

#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043 COURSE TEMPLATE

| 1  | Department              | AERONA       | AERONAUTICAL ENGINEERING, AIML |                |                              |           |  |  |
|----|-------------------------|--------------|--------------------------------|----------------|------------------------------|-----------|--|--|
| 2  | Course Title            | PROFESS      | PROFESSIONAL COMMUNICATION     |                |                              |           |  |  |
| 3  | Course Code             | AHSD01       | AHSD01                         |                |                              |           |  |  |
| 4  | Program                 | B.Tech       |                                |                |                              |           |  |  |
| 5  | Semester                | I Semester   |                                |                |                              |           |  |  |
| 6  | Regulation              | BT23         |                                |                |                              |           |  |  |
|    |                         |              | Theory                         |                |                              | Practical |  |  |
| 7  | Structure of the course | Lecture      | Tutorials                      | Credits        | Lab                          | Credits   |  |  |
|    |                         | 3            | 0                              | 3              | -                            | -         |  |  |
|    | Type of course          |              | Professional                   | Open           | VAC                          | MOOC      |  |  |
| 8  | (Tick type of course)   |              | Elective                       | Elective       | VAU                          | MOOUS     |  |  |
|    | (Tick type of course)   |              | -                              | -              | -                            | -         |  |  |
| 9  | Course Offered          | Odd Semest   | er 🗸                           | Even Semes     | ster ×                       |           |  |  |
|    | Total lecture, tutorial | and practic  | cal hours for                  | this course    |                              |           |  |  |
| 10 | (16 weeks of teaching   | per semeste  | er)                            |                |                              |           |  |  |
|    | Lectures: 64            |              | Tutorials:                     | Nil            | Practical:                   | Nil       |  |  |
| 11 | Course Coordinator      | Dr Jetty Wi  | ilson                          |                |                              |           |  |  |
| 12 | Date Approved by BOS    | 24/08/2023   |                                |                |                              |           |  |  |
| 13 | Course Webpage          | https://www  | w.iare.ac.in/sit               | es/default/fil | es/BT23/AH                   | ISD01.pdf |  |  |
|    |                         | Level        | Course                         | Semester       | Prerequis                    | sites     |  |  |
| 14 | Course Provoquistos     |              | Code                           |                |                              |           |  |  |
| 14 | Course Prerequistes     | Intermediate | e –                            | -              | English Language and Grammar |           |  |  |

#### 15. Course Overview

The principle aim of the course is that the students will get awareness about the importance of English language in the contemporary times and also, it emphasizes the students to learn this language as a skill (listening skill, speaking skill, reading skill and writing skill). Moreover, the course benefits the students how to solve their day-to-day problems in speaking English language. Besides, it assists the students to reduce the mother tongue influence and acquire the knowledge of neutral accent. The course provides theoretical and practical knowledge of English language and it enables students to participate in debates about informative, persuasive, didactic, and commercial purposes.

#### **16. COURSE OBJECTIVES:**

#### The students will try to learn:

| Ι   | Standard pronunciation, appropriate word stress, and necessary intonation patterns for effective communication towards achieving academic and professional targets. |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | Appropriate grammatical structures and also using the nuances of punctuation tools for practical purposes.                                                          |
| III | Critical aspect of speaking and reading for interpreting in-depth meaning between the sentences.                                                                    |
| IV  | Conceptual awareness on writing in terms of unity, content, coherence, and linguistic accuracy.                                                                     |

#### **17. COURSE OUTCOMES:**

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Demonstrate</b> Demonstrate the prime necessities of listening skills and communication skills for academic and non-academic purposes.          | Understand |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO 2 | <b>Comunicate</b> effectively in spoken English on issues and ideas with a reasonable degree of fluency and accuracy in different social settings. | Understand |
| CO 3 | <b>Strengthen</b> acceptable language for developing life skills to overcome the challenges at professional platform.                              | Understand |
| CO 4 | <b>Interpret</b> the grammatical and lexical forms of English and use these forms excellently in specific communicative contexts.                  | Understand |
| CO 5 | <b>Articulate</b> main ideas and important details of literary text at advanced reading levels.                                                    | Understand |
| CO 6 | <b>Extend</b> writing skills for fulfilling academic and work-place requirements of various written communicative functions.                       | Understand |

#### 18. Topic Learning Outcome (TLOs):

| S.No | $\operatorname{Topic}(s)$ | TLO | Topic Learning Outcome's              | Course | Blooms     |
|------|---------------------------|-----|---------------------------------------|--------|------------|
|      |                           | No  |                                       | Out-   | Level      |
|      |                           |     |                                       | come   |            |
| 1    | Introduction to           | 1   | Interpret fundamental concepts of     | CO 1   | Understand |
|      | communication             |     | communication skills through a        |        |            |
|      | skils                     |     | procedural approach                   |        |            |
|      |                           | 2   | Aware the techniques of perfect       | CO 1   | Understand |
|      |                           |     | communication within and outside the  |        |            |
|      |                           |     | classroom                             |        |            |
|      |                           | 3   | <b>Identify</b> the parameters of the | CO 1   | Understand |
|      |                           |     | communication within the classroom as |        |            |
|      |                           |     | well as outside the classroom.        |        |            |

