problems.	Understand
CO 2	Compare the importance of auto and hetero associative memories for distinct cases of neural network systems.	Understand
CO 3	Make use of fuzzy logic and fuzzy inference systems for modeling and decision making of soft computing systems.	Apply
CO 4	Choose the appropriate ANFIS/CANFIS hybrid learning algorithms to solve applications for regression.	Apply
CO 5	Build a fuzzy system for information retrieval and pattern recognition applications.	Apply
CO 6	Categorize the soft computing and intelligent based learning approaches for solving the scientific and engineering problems.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	SEE/CIE/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	SEE/CIE/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE/CIE/AAT
PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	SEE/CIE/AAT
PO 12	Life - Long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3	Short Term Course

3 = High; **2** = Medium; **1** = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	SEE/CIE /AAT /Seminar
PSO2	Focus on improving software reliability, network security / information retrieval systems.	2	SEE/CIE /AAT /Semi- nar/Project

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies	2	SEE/CIE /AAT /Seminar /Project

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	/	~	/	-	-	-	-	-	-	/	-	\	-	\	\
CO 2	✓	✓	-	-	-	-	-	-	-	✓	-	\	-	✓	\
CO 3	✓	✓	✓	-	-	-	-	-	-	✓	-	✓	-	✓	✓
CO 4	✓	✓	✓	-	-	-	-	-	-	✓	-	✓	~	-	✓
CO 5	✓	-	✓	-	-	-	-	-	-	✓	-	~	✓	✓	✓
CO 6	✓	✓	✓	-	-	-	-	-	-	✓	-	~	✓	✓	✓

XII JUSTIFICATIONS FOR CO - PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Demonstrate the constituents and models of artificial neural network systems by using scientific, mathematical and own engineering principles for classification of soft computing problems.	3
	PO2	Identify, formulate, data collection, translation, design and develop solution for the constituents and models of artificial neural network systems of soft computing problems.	7
	PO10	Understand customer and user needs of the requirement for the engineering activities to develop solution of artificial neural network systems for classification of soft computing problems	2
		Communicate effectively on engineering activities with engineering community orally for constituents and models of artificial neural network systems for classification of soft computing problems	2
	PO12	Keeping current and advanced engineering concepts with on-going learning for continued personal development to model artificial neural network systems for classification of soft computing problems	3
	PSO2	Focus on to design and develop of information retrieval systems to model artificial neural network systems for classification of soft computing problems.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO3	Make use of technical skills and knowledge on advanced frame works to model artificial neural network systems for classification of soft computing problems	1
CO 2	PO 1	Illustrate the importance of auto and hetero associative memories for distinct cases of neural network systems by using scientific, mathematical and own engineering principles.	3
	PO 2	Identify, formulate, data collection, translation, design and develop solution to outline the importance of auto and hetero associative memories for distinct cases of neural network systems.	6
	PO10	Communicate effectively on engineering activities with engineering community orally to interpret the importance of auto and hetero associative memories for distinct cases of neural network systems.	2
	PO12	Keeping current and advanced engineering concepts on the importance of auto and hetero associative memories for distinct cases of neural network systems with on-going learning for continued personal development	3
	PSO2	Focus on design and develop of information retrieval systems to relate the importance of auto and hetero associative memories for distinct cases of neural network systems.	1
	PSO3	Make use of technical skills and knowledge on advanced frame works to summarize the importance of auto and hetero associative memories for distinct cases of neural network systems.	1
CO 3	PO 1	Make use of fuzzy logic and fuzzy inference systems for modeling and decision making of soft computing by using scientific, mathematical and own engineering principles.	3
	PO 2	Identify, formulate, data collection, translation, design and develop solution for modeling and decision making of soft computing systems using fuzzy logic and fuzzy inference systems.	8
	PO 3	Define and identify problem constraints to understand customer and user needs of the requirement for the engineering activities for modeling and decision making of soft computing systems using fuzzy logic and fuzzy inference systems.	6
	PO 10	Communicate effectively on engineering activities with engineering community orally for modeling and decision making of soft computing systems using fuzzy logic and fuzzy inference systems.	2
	PO12	Keeping current and advanced engineering concepts for modeling and decision making of soft computing systems with on-going learning for continued personal development using fuzzy logic and fuzzy inference systems.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO2	Focus on design and develop of information retrieval systems for modeling and decision making of soft computing systems using fuzzy logic and fuzzy inference systems.	1
	PS O3	Make use of technical skills and knowledge on advanced frame works for modeling and decision making of soft computing systems using fuzzy logic and fuzzy inference systems.	1
CO 4	PO 1	Choose the appropriate ANFIS/CANFIS hybrid learning algorithms to solve applications for regression by using scientific, mathematical and own engineering principles.	3
	PO 2	Identify, formulate, data collection, translation, design and develop solution to solve applications for regression by using appropriate ANFIS/CANFIS hybrid learning algorithms.	7
	PO 3	Define and identify problem constraints to understand customer and user needs of the requirement for the engineering activities to solve applications for regression by using appropriate ANFIS/CANFIS hybrid learning algorithms.	4
	PO 10	Communicate effectively on engineering activities with engineering community orally to solve applications for regression by using appropriate ANFIS/CANFIS hybrid learning algorithms.	2
	PO 12	Keeping current and advanced engineering concepts with on-going learning for continued personal development the appropriate ANFIS/CANFIS hybrid learning algorithms to solve applications for regression.	3
	PSO 1	Understand, design and analyze computer programs in the areas related to soft computing to solve applications for regression by using appropriate ANFIS/CANFIS hybrid learning algorithms.	6
	PSO 3	Make use of technical skills and knowledge on advanced frame works to solve applications for regression by using appropriate ANFIS/CANFIS hybrid learning algorithms.	1
CO 5	PO 1	Construct fuzzy system for information retrieval and pattern recognition applications by using scientific, mathematical and own engineering principles.	3
	PO 3	Define and identify problem constraints to understand customer and user needs of the requirement for the engineering activities of fuzzy system for information retrieval and pattern recognition applications.	6
	PO 10	Communicate effectively on engineering activities with engineering community orally to design fuzzy system for information retrieval and pattern recognition applications.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	Keeping current and advanced engineering concepts to design fuzzy system for information retrieval and pattern recognition applications with on-going learning for continued personal development.	3
	PSO 1	Understand, design and analyze computer programs in the areas related to soft computing fuzzy system for information retrieval and pattern recognition applications.	6
	PSO 2	Focus on design and develop of information retrieval and pattern recognition applications using fuzzy systems.	1
	PSO 3	Make use of technical skills and knowledge on advanced frame works to design fuzzy system for information retrieval and pattern recognition applications.	1
CO 6	PO 1	Categorize the soft computing and intelligent based learning approaches for solving the scientific and engineering problems by using scientific, mathematical and own engineering principles.	3
	PO 2	Identify, formulate, data collection, translation, design and develop solution for solving the scientific and engineering problems using soft computing and intelligent based learning approaches.	6
	PO 3	Define and identify problem constraints to understand customer and user needs of the requirement for the engineering activities for solving the scientific and engineering problems using soft computing and intelligent based learning approaches.	4
	PO 10	Communicate effectively on engineering activities with engineering community orally for solving the scientific and engineering problems using soft computing and intelligent based learning approaches.	2
	PO 12	Keeping current and advanced engineering concepts for solving the scientific and engineering problems using soft computing and intelligent based learning approaches with on-going learning for continued personal development.	3
	PSO 1	Understand, design and analyze computer programs in the areas related to soft computing for solving the scientific and engineering problems using soft computing and intelligent based learning approaches.	6
	PSO 2	Focus on design and develop of information retrieval systems for solving the scientific and engineering problems using soft computing and intelligent based learning approaches.	1
	PSO 3	Make use of technical skills and knowledge on advanced frame works for solving the scientific and engineering problems using soft computing and intelligent based learning approaches.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

	PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	7	2	-	-	-	-	-	-	2	-	3	-	1	1
CO 2	3	6	-	-	-	-	-	-	-	2	-	3	-	1	1
CO 3	3	8	6	-	-	-	-	-	-	2	-	3	-	1	1
CO 4	3	7	4	-	-	-	-	-	-	2	-	3	6	-	1
CO 5	3	-	6	-	-	-	-	-	-	2	-	3	6	1	1
CO 6	3	6	4	-	-	-	-	-	-	2	-	3	6	1	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

	PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100.	70.0	20.0	-	-	-	-	-	-	40.0	-	37.5	-	50.0	50.0
CO 2	100.	60.0	ı	ı	-	-	-	ı	-	40.0	ı	37.5	-	50.0	50.0
CO 3	100.	80.0	60.0	-	-	-	-	-	-	40.0	-	37.5	-	50.0	50.0
CO 4	100.	70.0	40.0	-	-	-	-	-	-	40.0	-	37.5	100.0	-	50.0
CO 5	100.	-	60.0	-	-	-	-	-	-	40.0	ı	37.5	100.0	50.0	50.0
CO 6	100.	60.0	40.0	-	-	-	-	-	-	40.0	-	37.5	100.0	50.0	50.0

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $0 - 0 \le C \le 5\%$ – No correlation

1 -5 < C≤ 40% – Low/ Slight

2 - 40 % <C < 60% –Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

	PROGRAM OUTCOMES												PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	-	-	-	=	-	-	2	-	3	-	2	2
CO 2	3	3	-	-	-	-	-	-	-	2	-	3	-	2	2
CO 3	3	3	3	-	-	-	-	-	-	2	-	3	-	2	2
CO 4	3	3	2	-	-	-	-	-	-	2	-	3	3	2	2
CO 5	3	-	3	-	-	-	-	-	-	2	-	3	3	2	2
CO 6	3	3	3	-	-	-	-	-	-	2	-	3	3	2	2
TOTAL	18	15	12	-	-	-	-	-	-	12	-	6	9	10	12
AVER- AGE	3.0	3.0	2.4	-	-	-	-	-	-	2.0	-	1.0	3.0	2.0	2.0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	PO 1, PO	SEE Exams	PO 1, PO	Assignments	-
	2,PO 3,PO		2,PO 3,PO		
	12		12,PSO		
			1,PSO		
			2,PSO 3		
Seminars	PSO 1,PSO	Laboratory	-	Student Viva	-
	2,PSO 3	Practices			
Certification	PO12	Term Paper	-	Mini Project	-

XVII ASSESSMENT METHODOLOGY-INDIRECT:

~	/	Early Semester Feedback	✓	End Semester OBE Feedback
---	---	-------------------------	----------	---------------------------

XVIII SYLLABUS:

_	
MODULE I	INTRODUCTION TO SOFT COMPUTING
	Characteristic behavior of intelligent systems, knowledge based systems, knowledge representation and processing, soft computing characteristics; Constitutes of soft computing: Fuzzy logic and computing, neural computing, evolutionary computing, rough sets, probabilistic reasoning and machine learning
MODULE II	NEURAL NETWORKS
	Fundamental concepts and models of artificial neural systems: Biological neurons and their artificial models, models of artificial neural networks, neural processing, learning and adaptation, neural network learning rules and comparison; Linearly and non-linearly separable pattern classification; Perception convergence theorem; Multi-layer feed forward network: Delta learning rule for Multi perceptron layer, generalized delta learning rule, feed forward recall and error back propagation training, learning factors, character recognition application; Associative memory: Hopfield network, bidirectional associative memory, radial basis function networks.
MODULE III	FUZZY LOGIC AND FUZZY SYSTEMS
	Evolution of fuzzy logic, fuzzy sets, fuzzy logic operations, fuzzy relations, fuzzy arithmetic and fuzzy measures, fuzzy rules and reasoning. Fuzzy inference systems: mamdani fuzzy model, sugeno fuzzy model, tsukamoto fuzzy model, fuzzy modeling and decision making, neuro-fuzzy modeling, input space partitioning and fuzzy modeling.
MODULE IV	HYBRID SYSTEMS
	ANFIS (Adaptive neuro-fuzzy inference systems): Introduction, ANFIS Architecture, and hybrid learning algorithm; Advantages and limitations of ANFIS; Application of ANFIS/CANFIS for regression.
MODULE V	APPLICATIONS OF SOFT COMPUTING TECHNIQUES

Applications of fuzzy in pattern recognition: Printed character recognition, inverse kinematics problems, automobile fuel efficiency prediction, soft computing for color recipe prediction, applications of evolutionary computing in image processing and computer vision, soft computing in mobile ad-hoc networks, soft computing in information retrieval and semantic web, soft computing in software engineering.

TEXTBOOKS

- 1. J.S.R.Jang, C.T. Sun, E.Mizutani, Neuro-Fuzzy and Soft Computing, PHI, Pearson Education, 1st Edition, 2004.
- 2. Timothy J. Ross, Fuzzy Logic with Engineering Applications, Wiley India, 3rd Edition, 2004.
- 3. S. N. Sivanandam, S. N. Deepa, Principles of Soft Computing, Wiley India, 2nd Edition, 2005.
- 4. Laurene Fausett, —Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Pearson Education, Inc, 1st Edition, 2008.

REFERENCE BOOKS:

- 1. Hagan T. Martin, H. B. Demuth, Mark Beale, Neural Network Design, Thomson Learning. 1st Edition, 2004.
- 2. Satish Kumar, Neural Networks A Classroom Approach, Tata McGraw-Hill, 2nd Edition, 2005.
- 3. Kishan Mehrotra, Chilukuri. K. Mohan, Sanjay Ranka, Elements of Artificial Neural Networks, Penram International Publishing India, 2nd Edition, 2004.
- 4. H. J. Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers Ltd, 1st Edition, 2004.
- 5. 5. John Hertz, Anders Krogh, Richard Palmer Introduction to The Theory of Neural Computation, Addison Wesley Publishing Company, 1st Edition, 1991.

WEB REFERENCES:

- 1. http://www.sctie.iitkgp.ernet.in/
- 2. http://www.rkala.in/softcomputingvideos.php
- 3. http://www.sharbani.org/home2/soft-computing
- 4. http://www.myreaders.info/html/soft_computing.html

COURSE WEB PAGE:

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1			
OBE DISCUSSION						

1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program	-	-
	Outcomes (PO) and CO - PO Mapping		
	CONTENT DELIVERY (THEORY)	_	
1	Characteristic behavior of intelligent systems, knowledge	CO1	T2:
	based systems		1.1-1.8,
	Lucus de la condessata	60.1	2.2
2	knowledge based systems	CO 1	T2: 1.1-1.8,
			2.2
3	knowledge representation and processing, soft computing	CO 1	T2:
	characteristics.		1.1-1.8,
			2.2
4	Constitutes of soft computing: Fuzzy logic computing.	CO 1	T2:1.10
5	neural computing computing.	CO 1	T2:1.10
6	Evolutionary computing, rough sets, probabilistic reasoning and machine learning. computing.	CO 1	T2:1.10
7	, probabilistic reasoning and machine learning. computing.	CO 1	T2:1.10
8	Fundamental concepts and models of artificial neural systems	CO 1	T2:2.7
9	Biological neurons and their artificial models	CO 1	T2:2.7
10	models of artificial neural networks, neural processing, learning and adaptation.	CO 1	T2:2.7
11	neural network learning rules and comparison	CO 2	T2:2.8
12	Linearly and non-linearly separable pattern classification	CO 2	T2:2.8
13	Perception convergence theorem; Multi-layer feed forward	CO 2	T2:2.8
	network		
14	Delta learning rule for Multi perceptron layer, generalized delta learning rule.	CO 2	T2:2.8
15	Feed forward recall and error back propagation training, learning factors character recognition application; Associative memory: Hopfield network, bidirectional associative memory, radial basis function networks.	CO 2	T2:2.8
16	, learning factors character recognition application; Associative memory: Hopfield network, bidirectional associative memory, radial basis function networks.	CO 2	T2:2.8
17	character recognition application; Associative memory	CO 2	T2:2.8
18	Hopfield network, bidirectional associative memory, radial basis function networks.	CO 2	T2:2.8
19	Evolution of fuzzy logic, fuzzy sets, fuzzy logic operationsfuzzy relations, fuzzy arithmetic and fuzzy ,measures, fuzzy rules and reasoning.	CO 3	T2: 3.1-3.2
20	fuzzy logic operationsfuzzy relations	CO 3	T2: 3.1-3.2
21	fuzzy arithmetic and fuzzy ,measures	CO 3	T2: 3.1-3.2
22	fuzzy rules and reasoning.	CO 3	T2: 3.1-3.2
22	ruzzy ruies and reasoning.	CO 3	

23	Fuzzy inference systems mamdani fuzzy model	CO 3	T2: 3.3-3.7			
24	sugeno fuzzy model, tsukamo to fuzzy model	CO 3	T2:			
	,		3.3-3.7			
25	fuzzy modeling and decision making.	CO 3	T2: 3.3-3.7			
26	neuro-fuzzy modeling, input space partitioning and fuzzy modeling.	CO 3	T2: 3.3-3.7			
27	Adaptive neuro-fuzzy inference systems (ANFIS)	CO 8	T2:4.2,7.1- 7.4,			
			R3:1.1- 1.4			
28	Introduction, ANFIS Architecture, and hybrid learning algorithm.	CO 8	T2:4.2,7.1- 7.4, R3:1.1- 1.4			
29	Advantages and limitations of ANFIS	CO 4	T2: 7.6 7.7			
30	Application of ANFIS/CANFIS for regression	CO 4	T3:1.1			
31	Applications of fuzzy in pattern recognition	CO 5	T3:1.1- 1.2 ,R3:1.5-			
32	Printed character recognition, inverse kinematics problems	CO 5	1.7 T3:1.1- 1.2 ,R3:1.5- 1.7			
33	automobile fuel efficiency prediction	CO 5	T3:1.1- 1.2 ,R3:1.5- 1.7			
35	soft computing for color recipe prediction.	CO 5	T3:1.1- 1.2 ,R3:1.5- 1.7			
36	Applications of evolutionary computing in image processing and computer vision	CO 6	T3:1.3 ,R3:1.7,7.4			
37	soft computing in mobile ad-hoc networks	CO 6	T3:1.3 ,R3:1.7,7.4			
38	soft computing in information retrieval	CO 6	T3:1.3 ,R3:1.7,7.4			
39	semantic web, soft computing in software engineering.	CO 6	T3:1.3 ,R3:1.7,7.4			
40	soft computing in software engineering.	CO 6	T3:1.3 ,R3:1.7,7.4			
	PROBLEM SOLVING/ CASE STUDIES					
1	What are the characteristics of soft computing and explain the uncertainity in handling .	CO 1	T2: 1.1-1.8,			
			2.2			