| S.No | $\operatorname{Topic}(s)$                        |     | Topic Learning Outcome's                                                                                                                                                                                                               | Course | Blooms     |
|------|--------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|
|      |                                                  | INO |                                                                                                                                                                                                                                        | come   | Level      |
|      |                                                  | 4   | <b>Practice</b> ethical communication to<br>embrace a diverse range of individuals,<br>communities, and viewpoints                                                                                                                     | CO 1   | Understand |
| 3    | Communication<br>Process                         | 5   | <b>Examine</b> the process of effective communication at different social situations.                                                                                                                                                  | CO 1   | Understand |
|      |                                                  | 6   | <b>Articulate</b> the process of effective<br>communication different social situations                                                                                                                                                | CO 1   | Understand |
| 4    | Listening Skills                                 | 7   | <b>Demonstrate</b> various kinds of listening setbacks within the classroom.                                                                                                                                                           | CO 1   | Understand |
|      |                                                  | 8   | Understand in-depth meaning of audio<br>clips                                                                                                                                                                                          | CO 1   | Understand |
| 5    | Introduction to<br>phonetics                     | 9   | <b>Familiar</b> with – and be able to<br>Understand – technical terms for<br>describing and analyzing English<br>pronunciation and be able to read and<br>produce phonemic transcriptions and<br>transcription of intonation patterns. | CO 1   | Understand |
|      |                                                  | 10  | Articulate acceptable language at various academical platforms.                                                                                                                                                                        | CO 2   | Understand |
|      |                                                  | 11  | <b>Reinforce</b> effective oral presentation<br>skillas well as acceptable behavioral<br>traits.                                                                                                                                       | CO 2   | Understand |
| 6    | Significance of<br>speaking skills               | 12  | Maintain global civic attitude at work<br>place and feel as a responsible citizen.                                                                                                                                                     | CO 2   | Understand |
|      |                                                  | 13  | <b>Plan</b> as a professional speaker before<br>going to deliver an academic<br>presentation.                                                                                                                                          | CO 2   | Understand |
| 7    | Generating talks<br>based on visual<br>prompts   | 14  | Get consciousness about the importance<br>of using flash cards, handouts and images<br>to have an effective comprehension.                                                                                                             | CO 2   | Understand |
| 8    | Oral presentation<br>using power point<br>slides | 15  | <b>Understand</b> properly making effective<br>PPTs in order to give a successful<br>presentation.                                                                                                                                     | CO 2   | Understand |
| 9    | Delivering speech<br>effectively                 | 16  | Anticipate problems with discussion groups                                                                                                                                                                                             | CO 2   | Understand |
| 10   | Essentials of speaking skills                    | 17  | <b>Show</b> acceptable attitude at learning place as well as at work place.                                                                                                                                                            | CO 3   | Understand |
| 11   | Exposure to<br>structured talks                  | 18  | <b>Pay</b> appropriate attention as a learner of English as a second language.                                                                                                                                                         | CO 3   | Understand |
| 12   | The concept of<br>word formation                 | 19  | <b>Enhance</b> lexical ability to experience of IELTS, TOEFL, GRE tests.                                                                                                                                                               | CO 4   | Understand |

| S.No | $\operatorname{Topic}(s)$ |    | Topic Learning Outcome's                                                                  | Course      | Blooms     |
|------|---------------------------|----|-------------------------------------------------------------------------------------------|-------------|------------|
|      |                           |    |                                                                                           | come        | Level      |
| 13   | Idioms and                | 20 | <b>Recognize</b> and understand the meaning                                               | CO 4        | Understand |
|      | phrases                   |    | of idioms and phrases.                                                                    |             |            |
|      |                           | 21 | Able to create own idiom story using                                                      | CO 4        | Understand |
|      |                           |    | story jumper                                                                              |             |            |
| 14   | Sentence<br>structure     | 22 | <b>Able</b> to write syntactical organization of given functions in non-periodic interval | CO 4        | Understand |
| 15   | Usage of                  | 23 | Understand well using proper                                                              | CO 4        | Understand |
|      | punctuation               |    | punctuation tools to deliver the topic                                                    |             |            |
|      | marks                     |    | successfully.                                                                             |             |            |
| 16   | Advanced level            | 24 | Identify and define prepositions,                                                         | CO 4        | Understand |
|      | prepositions              |    | prepositional phrases and objects of the                                                  |             |            |
|      |                           |    | preposition.                                                                              | ~~ ·        |            |
| 17   | Tenses                    | 25 | Use tenses systematically to deliver the                                                  | CO 4        | Understand |
| 10   | G 1 : 4 1                 | 96 | message without the ambiguity.                                                            | 00.4        | TT 1 ( 1   |
| 18   | Subject verb              | 26 | Learn the most common rules for<br>subject (work agreement and also identify              | CO 4        | Understand |
|      | agreement                 |    | proper and improper subject / verb                                                        |             |            |
|      |                           |    | agreement in the peer writing.                                                            |             |            |
| 19   | Degrees of                | 27 | Able to use the positive, comparative,                                                    | CO 4        | Understand |
|      | comparison                |    | and superlative degrees of the regular                                                    |             |            |
|      |                           |    | and irregular adjectives and adverbs.                                                     |             |            |
| 20   | Direct and                | 28 | <b>Define</b> direct speech and indirect speech                                           | CO 4        | Understand |
|      | indirect speech           |    | and distinguish between direct and                                                        |             |            |
|      |                           |    | indirect speech and classify the rules for                                                |             |            |
|      |                           |    | speech and indirect speech to direct                                                      |             |            |
|      |                           |    | speech.                                                                                   |             |            |
| 21   | Questions tags.           | 29 | <b>Use</b> the correct polarity (positive or                                              | CO 4        | Understand |
|      | •                         |    | negative), depending on the polarity of                                                   |             |            |
|      |                           |    | the statement.                                                                            |             |            |
| 22   | Significance of           | 30 | Accelerate the ability of reading                                                         | CO 5        | Understand |
|      | reading skills            |    | comprehension in advanced learning                                                        | <b>20</b> 7 |            |
| 23   | Techniques of             | 31 | Know Vrious parameters of reading                                                         | CO 5        | Understand |
|      | reading                   | 20 | Skills                                                                                    | CO 5        | Understand |
|      |                           | 52 | establish his/her argument effectively                                                    |             | Understand |
|      |                           | 33 | Extends consolidates and sustains                                                         | CO 5        | Understand |
|      |                           |    | vocabulary growth                                                                         |             |            |
| 24   | Significance of           | 34 | Aware the importance of writing skills                                                    | CO 6        | Understand |
|      | writing skills            |    | particuarly at academic domain                                                            |             |            |
| 25   | Effectiveness of          | 35 | Understand well using proper writing                                                      | CO 6        | Understand |
|      | writing                   |    | tools to deliver his/her thesis                                                           |             |            |

| S.No | $\operatorname{Topic}(s)$                                                        | TLO<br>No | Topic Learning Outcome's                                                                                              | Course<br>Out-<br>come | Blooms<br>Level |
|------|----------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|
| 26   | The role of a<br>topic sentence<br>and supporting<br>sentences in a<br>paragraph | 36        | Write effective topic sentence as well as<br>supporting sentences to convey a message<br>to his/her readers/audience. | CO 6                   | Understand      |
| 27   | Organizing<br>principles of<br>paragraphs in a<br>document                       | 37        | Generate fa paragraph effectively using<br>prime principles                                                           | CO 6                   | Understand      |
|      |                                                                                  | 38        | <b>Describe</b> the principles of paragraph<br>writing and properities of paragraphs                                  | CO 6                   | Understand      |
| 29   | Report writing                                                                   | 39        | <b>Present</b> an original thesis on a significant topic within a well defined subject area                           | CO 6                   | Understand      |
| 30   | E-mail writing                                                                   | 40        | <b>Use</b> effectively technical writing tools at workplace                                                           | CO 6                   | Understand      |
| 31   | Various formats<br>for letter writing                                            | 41        | <b>Knows</b> how to concise a written text without changing the core idea                                             | CO 6                   | Understand      |

### 19. Employability Skills

Example: Communication skills / Programming skills / Project based skills / Subject: Employment advantage: Effective English language and communication skills are crucial in many aspects of life, including education, business, workplace and social interactions. Proficient English language skills enable individuals to express themselves clearly, understand others, and engage in meaningful conversations. As the primary language of communication across the globe, proficiency in English is a highly sought-after skill in the international workplace and one of the benefits of learning English is therefore that it significantly boosts our job opportunities.

#### 20. Content Delivery / Instructional Methologies:

| ~ | Power Point Pressentation | ~ | Chalk & Talk | ~ | Assignments  | x | MOOC   |
|---|---------------------------|---|--------------|---|--------------|---|--------|
| x | Open Ended Experiments    | x | Seminars     | x | Mini Project | ~ | Videos |

#### 21. Evaluation Methodology:

The course will be evaluated for a total of 100 marks, with 40 marks for Continuous Internal Assessment (CIA) and 60 marks for Semester End Examination (SEE). CIA is conducted for a total of 40 marks, with 20 marks for Continuous Internal Examination (CIE), and and 05 marks for each Definitions and Terminology / Quiz and remaining 10 marks for Tech Talk / Assignments.

| Activities                            | CIA - I  | CIA - II | SEE       | Total Marks |
|---------------------------------------|----------|----------|-----------|-------------|
| Continuous Internal Examination (CIE) | 10 Marks | 10 Marks |           | 20 Marks    |
| Definitions and Terminology / Quiz    | 05 Marks | 05 Marks |           | 10 Marks    |
| Tech Talk / Assignment                | 05 Marks | 05 Marks |           | 10 Marks    |
| Semester End Examination (SEE)        | -        | -        | 60 Marks  | 60 Marks    |
| Total                                 | -        | -        | 100 Marks |             |

Table 4: Outline for Continuous Internal Assessments (CIA - I and CIA - II) and SEE

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 12 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 10%                           | Remember              |
| 35%                           | Understand            |
| 55%                           | Apply                 |

#### 22. SYLLABUS:

| MODULE I   | GENERAL INTRODUCTION AND LIST                                              | TENING SKILLS                  |  |  |  |
|------------|----------------------------------------------------------------------------|--------------------------------|--|--|--|
|            | Number of Lectures: 15                                                     |                                |  |  |  |
|            | Introduction to communication skills; communica                            | tion process; elements of      |  |  |  |
|            | communication; listening skills; significance of list                      | tening skills; stages of       |  |  |  |
|            | listening; barriers and ellectiveness of listening; in                     | itroduction to phonetics;      |  |  |  |
|            | SDEAKING SKILL                                                             |                                |  |  |  |
| MODULE II  | SPEAKING SKILL                                                             | Number of Lectures: 13         |  |  |  |
|            | Significance of speaking skills; essentials of speak                       | ting skills; verbal and        |  |  |  |
|            | speaking: exposure to structured talks: delivering                         | speech effectively: oral       |  |  |  |
|            | presentation using power point slides: soft skills a                       | and hard skills: importance of |  |  |  |
|            | soft skills for engineers.                                                 |                                |  |  |  |
| MODULE III | VOCABULARY AND GRAMMAR                                                     |                                |  |  |  |
|            | •                                                                          | Number of Lectures: 13         |  |  |  |
|            | The concept of word formation; idioms and phras                            | ses; one-word substitutes,     |  |  |  |
|            | sentence structure (simple, compound and compl                             | ex); usage of punctuation      |  |  |  |
|            | marks; advanced level prepositions; tenses; subject                        | ct verb agreement; degrees of  |  |  |  |
|            | comparison; direct and indirect speech; questions                          | tags.                          |  |  |  |
| MODULE IV  | READING SKILL                                                              | Number of Lectures: 12         |  |  |  |
|            | Significance of reading skills, techniques of reading                      | g, skimming-reading for the    |  |  |  |
|            | gist of a text, scanning-reading for specific inform                       | nation, intensive, extensive   |  |  |  |
|            | reading, reading comprehension, metaphor and fi                            | gurative language.             |  |  |  |
| MODULE V   | WRITING SKILL                                                              | Number of Lectures: 13         |  |  |  |
|            | Significance of writing skills; effectiveness of writing                   | ing; the role of a topic       |  |  |  |
|            | sentence and supporting sentences in a paragraph; organizing principles of |                                |  |  |  |
|            | paragraphs in a document; writing introduction a                           | and conclusion; techniques for |  |  |  |
|            | writing precis, various formats for letter writing (                       | block format, full block       |  |  |  |
|            | tormat, and semi bloc format); e-mail writing, rej                         | port writing.                  |  |  |  |

#### TEXTBOOKS

1. 1. Anjana Tiwari, "Communication Skills in English, ", Khanna Publishing House: New Delhi, 2022.