example? 3 Translate the output of u from the network with input x=[-1, 2]^T W=[-1,2] with activation function in hidden layer as: a) Unipolar activation function b) Bipolar sigmoidal function 4 Solve the back propagation algorithm for 2-3-1 neural network with the activation function. 1 (1-x-x) 5 Solve the outputs of u from the perception activation function for the following input vectors x and weight vectors w: a) x=[-1, 0, 2]^T w=[-1, -3, 2, -5]^T 6 Find the output of u using activation function as defined for the 3-3 neural network with given input x=[3, 0, 1] and 3 -1 1 (2 w = 1 -2 -2 · U = 1 / 0, U < 0 (2	
Translate the output of u from the network with input x=[-1, 2]^T W=[-1,2] with activation function in hidden layer as: a) Unipolar activation function b) Bipolar sigmoidal function 4 Solve the back propagation algorithm for 2-3-1 neural network with the activation function. 5 Solve the outputs of u from the perception activation function for the following input vectors x and weight vectors w: a) x=[-1, 0, 2]^T w=[-1, -3, 2, -5]^T 6 Find the output of u using activation function as defined for the 3-3 neural network with given input x=[3, 0, 1] and 3 -1 1	T2: l.1-1.8, 2.2
b) Bipolar sigmoidal function 4 Solve the back propagation algorithm for 2-3-1 neural network with the activation function. (1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	2:1.10
4 Solve the back propagation algorithm for 2-3-1 neural network with the activation function: 5 Solve the outputs of u from the perception activation function for the following input vectors x and weight vectors w: a) x=[-1, 0, 2]^T w=[-1, -3, 2, -5]^T 6 Find the output of u using activation function as defined for the 3-3 neural network with given input x=[3, 0, 1] and 3 -1 1	
network with the activation function. (1+e-w) 5 Solve the outputs of u from the perception activation function for the following input vectors x and weight vectors w: a) x=[-1, 0, 2]^T w=[-1, -3, 2, -5]^T 6 Find the output of u using activation function as defined for the 3-3 neural network with given input x=[3, 0, 1] and	
function for the following input vectors x and weight vectors w: a) x=[-1, 0, 2]^T w=[-1, -3, 2, -5]^T 6 Find the output of u using activation function as defined for the 3-3 neural network with given input x=[3, 0, 1] and 3 -1 1 W = 1 -2 -2 · U = 1, U > 0 -1 0 -3 7 Explain the extension principle and minimax ruzzy relations in problem solving. 8 List the components of fuzzy logic system. Explain each component in detail. 9 Draw the typical membership function to predict the values using fuzzy relations. 10 Construct an ANFIS that is equivalent to a two-input two-rule mamdani fuzzy model with min max composition and centroid defuzzification. Explain the function user use to approximate the centroid defuzzification. 11 Construct an ANFIS that is equivalent to a two-input two-rule mamdani fuzzy model with sum-product composition and centroid defuzzification. 12 Demonstrate the different premise and consequent parameters are there in ANFIS architecture (imagine generalized bell function is used for all the membership functions). 13 Explain in detail about indirect kinematics of a two joint planar robot arm. 14 Explain the logic of applying ANFIS to MPG prediction. CO 2 To 2 To 3 To 4 To 4 To 4 To 4 To 4 To 5 To 7 T	2:1.10
the 3-3 neural network with given input x=[3, 0, 1] and 3	T2:2.8
1	T2:2.8
in problem solving. 8 List the components of fuzzy logic system. Explain each component in detail. 9 Draw the typical membership function to predict the values using fuzzy relations. 10 Construct an ANFIS that is equivalent to a two-input two-rule mamdani fuzzy model with min max composition and centroid defuzzification. Explain the function user use to approximate the centroid defuzzification. 11 Construct an ANFIS that is equivalent to a two-input two-rule mamdani fuzzy model with sum-product composition and centroid defuzzification. 12 Demonstrate the different premise and consequent parameters are there in ANFIS architecture (imagine generalized bell function is used for all the membership functions). 13 Explain in detail about indirect kinematics of a two joint planar robot arm. 14 Explain the logic of applying ANFIS to MPG prediction. CO 3 CO 4 TO 5 To 7 R3	
component in detail. 9 Draw the typical membership function to predict the values using fuzzy relations. 10 Construct an ANFIS that is equivalent to a two-input two-rule mamdani fuzzy model with min max composition and centroid defuzzification. Explain the function user use to approximate the centroid defuzzification. 11 Construct an ANFIS that is equivalent to a two-input two-rule mamdani fuzzy model with sum-product composition and centroid defuzzification. 12 Demonstrate the different premise and consequent parameters are there in ANFIS architecture (imagine generalized bell function is used for all the membership functions). 13 Explain in detail about indirect kinematics of a two joint planar robot arm. 14 Explain the logic of applying ANFIS to MPG prediction. CO 3 3 CO 4 To 4 To 5 To 6 To 7 Residuation in the indirect kinematics of a two joint planar robot arm. Residuation in the indirect kinematics of a two joint planar robot arm. CO 4 To 7 To 8 To 8 To 9	12. 3.1-3.2
using fuzzy relations. 10 Construct an ANFIS that is equivalent to a two-input two-rule mamdani fuzzy model with min max composition and centroid defuzzification. Explain the function user use to approximate the centroid defuzzification. 11 Construct an ANFIS that is equivalent to a two-input two-rule mamdani fuzzy model with sum-product composition and centroid defuzzification. 12 Demonstrate the different premise and consequent parameters are there in ANFIS architecture (imagine generalized bell function is used for all the membership functions). 13 Explain in detail about indirect kinematics of a two joint planar robot arm. 14 Explain the logic of applying ANFIS to MPG prediction. CO 4 To 4 To 5 To 6 To 7 R8	T2: 3.1-3.2
two-rule mamdani fuzzy model with min max composition and centroid defuzzification. Explain the function user use to approximate the centroid defuzzification. 11 Construct an ANFIS that is equivalent to a two-input two-rule mamdani fuzzy model with sum-product composition and centroid defuzzification. 12 Demonstrate the different premise and consequent parameters are there in ANFIS architecture (imagine generalized bell function is used for all the membership functions). 13 Explain in detail about indirect kinematics of a two joint planar robot arm. 14 Explain the logic of applying ANFIS to MPG prediction. CO 4	T2: 3.1-3.2
two-rule mamdani fuzzy model with sum-product composition and centroid defuzzification. 12 Demonstrate the different premise and consequent parameters are there in ANFIS architecture (imagine generalized bell function is used for all the membership functions). 13 Explain in detail about indirect kinematics of a two joint planar robot arm. 14 Explain the logic of applying ANFIS to MPG prediction. CO 4	T2: 3.1-3.2
parameters are there in ANFIS architecture (imagine generalized bell function is used for all the membership functions). 13 Explain in detail about indirect kinematics of a two joint planar robot arm. 14 Explain the logic of applying ANFIS to MPG prediction. CO 4	2:4.2,7.1- 7.4, R3:1.1- 1.4
planar robot arm. ,R3 14 Explain the logic of applying ANFIS to MPG prediction. CO 4	T3:1.1
	T3:1.3 3:1.7,7.4
45 Fundain in detail about a di Paran arang P	T3:1.1
	T3:1.3 3:1.7,7.4
DISCUSSION OF DEFINITION AND TERMINOLOGY	
1 Discussion of definition and terminology on introduction to soft computing 1	T2: l.1-1.8, 2.2
2 Discussion of definition and terminology on neural networks CO 2	T2:2.7