#### **REFERENCE BOOKS:**

- 1. Norman Whitby, "Business Benchmark: Pre-Intermediate to Intermediate BEC Preliminary,", Cambridge University Press, 2nd Edition, 2008.
- 2. Devaki Reddy, Shreesh Chaudhary, "Technical English,", Macmillan, 1st Edition, 2009.
- 3. Rutherford, Andrea J, "Basic Communication Skills for Technology,", Pearson Education, 2nd Edition, 2010.
- 4. Raymond Murphy, "Essential English Grammar with Answers,", Cambridge University Press, 2nd Edition, 2010

#### **MATERIALS ONLINE:**

- 1. Lecture notes, ELRV videos and power point presentations
- 2. Answers / solutions to all questions / problems in the textbook
- 3. Online exercises
- 4. Problems and solutions in files

#### 23. COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY** 

## 24. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                 | CO's | Reference  |  |  |  |  |  |
|------|------------------------------------------------------|------|------------|--|--|--|--|--|
|      | OBE DISCUSSION                                       |      |            |  |  |  |  |  |
| 1    | Course Description on Outcome Based Education (OBE): |      |            |  |  |  |  |  |
|      | Course Objectives, Course Outcomes (CO), Program     |      |            |  |  |  |  |  |
|      | Outcomes (PO) and CO-PO Mapping                      |      |            |  |  |  |  |  |
|      | CONTENT DELIVERY (THEORY)                            |      |            |  |  |  |  |  |
| 1    | Introduction to communication skills                 | CO 1 | T1; R1     |  |  |  |  |  |
| 2    | Communication process                                | CO 1 | T1; R1     |  |  |  |  |  |
| 3    | Elements of communication                            | CO 1 | T1; R1     |  |  |  |  |  |
| 4    | Significance of listening skills                     | CO 1 | T1; R1     |  |  |  |  |  |
| 5    | Different stages of listening                        | CO 1 | T1, R1     |  |  |  |  |  |
| 6    | Different stages of listening                        | CO 1 | T1, R1     |  |  |  |  |  |
| 7    | Listening comprehension                              | CO 1 | T1, R1     |  |  |  |  |  |
| 8    | Introduction to phonetics                            | CO 1 | T1, R1     |  |  |  |  |  |
| 9    | Significance of speaking skills                      | CO 2 | T1, R1     |  |  |  |  |  |
| 10   | Essentials of speaking skills                        | CO 2 | T1, R1     |  |  |  |  |  |
| 11   | Verbal and non-verbal communication                  | CO 2 | T1; R1, R2 |  |  |  |  |  |
| 12   | Generating talks based on visual prompts             | CO 2 | T1; R1, R2 |  |  |  |  |  |
| 13   | Public speaking                                      | CO 1 | T1; R1, R2 |  |  |  |  |  |
| 14   | Exposure to structured talks                         | CO 2 | T1; R1, R2 |  |  |  |  |  |
| 15   | Oral presentation using power-point slides           | CO 2 | T1; R1, R2 |  |  |  |  |  |
| 16   | Soft skills and hard skills                          | CO 3 | T1; R1, R2 |  |  |  |  |  |
| 17   | Importance of soft skills for engineers              | CO 3 | T1; R1, R2 |  |  |  |  |  |
| 18   | Concept of word formation                            | СО   | T1; R1, R2 |  |  |  |  |  |
| 19   | Idioms and phrases                                   | CO 4 | T1; R3, R4 |  |  |  |  |  |
| 20   | One-word substitutes                                 | CO 4 | T1; R3, R4 |  |  |  |  |  |
| 21   | Sentence structure                                   | CO 4 | T1; R3, R4 |  |  |  |  |  |
| 22   | Usage of punctuation marks                           | CO 4 | T1; R3, R4 |  |  |  |  |  |
| 23   | Advanced level prepositions                          | CO 4 | T1; R3, R4 |  |  |  |  |  |
| 24   | Functions of tenses                                  | CO 4 | T1; R3, R4 |  |  |  |  |  |
| 25   | Subject verb agreement                               | CO 4 | T1; R3, R4 |  |  |  |  |  |
| 26   | Degrees of comparison                                | CO 4 | T1; R1, R2 |  |  |  |  |  |
| 27   | Direct and indirect speech                           | CO 4 | T1; R1     |  |  |  |  |  |
| 28   | Question tags                                        | CO 4 | T1; R1     |  |  |  |  |  |
| 29   | Significance of reading skills                       | CO 5 | T1; R1     |  |  |  |  |  |
| 30   | Techniques of reading                                | CO 5 | T1; R1     |  |  |  |  |  |
| 31   | Skimming and Scanning                                | CO 5 | T1; R1     |  |  |  |  |  |
| 32   | Intensive and extensive reading                      | CO 5 | T1; R1     |  |  |  |  |  |
| 33   | Significance of writing skills                       | CO 6 | T1; R1     |  |  |  |  |  |