3	Discussion of definition and terminology on fuzzy logic and fuzzy systems	CO 3	T2:2.8
4	Discussion of definition and terminology on hybrid systems	CO 4	T2:4.2,7.1- 7.4, R3:1.1- 1.4
5	Discussion of definition and terminology on applications of soft computing techniques	CO 5	T3:1.1- 1.2 ,R3:1.5- 1.7
	DISCUSSION OF QUESTION BANK		
1	Discussion of Question on introduction to soft computing	CO 1	T2: 1.1-1.8, 2.2
2	Discussion of Question on neural networks	CO 2	T2:2.7
3	Discussion of question on fuzzy logic and fuzzy systems	CO 3	T2:2.8
4	Discussion of question on hybrid systems	CO 4	T2:4.2,7.1- 7.4, R3:1.1- 1.4
5	Discussion of question on applications of soft computing techniques	CO 5	T3:1.1- 1.2 ,R3:1.5- 1.7

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING					
Course Title	ENERGY FROM WASTE					
Course Code	ACEB52					
Program	B.Tech					
Semester	VIII					
Course Type	Open Elective					
Regulation	IARE - R18					
	Theory Pract			Practi	cal	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mr. S.Selvaprakash, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites		
B.Tech	AHSB07	II	Environmental Studies		

II COURSE OVERVIEW:

The course is designed to create environmental awareness and consciousness among the present generation to become environmental responsible citizens. The course will discuss on the municipal solid waste composition, characteristics and to improve the methods to minimize municipal solid waste generation. This course deals with methods of disposal of solid waste by thermal biochemical processes and production of energy from different types of waste sand to know the environmental impacts of all types of municipal waste. This course will discuss the overall scenario of E-Waste management in India in comparison with other countries around the globe. This course will deals with E-waste legislation and government regulations on E-waste management.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Energy From Waste	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	PPT		Chalk & Talk		Assignments	x	MOOC
✓		/		✓			
x	Open Ended Experiments	x	Seminars	x	Mini Project		Videos
						~	
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
60%	Understand
20%	Apply
0%	Analyze
0%	Evaluate

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam	Quiz \AAT	10tal Maiks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

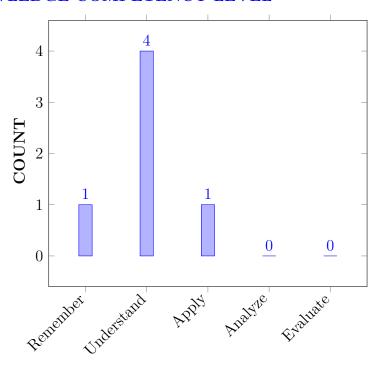
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Open Ended Experiment
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The principles of solid waste management in reducing and eliminating dangerous impacts of waste materials on human health and the environment to contribute economic development and superior quality of life.
II	The insight of the design and operations of a municipal solid waste landfill by collection, transfer and transportation of municipal solid waste for the final disposal.
III	The main operational challenges in operating thermal and biochemical energy from waste facilities and device processes involved in recovering energy from wastes.
IV	The scenario of E-Waste management in India and other countries around the globe and assess the impact of electronic waste on human, environment and society by informal recycling and management. The sustainable solution of E-Waste Management can be achieved by adopting modern techniques and Life-Cycle Analysis approach.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify the different sources, types of solid waste by the properties of municipal solid waste for segregation and	Remember
	collection of waste.	
CO 2	Understand the Composition, characteristics of leachate	Understand
	and preliminary design considerations of landfill to control	
	the emission of gases and monitoring the movement of landfill	
	leachate.	
CO 3	Outline the Biochemical conversion of biomass for energy	Understand
	generation by anaerobic digestion of solid waste.	
CO 4	Illustrate the thermo-chemical conversion of solid waste by	Understand
	using Gasification and pyrolysisprocess for energy generation.	
CO 5	Identify the need to stringent health safeguards and	Apply
	environmental protection laws of India for the effective	
	disposal of E-waste.	
CO 6	Interpret the global scenario of environmental concerns and	Understand
	health hazards by the generation of E- waste.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution
	of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and
	analyze complex engineering problems reaching substantiated conclusions
	using first principles of mathematics, natural sciences, and engineering
	sciences.
PO 3	Design/Development of Solutions: Design solutions for complex
	Engineering problems and design system components or processes that meet
	the specified needs with appropriate consideration for the public health and
	safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based
	knowledge and research methods including design of experiments, analysis
	and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,
	resources, and modern Engineering and IT tools including prediction and
	modelling to complex Engineering activities with an understanding of the
	limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual
	knowledge to assess societal, health, safety, legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.

	Program Outcomes
PO 7	Environment and sustainability: Understand the impact of the
	professional engineering solutions in societal and environmental contexts, and
	demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering
	activities with the engineering community and with society at large, such as,
	being able to comprehend and write effective reports and design
	documentation, make effective presentations, and give and receive clear
	instructions.
PO 11	Project management and finance: Demonstrate knowledge and
	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects
	and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation
	and ability to engage in independent and life-long learning in the broadest
	context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/SEE/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 3	Design/development of solutions: : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1	CIE/SEE/AAT
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	CIE/SEE/AAT
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	3	CIE/Quiz/AAT

PO 12	Life-long learning: Recognize the need for	1	CIE/SEE/AAT
	and having the preparation and ability to		
	engage in independent and life-long learning in		
	the broadest context of technological change.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PSO 2	Focus on Improving Performance of Structures	3	CIE/SEE/AAT
	with reference to Safety, Serviceability and		
	Sustainable Green Building Technology.		

 $^{3 = \}text{High}; 2 = \text{Medium}; 1 = \text{Low}$

XI MAPPING OF EACH CO WITH PO(s),PSO(s):

	PROGRAM OUTCOMES											PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	-	✓	-	-	✓	✓	-	-	-	-		-	-	-
CO 2	-	-	✓	-	-	✓	-	-	-	-	-	-	-	-	-
CO 3	✓	-	-	-	-	✓	✓	-	-	-	-	-	-	✓	-
CO 4	✓	-	✓	-	-	-	✓	-	-	-	-		-	-	-
CO 5	-	-	ı	-	-	✓	-	-	-	-	-	\	-	\	-
CO 6	_	_	-	-	-	✓	-	-	_	_	_	<	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Apply the Scientific principles for energy generation by applying different technologies from waste management plants.	1
	PO 3	Identify the constraints including environmental health and safety and risk assessment issues of different methods of disposal of municipal solid waste by aerobic composting to promote sustainable development.	2
	PO 6	Apply the knowledge of management techniques by understanding the requirement for engineering activities of municipal solid waste for the sustainable development.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 7	Interpret the discarding of solid waste and their impact on socio economic , environment is considered and energy generation activities by aerobic composting of waste.	2
CO 2	PO 3	Identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues for environmental monitoring system of land fill gases and composition of leachate and Understanding commercial and economic context of managing the land fill site	2
	PO 6	Understand the characteristics, generation and movement of leachate in landfills by the management techniques which uses for controlling the emission of gases in landfills to promote sustainable development	2
CO 3	PO 1	Explain the Scientific principles for Energy generation from waste bio-chemical conversion and to integrate / support the engineering disciplines	2
	PO 6	Apply the knowledge in planning and operations of waste to Energy plants for sustainable development by following legal legislation related to solid waste management for high level of professional and ethical values.	3
	PO 7	Identify the sources of energy generation by anaerobic digestion of sewage and municipal waste for socio economic solutions and direct combustion of municipal solid waste for environmental solutions.	2
	PSO 2	Identify the Energy generation processes from waste by bio-chemical conversion and help in Sustainable development and Safety of the public life.	2
CO 4	PO 1	Illustrate the methods of pyrolysis process by understanding Scientific principles and methodology and apply to integrate / support study of their own engineering discipline for solving environmental problems	2
	PO 3	Interpret thermo-chemical conversion sources of energy generation, gasification of waste and identify constraints including environmental and sustainability limitations	2
	PO 7	Understand the environmental benefits by using thermo-chemical process will decrease the emission of harmful gases and will attain Environmental sustainability.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 5	PO 6	Define the global scenario of environmental concerns by the increase in the generation of E-waste worldwide causing the personnel , health , safety , and risk (including environmental risk) issues and the problem can solved by imposing strong legal regulation for disposing of E-waste and help in sustainable development	2
	PO 12	List out the health hazards by the generation of E-waste and their impact on environment will be solved by the proper management and formal disposal of E-waste and this can be achieved by long term learning process in Professional certifications , advanced degree for developing advanced technologies in recycling of E-waste.	2
	PSO 2	Apply strong environmental protection laws in India for the effective disposal of E-waste and constraints including environmental and sustainability development and while recycling the E-waste and problem including production, operation, maintenance and disposal with proper safety	2
CO 6	PO 6	Define the global scenario of environmental concerns by the increase in the generation of E-waste worldwide causing the personnel , health , safety , and risk (including environmental risk) issues and the problem can solved by imposing strong legal regulation for disposing of E-waste and help in sustainable development	2
	PO 12	List out the health hazards by the generation of E-waste and their impact on environment will be solved by the proper management and formal disposal of E-waste and this can be achieved by long term learning process in Professional certifications , advanced degree for developing advanced technologies in recycling of E-waste.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-PING:

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	PO P							PSO	PSO	PSO				
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	2	-	-	3	2	-	-	-	_	-	-	-	-
CO 2	-	-	2	-	-	2	-	-	-	-	-	-	-	-	-
CO 3	2	-	1	-	-	3	2	ı	-	-	ı	-	-	2	-
CO 4	2	-	2	-	-	-	1	-	-	-	-	-	-	-	-
CO 5	-	-	-	-	-	2	-	-	-	-	-	2	-	2	-
CO 6	-	-	-	-	-	2	-	-	-	-	-	2	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.3	-	20.0	-	-	60.0	66.6	-	-	-	-	-	-	-	-
CO 2	-	_	20.0	-	-	40.0	-	-	-	-	-	-	-	-	-
CO 3	66.6	-	-	-	-	60.0	66.6	-	-	-	-	-	-	66.6	-
CO 4	66.6	-	20.0	-	-	-	33.3	-	-	-	-	-	-	-	-
CO 5	-	_	-	-	-	40.0	-	-	-	-	-	25	-	66.6	-
CO 6	-	_	-	-	-	40.0	-	-	-	-	-	25	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - 0 < C< 5% – No correlation

 $1 - 5 < C \le 40\% - Low/ Slight$

 $\boldsymbol{\mathcal{2}}$ - 40 % < C < 60% – Moderate

 $3 - 60\% \le C < 100\% - Substantial / High$

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	O PO							PSO	PSO	PSO				
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	1	-	-	2	3	-	-	-	-		-	-	-
CO 2	-	-	1	-	-	1	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	-	2	3	-	-	-	_	-	-	3	-
CO 4	3	-	1	-	-	-	1	-	-	-	-		-	-	-
CO 5	3	-	-	-	-	1	3	-	-	-	-	1	-	3	-
CO 6	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-

TOTAL	10	-	3	-	-	7	10	-	-	-	-	2	-	6	-
AVERAGE	3.0	_	1.0	-	-	1.0	3.0	-	-	-	-	1.0	-	3.0	

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	✓	Open Ended	-
Assignments	✓	Tech talk	-	Experiments -	

XVII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	~	End Semester OBE Feedback
\mathbf{X}	Assessment of Mini Projects by Expe	erts	

XVIII SYLLABUS:

MODULE - I	INTRODUCTION TO WASTE AND WASTE PROCESSING
	Solid waste sources solid waste sources, types, composition, properties, global warming; Municipal solid waste: Physical, chemical and biological properties, waste collection and, transfer stations, waste minimization and recycling of municipal waste, segregation of waste, size reduction, managing waste, status of technologies for generation of energy from waste treatment and disposal aerobic composting, incineration, furnace type and design, medical waste / pharmaceutical waste treatment technologies, incineration, environmental impacts, measures to mitigate environmental effects due to incineration
MODULE-II	WASTE TREATMENT AND DISPOSAL
	Land fill method of solid waste disposal land fill classification, types, methods and sitting consideration; Layout and preliminary design of landfills: Composition, characteristics, generation, movement and control of landfill leachate and gases, environmental monitoring system for land fill gases.
MODULE-III	BIO-CHEMICAL CONVERSION
	Energy generation from waste bio-chemical conversion: Sources of energy generation, anaerobic digestion of sewage and municipal waste, direct combustion of MSW-refuse derived solid fuel. Industrial waste, agro residues and anaerobic digestion.

MODULE-IV	THERMO-CHEMICAL CONVERSION
	Biogas production, land fill gas generation and utilization, thermo-chemical conversion: Sources of energy generation, gasification of waste using gasifies briquetting, utilization and advantages of briquetting, environmental benefits of bio-chemical and thermo-chemical conversion
MODULE-V	E-WASTE MANAGEMENT
	E-waste: E-waste in the global context: Growth of electrical and electronics industry in India, environmental concerns and health hazards; Recycling e-waste: A thriving economy of the unorganized sector, global trade in hazardous waste, impact of hazardous e-waste in India; Management of e-waste: E-waste legislation, government regulations on e-waste management, international experience, need for stringent health safeguards and environmental protection laws of India.

TEXTBOOKS

- 1. Nicholas P Cheremisinoff, —Handbook of Solid Waste Management and Waste Minimization Technologie, An Imprint of Elsevier, New Delhi, 2003.
- 2. P AarneVesilind, William A Worrell and Debra R Reinhart, —Solid Waste Engineering, 2 nd edition 2002.
- 3. M Dutta , B P Parida, B K Guha and T R Surkrishnan, —Industrial Solid Waste Management and Landfilling practice, Reprint Edition New Delhi, 1999.
- 4. RajyaSabha Secretariat, —E-waste in India: Research unit, Reprint Edition, June, 2011.

REFERENCE BOOKS:

- 1. C Parker and T Roberts (Ed), —Energy from Waste, An Evaluation of Conversion Technologies, Elsevier Applied Science, London, 1985.
- 2. KL Shah,"Basics of Solid and Hazardous Waste Management Technology", Prentice Hall, Reprint Edition, 2000.
- 3. M Datta, —"Waste Disposal in Engineered Landfill", Narosa Publishing House, 1997.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Outcome Based Education, CO PO attainment and Blooms Taxonomy		
	CONTENT DELIVERY (THEORY	7)	
1	Sources of Municipal Solid waste	CO 1	T1:3.3, T2:1.2, R2: 2.2
2	Types of Municipal Solid waste	CO 1	T1:3.4, T2:1.4

3	Composition of Municipal Solid waste	CO 1	T1:3.5,
			R2:1.5
4	Effects of Global warming	CO 1	T1:3.7, R2:1.8
5	Segregation of waste, size reduction and managing waste	CO 1	T1: 3.9, R3: 1.10
6	Waste collection and transfer stations	CO 1	T1:5.5, T2:6.2, R3:4.8
7	Waste minimization and recycling of municipal waste	CO 1	T1:5.6, T2:6.3, R3:7.5
8	Properties of Municipal solid waste	CO 1	T1:4.3, T2:5.2, R2: 5.7
9	Incineration, furnace type and design	CO 1	T1: 4.4, R1:3.3
10	Measures to mitigate environmental effects due to incineration	CO 1	T1:4.5, T2: 5.4, R3: 7.3
11	Land fill methods and disposal of solid waste	CO 2	T1:4.6, T2:5.5
12	land fill classification	CO 2	T1: 4.5.2, T2: 5.6
13	Landfill sitting consideration	CO 2	T1:4.6, T2:5.5
14	Layout and preliminary design of landfills	CO 2	T1:4.6.2, T2:5.5.2
15	Characteristics and composition of landfill	CO 2	T1:4.7, T2:5.6
16	Movement and control of landfill leachate and gases	CO 2	T1:4.7, T2:5.8
17	Environmental monitoring system for land fill gases	CO 2	T1:4.7.2, T2:5.8.2
18	Energy generation from waste by bio-chemical conversion	CO 3	T1:4.8, T2:5.9
19	Sources of energy generation from bio solid waste	CO 3	T1:4.9, T2:5.7
20	Anaerobic digestion of sewage and municipal waste	CO 3	T1:6.2, T2:5.6
21	Direct combustion of MSW-refuse derived solid fuel	CO 3	T1:6.3, T2:5.7
22	Industrial waste, agro residues and anaerobic digestion	CO 3	T1:6.4, T2:5.8
23	Biogas production	CO 3	T1:6.5, T2:5.3

24	land fill gas generation and utilization	CO 3	T1:66, T2:5.2
25	Thermo-chemical conversion	CO 4	T1:6.7, T2:5.3
26	Sources of energy generation	CO 4	T1:6.5, T2:7.5
27	Gasification of waste using gasifies briquetting	CO 4	T1: 6.2, R2:7.9
28	Utilization and advantages of briquetting	CO 4	T1: 6.2
29	Environmental benefits of bio-chemical	CO 4	T1:6.2, T2:7.2
30	E-waste in the global context	CO 5	T1:6.3, T2:7.3
31	Growth of electrical and electronics industry in India	CO 5	T1:6.4, T2:7.5
32	Environmental concerns and health hazards	CO 5	T1: 6.2, T2: 5.6
33	Recycling e-waste	CO 5	T1:6.3, T2: 5.7
34	A thriving economy of the unorganized sector and global trade in hazardous waste	CO 5	T1:6.4, T2:5.8
35	Impact of hazardous e-waste in India	CO 5	T1:2.1, T2:9.1
36	Management of e-waste	CO 5	T1:2.2, T2:9.2
37	E-waste legislation	CO 5	T1: 2.1, R2: 9.1
38	Government regulations on e-waste management	CO 5	T1:2.6, R1:5.1
39	International experience in management of e-waste	CO 6	T1:2.7, R1:5.2
40	Need for stringent health safeguards and environmental protection laws of India.	CO 6	T1:2.8, R1:5.5
41	Summarize government regulations on E-waste management	CO 6	T1:2.1, R1:5.6
42	Outline international E-waste management and the guidelines imposed for formal disposal	CO 6	T1:2.2, R1:5.4
43	Explain the need for stringent health safeguards of human health and their effects	CO 6	T1:2.4,R1:5
44	Discuss the need for environmental protection laws and	CO 6	T1:2.4, R1:5.5
45	Outline environmental protection laws of India with respect to E-waste management.	CO 6	T1:2.4, R1:5.5