| S.No | Topics to be covered                                                                                                                  | CO's       | Reference   |
|------|---------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| 34   | Effectiveness of writing                                                                                                              | CO 6       | T1; R1      |
| 35   | The role of a topic sentence                                                                                                          | CO 6       | T1; R1      |
| 36   | Supporting sentences to develop a paragraph                                                                                           | CO 6       | T1; R1      |
| 37   | Organizing principles of paragraphs in a document                                                                                     | CO 6       | T1; R4      |
| 38   | Writing introduction and conclusion                                                                                                   | CO 6       | T1; R4      |
| 39   | Metaphor and figurative language                                                                                                      | CO 6       | T1; R4      |
| 40   | Technicalities of writing precis, Letter, e-mail, report and                                                                          | CO 6       | T1; R4      |
|      | Various formats for letter writing                                                                                                    |            |             |
|      | PROBLEM SOLVING/ CASE STUDI                                                                                                           | ES         |             |
| 1    | The aspects to improve listening comprehension Discuss in detail.                                                                     | CO 1       | TI:10,11    |
| 2    | Different types of listeners with examples.                                                                                           | CO 1       | TI: 19,21   |
| 3    | The sounds of English language.                                                                                                       | CO 1       | TI:23,27    |
| 4    | verbal communication or written communication.                                                                                        | CO 2       | TI: 27,30   |
| 5    | Various difficulties in public speaking.                                                                                              | CO 2       | TI: 32,33   |
| 6    | Different ways of greeting people in formal and informal                                                                              | CO 2       | TI: 35,37   |
|      | situation and discuss how do they matter in communication?                                                                            |            |             |
| 7    | 'Oral presentation requires a good planning'.                                                                                         | CO 2       | TI:36,38    |
| 8    | Power point presentation and the ways to make Power point presentation.                                                               | CO 3       | TI: 37,38   |
| 9    | Methods that are used to establish the process of building<br>vocabulary with examples from the most used words in<br>spoken English. | CO 4       | TI:39,41    |
| 10   | The usage of idioms and phrases in spoken English.                                                                                    | CO 4       | TI: 47,50   |
| 11   | 'Structure proposition-evaluation' -Reading technique.                                                                                | CO 5       | TI:56,58    |
| 12   | Active reading, detailed reading, and speed-reading techniques used in different situations.                                          | CO 5       | TI: 79,81   |
| 13   | The elements of paragraph writing in detail.                                                                                          | CO 6       | TI:100,102  |
| 14   | Logical bridges and Verbal bridges in writing.                                                                                        | CO 6       | TI: 102,104 |
| 15   | The role of topic sentence to develop a paragraph.                                                                                    | CO 6       | TI:105, 115 |
|      | DISCUSSION OF DEFINITION AND TERM                                                                                                     | INOLOGY    |             |
| 1    | Soft skills and Interpersonal Communication                                                                                           | CO 3       | TI 8,9      |
| 2    | Language acquisition is a process.                                                                                                    | CO 2, CO3  | TI: 11,12   |
| 3    | Communication.                                                                                                                        | CO 3, CO 4 | TI: 20, 25  |
| 4    | Time management.                                                                                                                      | CO 5       | TI: 36, 42  |
| 5    | Stress management.                                                                                                                    | CO 3       | T: 55, 68   |
|      | DISCUSSION OF TUTORIAL QUESTION                                                                                                       | BANK       |             |
| 1    | Soft Skills for difficult situations in terms of reassurance and reliability.                                                         | CO 3       | TI          |
| 2    | Verbal and non-verbal communication.                                                                                                  | CO 3       | TI          |
| 3    | Honesty, Respect, Self-Control and Accountability their role<br>in building long lasting interpersonal skills?                        | CO 3       | TI          |

| S.No | Topics to be covered                                      | CO's | Reference |
|------|-----------------------------------------------------------|------|-----------|
| 4    | Etiquette and manners. Its importance in social, personal | CO 3 | TI        |
|      | and professional communication.                           |      |           |
| 5    | Problem solving and decision making.                      | CO 3 | TI        |

## 25. PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES:

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations          |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques,<br>resources, and modern Engineering and IT tools including prediction and modelling<br>to complex Engineering activities with an understanding of the limitations                                                                  |
| PO 6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and<br>understanding of the engineering and management principles and apply these to<br>one's own work, as a member and leader in a team, to manage projects and in<br>multidisciplinary environments.                                      |

|       | Program Outcomes                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|-------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| PO 12 | Life-Long Learning: Recognize the need for and having the preparation and           |  |  |  |  |  |  |  |  |  |  |  |
|       | ability to engage in independent and life-long learning in the broadest context of  |  |  |  |  |  |  |  |  |  |  |  |
|       | technological change                                                                |  |  |  |  |  |  |  |  |  |  |  |
|       | Program Specific Outcomes                                                           |  |  |  |  |  |  |  |  |  |  |  |
| PSO 1 | Build the prototype of UAVs and aero-foil models for testing by using low speed     |  |  |  |  |  |  |  |  |  |  |  |
|       | wind tunnel towards research in the area of experimental aerodynamics.              |  |  |  |  |  |  |  |  |  |  |  |
| PSO 2 | Focus on formulation and evaluation of aircraft elastic bodies for characterization |  |  |  |  |  |  |  |  |  |  |  |
|       | of aero elastic phenomena.                                                          |  |  |  |  |  |  |  |  |  |  |  |
| PSO 3 | Make use of multi physics, computational fluid dynamics and flight simulation       |  |  |  |  |  |  |  |  |  |  |  |
|       | tools for building career paths towards innovative startups, employability and      |  |  |  |  |  |  |  |  |  |  |  |
|       | higher studies.                                                                     |  |  |  |  |  |  |  |  |  |  |  |

## 26. HOW PROGRAM OUTCOMES ARE ASSESSED:

| Pro                                                                                                                                                    | ogram Outcomes                                                                                                                                                                                                                                                                                                                                            | Strength | Proficiency  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                           |          | Assessed by  |
| PO 10 <b>Communic</b><br>complex engi-<br>community a<br>able to comp<br>design docur<br>and give and<br>(Writing); 2.<br>References (Y<br>Subject Mat | ation: Communicate effectively on<br>ineering activities with the engineering<br>and with society at large, such as, being<br>brehend and write effective reports and<br>nentation, make effective presentations,<br>receive clear instructions. 1. Clarity<br>Grammar/Punctuation (Writing); 3.<br>Writing); 4. Speaking Style (Oral); 5.<br>ter (Oral). | 5        | CIE/Quiz/AAT |

#### 27. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes                           | Strength | Proficiency |
|-------|-----------------------------------------------------|----------|-------------|
|       |                                                     |          | Assessed by |
| PSO 1 | Build the prototype of UAVs and aero-foil models    | -        |             |
|       | for testing by using low speed wind tunnel towards  |          |             |
|       | research in the area of experimental aerodynamics.  |          |             |
| PSO 2 | Focus on formulation and evaluation of aircraft     | -        |             |
|       | elastic bodies for characterization of aero elastic |          |             |
|       | phenomena.                                          |          |             |
| PSO 3 | Make use of multi physics, computational fluid      | -        |             |
|       | dynamics and flight simulation tools for building   |          |             |
|       | career paths towards innovative startups,           |          |             |
|       | employability and higher studies.                   |          |             |

#### 3 = High; 2 = Medium; 1 = Low

#### 28. MAPPING OF EACH CO WITH PO(s), PSO(s):

|         |    |    |    | PSO'S |    |    |    |    |    |              |    |    |     |     |     |
|---------|----|----|----|-------|----|----|----|----|----|--------------|----|----|-----|-----|-----|
| COURSE  | РО | РО | PO | PO    | PO | PO | PO | PO | PO | PO           | PO | PO | PSO | PSO | PSO |
| OUTCOME | 1  | 2  | 3  | 4     | 5  | 6  | 7  | 8  | 9  | 10           | 11 | 12 | 1   | 2   | 3   |
| CO 1    | -  | -  | -  | -     | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | -   |
| CO 2    | -  | -  | -  | -     | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | -   |
| CO 3    | -  | -  | -  | -     | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | -   |
| CO 4    | -  | -  | -  | -     | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | -   |
| CO 5    | -  | -  | -  | -     | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | -   |
| CO 6    | -  | -  | -  | -     | -  | -  | -  | -  | -  | $\checkmark$ | -  |    | -   | -   | -   |

#### 29. JUSTIFICATIONS FOR CO – PO / PSO MAPPING - DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                      | No. of Key<br>Competencies |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 10         | Discuss the heeds of functional grammar and punctuation<br>tools in speaking and writing by generating the clarity of<br>an audio text.                                                                   | 5                          |
| CO 2               | PO 10         | Apply the mathematics, science and Engineering<br>fundamentals to problems involving frictional force<br>additionally in system of forces using the knowledge of<br>mathematics and science fundamentals. | 5                          |
| CO 3               | PO 10         | Apply the mathematics, science and Engineering<br>fundamentals for locating centroid and centre of gravity<br>using the knowledge of mathematics and science<br>fundamentals.                             | 5                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                  | No. of Key<br>Competencies |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 4               | PO 10         | Interpret the grammatical knowledge and punctuation<br>marks systematically towards providing clarity in speaking<br>and writing.                                     | 5                          |
| CO 5               | PO 10         | Demonstrate the role of grammar and punctuation marks<br>to understand the meaning between the sentences as well<br>as paragraphs in speaking or writing for clarity. | 5                          |
| CO 6               | PO 10         | Describe the clarity of grammatical usage and the<br>obligation of punctuation marks in speaking and writing.                                                         | 5                          |

# 30. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

|          |    |    | PSO'S |    |    |    |    |    |    |    |    |    |     |     |     |
|----------|----|----|-------|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| COURSE   | РО | РО | PO    | PO | PO | PO | PO | РО | PO | PO | РО | PO | PSO | PSO | PSO |
| OUTCOMES | 1  | 2  | 3     | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1     | -  | -  | -     | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -   | -   | -   |
| CO 2     | -  | -  | -     | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -   | -   | -   |
| CO 3     | -  | -  | -     | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -   | -   | -   |
| CO 4     | -  | -  | -     | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -   | -   | -   |
| CO 5     | -  | -  | -     | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -   | -   | -   |
| CO 6     | -  | -  | -     | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -   | -   | -   |

#### 31. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

|          |    |    |    | PSO'S |    |    |    |    |    |     |    |    |     |     |     |
|----------|----|----|----|-------|----|----|----|----|----|-----|----|----|-----|-----|-----|
| COURSE   | РО | PO | РО | PO    | РО | РО | PO | РО | PO | PO  | РО | PO | PSO | PSO | PSO |
| OUTCOMES | 1  | 2  | 3  | 4     | 5  | 6  | 7  | 8  | 9  | 10  | 11 | 12 | 1   | 2   | 3   |
| CO 1     | -  | -  | -  | -     | -  | -  | -  | -  | -  | 100 | -  | -  | -   | -   | -   |
| CO 2     | -  | -  | -  | -     | -  | -  | -  | -  | -  | 100 | -  | -  | -   | -   | -   |
| CO 3     | -  | -  | -  | -     | -  | -  | -  | -  | -  | 100 | -  | -  | -   | -   | -   |
| CO 4     | -  | -  | -  | -     | -  | -  | -  | -  | -  | 100 | -  | -  | -   | -   | -   |
| CO 5     | -  | -  | -  | -     | -  | -  | -  | -  | -  | 100 | -  | -  | -   | -   | -   |
| CO 6     | -  | -  | -  | -     | -  | -  | -  | -  | -  | 100 | -  | -  | -   | -   | -   |