PROBLEM SOLVING/ CASE STUDIES					
1	Explain different Types of Municipal Solid waste	CO 1	T1:3.3, T2:1.2, R2: 2.2		
2	Explain the Composition of Municipal Solid waste	CO 1	T1:3.4, T2:1.4		
3	Effects of Global warming	CO 1	T1:3.5,R2:1.5		
4	Illustrate the importance of Land fill classification	CO 2	T1:4.5, T2: 5.4, R3: 7.3		
5	Landfill sitting consideration	CO 2	T1:4.6, T2:5.5		
6	Layout and preliminary design of landfills	CO 2	T1: 4.5.2, T2: 5.6		
7	Anaerobic digestion of sewage and municipal waste	CO 3	T1:4.6, T2:5.5		
8	Direct combustion of MSW-refuse derived solid fuel	CO 3	T1:4.6.2, T2:5.5.2		
9	Industrial waste, agro residues and anaerobic digestion	CO 3	T1:4.7, T2:5.6		
10	Explain the Thermo-chemical conversion	CO 4	T1:4.7, T2:5.8		
11	E-waste in the global context	CO 5	T1:4.7.2, T2:5.8.2		
12	Growth of electrical and electronics industry in India	CO 5	T1:4.7.2, T2:5.8.2		
13	E-waste legislation	CO 5	T1:4.8, T2:5.9		
14	Government regulations on e-waste management	CO 6	T1:4.9, T2:5.7		
15	International experience in management of e-waste	CO 6	T1:6.3, T2: 5.7		
	DISCUSSION OF DEFINITION AND TERMINOLOGY				
1	Solid waste sources solid waste sources, types, composition, properties, Municipal solid waste: Physical, chemical and biological properties, waste collection and, transfer stations, waste minimization and recycling of municipal waste, environmental impacts, measures to mitigate environmental effects due to incineration	CO 1	T1:1.5, T2: 5.4, R3: 7.3		
2	Land fill method of solid waste, classification, types, methods and sitting consideration; Layout and preliminary design of landfills: Composition, characteristics, generation, movement and control of landfill leachate and gases, environmental monitoring system for land fill gases.	CO 2	T1:4.5, T2: 5.4, R3: 7.2		

Energy generation from waste bio-chemical conversion: Sources of energy generation, anaerobic digestion of sewage and municipal waste, direct combustion of MSW-refuse derived solid fuel. Industrial waste, agro residues and anaerobic digestion.	CO 3	T1:4.5, T2: 5.4, R3: 7.3		
Biogas production, land fill gas generation and utilization, thermo-chemical conversion:gasification of waste using gasifies briquetting, utilization and advantages of briquetting, environmental benefits of bio-chemical and thermo-chemical conversion	CO 4	T1:4.5, T2: 5.4, R3: 7.3		
E-waste in the global context: Growth of electrical and electronics industry in India, environmental concerns and health hazards; global trade in hazardous waste, Management of e-waste, legislation, government regulations on e-waste management, international experience and environmental protection laws of India	CO 5	T1:4.5, T2: 5.4, R3: 7.3		
DISCUSSION OF QUESTION BANK				
Explain the composition of Municipal solid waste and various types of solid waste in detail.	CO 1	T1:3.3, T2:1.2, R2: 2.2		
Explain the various phases of municipal solid waste decomposition in a closed landfill cell.	CO 2	T 1.4:7.3		
Explain in-detail step by step procedure of bio-chemical conversion	CO 3	T1:6.2, T2:5.6		
Discuss in detail the process of biogas production in thermo chemical conversion.	CO 4	T1:6.7, T2:5.3		
Discuss in detail about regulations by government on e-waste management	CO 5, CO 6	T1:2.4, R1:5.5		
	Sources of energy generation, anaerobic digestion of sewage and municipal waste, direct combustion of MSW-refuse derived solid fuel. Industrial waste, agro residues and anaerobic digestion. Biogas production, land fill gas generation and utilization, thermo-chemical conversion:gasification of waste using gasifies briquetting, utilization and advantages of briquetting, environmental benefits of bio-chemical and thermo- chemical conversion E-waste in the global context: Growth of electrical and electronics industry in India, environmental concerns and health hazards; global trade in hazardous waste, Management of e-waste, legislation, government regulations on e-waste management, international experience and environmental protection laws of India DISCUSSION OF QUESTION BAN Explain the composition of Municipal solid waste and various types of solid waste in detail. Explain the various phases of municipal solid waste decomposition in a closed landfill cell. Explain in-detail step by step procedure of bio-chemical conversion Discuss in detail the process of biogas production in thermo chemical conversion. Discuss in detail about regulations by government on	Sources of energy generation, anaerobic digestion of sewage and municipal waste, direct combustion of MSW-refuse derived solid fuel. Industrial waste, agro residues and anaerobic digestion. Biogas production, land fill gas generation and utilization, thermo-chemical conversion:gasification of waste using gasifies briquetting, utilization and advantages of briquetting, environmental benefits of bio-chemical and thermo- chemical conversion E-waste in the global context: Growth of electrical and electronics industry in India, environmental concerns and health hazards; global trade in hazardous waste, Management of e-waste, legislation, government regulations on e-waste management, international experience and environmental protection laws of India DISCUSSION OF QUESTION BANK Explain the composition of Municipal solid waste and various types of solid waste in detail. Explain the various phases of municipal solid waste decomposition in a closed landfill cell. Explain in-detail step by step procedure of bio-chemical conversion Discuss in detail the process of biogas production in thermo chemical conversion. Discuss in detail about regulations by government on CO 5,		

Signature of Course Coordinator Mr. S.Selvaprakash, Assistant Professor HOD, CSE