#### 32. COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- $\pmb{2}$  40 % < C < 60% – Moderate
- $1-5 < C \le 40\% Low/$  Slight
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

|          |     |    | PSO'S |    |    |    |    |    |    |    |    |    |     |     |     |
|----------|-----|----|-------|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| COURSE   | РО  | PO | PO    | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO | PSO |
| OUTCOMES | 1   | 2  | 3     | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1     | -   | -  | -     | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -   | -   | -   |
| CO 1     | -   | -  | -     | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -   | -   | -   |
| CO 1     | -   | -  | -     | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -   | -   | -   |
| CO 1     | -   | -  | -     | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -   | -   | -   |
| CO 1     | -   | -  | -     | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -   | -   | -   |
| CO 1     | -   | -  | -     | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -   | -   | -   |
| TOTAL    | -   | -  | -     | -  | -  |    | -  | -  | -  | 18 | _  | -  | -   | -   | -   |
| AVERAGI  | £ - | -  | -     | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -   | -   | -   |

#### **33. ASSESSMENT METHODOLOGY DIRECT:**

| CIE Exams   | <ul> <li>✓</li> </ul> | SEE Exams       | $\checkmark$ | Seminars                  | - |
|-------------|-----------------------|-----------------|--------------|---------------------------|---|
| Term Paper  | -                     | 5 Minutes Video | ~            | Open Ended<br>Experiments | - |
| Assignments | <ul> <li>✓</li> </ul> |                 |              |                           |   |

#### 34. ASSESSMENT METHODOLOGY INDIRECT:

| x | Assessment of Mini Projects by | $\checkmark$ | End Semester OBE Feedback |
|---|--------------------------------|--------------|---------------------------|
|   | Experts                        |              |                           |

## 35. Relevance to Sustainability goals

Write brief description about the course and how its relevance to SDGs.

|   | NO<br>POVERTY                 |
|---|-------------------------------|
| 1 | Ů∗╨╨                          |
|   | ZERO<br>HUNGER                |
| 2 | 222                           |
|   | GOOD HEALTH<br>AND WELL-BEING |
|   |                               |
| 3 |                               |

| 4  | QUALITY<br>EDUCATION                       | English language has become linguafranca across the globe. For that<br>reason, it is compelsory to learn this language at advanced level. In<br>MNC commpanies, those who have excellent communication skills<br>,their carrer graph goes to the higher level very quickly. Hence ,the<br>role of English language has become a part of the life. |
|----|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | GENDER<br>EQUALITY                         |                                                                                                                                                                                                                                                                                                                                                   |
| 5  | Ţ                                          |                                                                                                                                                                                                                                                                                                                                                   |
|    | CLEAN WATER<br>AND SANITATION              |                                                                                                                                                                                                                                                                                                                                                   |
| 6  | <b>Q</b>                                   |                                                                                                                                                                                                                                                                                                                                                   |
|    | AFFORDABLE AND<br>Clean Energy             |                                                                                                                                                                                                                                                                                                                                                   |
| 7  | ÷                                          |                                                                                                                                                                                                                                                                                                                                                   |
| 8  | DECENT WORK AND<br>ECONOMIC GROWTH         |                                                                                                                                                                                                                                                                                                                                                   |
|    | INDUSTRY, INNOVATION<br>And infrastructure |                                                                                                                                                                                                                                                                                                                                                   |
| 9  |                                            |                                                                                                                                                                                                                                                                                                                                                   |
| 10 | REDUCED<br>INEQUALITIES                    |                                                                                                                                                                                                                                                                                                                                                   |

|    | SUSTAINABLE CITIES<br>And communities        |      |  |
|----|----------------------------------------------|------|--|
| 11 | <b>▲</b> ∎∎≣                                 |      |  |
|    | RESPONSIBLE<br>Consumption<br>And production |      |  |
| 12 | 00                                           |      |  |
|    | CLIMATE<br>ACTION                            |      |  |
| 13 |                                              | <br> |  |
| 14 | LIFE BELOW<br>WATER                          |      |  |
| 15 | LIFE<br>ON LAND                              |      |  |

|    | PEACE, JUSTICE<br>AND STRONG  |  |
|----|-------------------------------|--|
|    |                               |  |
|    |                               |  |
| 16 |                               |  |
|    | PARTNERSHIPS<br>For the goals |  |
|    | $\sim$                        |  |
|    | $\langle \mathcal{A} \rangle$ |  |
| 17 | E                             |  |
| 11 |                               |  |

Approved by: Board of Studies in the meeting conducted on ————.

Signature of Course Coordinator Dr Jetty Wilson, Associate Professor HOD



## INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

#### MATRICES AND CALCULUS

#### COURSE TEMPLATE

| 1  | Department              | AERONAUTICAL ENGINEERING                                   |                                                |             |                      |             |  |  |  |
|----|-------------------------|------------------------------------------------------------|------------------------------------------------|-------------|----------------------|-------------|--|--|--|
| 2  | Course Title            | MATRI                                                      | MATRICES AND CALCULUS                          |             |                      |             |  |  |  |
| 3  | Course Code             | AHSD02                                                     |                                                |             |                      |             |  |  |  |
| 4  | Program                 | B.Tech                                                     |                                                |             |                      |             |  |  |  |
| 5  | Semester                | I Semest                                                   | er                                             |             |                      |             |  |  |  |
| 6  | Regulation              | BT23                                                       |                                                |             |                      |             |  |  |  |
|    |                         |                                                            | Theory                                         |             | Р                    | ractical    |  |  |  |
| 7  | Structure of the course | Lecture                                                    | Tutorials                                      | Credits     | Lab                  | Credits     |  |  |  |
|    |                         | 3                                                          | 1                                              | 4           | -                    | -           |  |  |  |
|    | Type of course          | Core                                                       | Professional                                   | Open        | VAC                  | MOOCs       |  |  |  |
| 8  | (Tick type of course)   |                                                            | Elective                                       | Elective    | V110                 | 1100005     |  |  |  |
|    | (The type of course)    | <ul> <li>✓</li> </ul>                                      | -                                              | -           | -                    | -           |  |  |  |
| 9  | Course Offered          | Odd Sen                                                    | d Semester $\checkmark$ Even Semester $\times$ |             |                      |             |  |  |  |
|    | Total lecture, tutorial | and pra                                                    | ctical hours f                                 | or this cou | ırse                 |             |  |  |  |
| 10 | (16 weeks of teaching   | per seme                                                   | ester)                                         |             |                      |             |  |  |  |
|    | Lectures: 48 hours      |                                                            | Tutorials:                                     | 16 hours    | Practical:           | 0 hours     |  |  |  |
| 11 | Course Coordinator      | Mr. P. S                                                   | hantan Kumar                                   |             |                      |             |  |  |  |
|    | Course Instructor       | Dr.J.Sur                                                   | esh Goud                                       |             |                      |             |  |  |  |
| 12 | Date Approved by BOS    | 23 Augus                                                   | st 2023                                        |             |                      |             |  |  |  |
| 13 | Course Webpage          | https://www.iare.ac.in/sites/default/files/BT23/AHSD02.pdf |                                                |             |                      |             |  |  |  |
|    |                         | Level                                                      | Course                                         | Semester    | Prerequis            | sites       |  |  |  |
| 14 | Course Prerequistes     |                                                            | Code                                           |             |                      |             |  |  |  |
| 14 | -                       | 10+2                                                       | -                                              | _           | Basic Pri            | inciples of |  |  |  |
|    |                         |                                                            |                                                |             | Algebra and Calculus |             |  |  |  |

#### 15. Course Overview

This course is a foundation for all engineering branches. It includes concepts of Matrices, Eigen Values, Eigen Vectors, Functions of Single, Several Variables, Fourier Series and Multiple Integrals. This course is applicable for simulation, colour imaging processing and optimal solutions in all engineering problems.

#### 16. Course Objectives:

#### The students will try to learn:

| Ι   | The Concept of the rank of a matrix, eigen values, eigen vectors and solution of the |
|-----|--------------------------------------------------------------------------------------|
|     | system of linear equations.                                                          |
| II  | The Geometrical approach to the mean value theorems and applications.                |
| III | The Fourier series expansion in periodic and non-periodic intervals.                 |
| IV  | The Evaluation of multiple integrals and applications.                               |

#### **17. Course Outcomes:**

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Determine</b> the rank and solutions of linear equations with elementary operations. |
|------|-----------------------------------------------------------------------------------------|
| CO 2 | Utilize the Eigen values, Eigen vectors for developing spectral matrices.               |
| CO 3 | Make use of Cayley-Hamilton theorem for finding powers of the matrix.                   |
| CO 4 | <b>Interpret</b> the maxima and minima of given functions.                              |
| CO 5 | <b>Apply</b> the Fourier series expansion of periodic functions for harmonic series.    |
| CO 6 | <b>Determine</b> the volume of solid bounded regions by using the integral calculus.    |

## 18. Topic Learning Outcome (TLOs):

| S.No | $\operatorname{Topic}(s)$                           | TLO<br>No | Topic Learning Outcome's                                                                                               | Course<br>Out-<br>come | Blooms<br>Level |
|------|-----------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|
| 1    | Rank of a matrix                                    | 1         | Calculate the rank of a matrix by using determinants                                                                   | CO 1                   | Apply           |
|      |                                                     | 2         | Calculate the rank of a matrix by using elementary operations                                                          | CO 1                   | Apply           |
| 2    | Inverse of a<br>matrix by<br>Gauss-Jordan<br>method | 3         | <b>Compute</b> the inverse of the given<br>matrix by elementary operations                                             | CO 1                   | Apply           |
|      |                                                     | 4         | <b>Identify</b> the use of matrix theory to<br>solve the system of linear equations in<br>various engineering problems | CO 1                   | Apply           |
| 3    | System of<br>non-homogeneous<br>equations           | 5         | <b>Examine</b> the system of homogeneous equations by its augmented form                                               | CO 1                   | Apply           |
|      |                                                     | 6         | <b>Examine</b> the system of non<br>homogeneous equations for its<br>augmented form                                    | CO 1                   | Apply           |
| 4    | Characteristic<br>equation                          | 7         | <b>Recall</b> the concepts of characteristic equations of matrices                                                     | CO 2                   | Remember        |
|      |                                                     | 8         | <b>Recall</b> the concepts of eigenvalues for<br>future engineering applications                                       | CO 2                   | Remember        |
| 5    | Eigenvalues and<br>Eigenvectors                     | 9         | <b>Recall</b> the concepts of eigenvectors for<br>future engineering applications                                      | CO 2                   | Remember        |

| S.No | $\operatorname{Topic}(s)$                                     | TLO<br>No | Topic Learning Outcome's                                                                                           | Course<br>Out-<br>come | Blooms<br>Level |
|------|---------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|
|      |                                                               | 10        | <b>Utilize</b> the characteristic polynomials to compute the eigenvalues and eigenvectors                          | CO 3                   | Apply           |
|      |                                                               | 11        | Make use of the Cayley-Hamilton to<br>find inverse of a matrix                                                     | CO 3                   | Apply           |
| 6    | Cayley-Hamilton<br>theorem,<br>Diagonalization<br>of a matrix | 12        | Make use of the Cayley-Hamilton to<br>find powers of a matrix                                                      | CO 3                   | Apply           |
|      |                                                               | 13        | Make use of the Cayley-Hamilton to<br>find diagonalization of a matrix                                             | CO 3                   | Apply           |
| 7    | Continuous<br>functions                                       | 14        | <b>Explain</b> the geometrical interpretation<br>of continuous functions on closed and<br>bounded intervals        | CO 4                   | Understand      |
| 8    | Mean value<br>theorems                                        | 15        | <b>Interpret</b> the mean value theorems on<br>bounded functions                                                   | CO 4                   | Understand      |
| 9    | Partial<br>differentiation                                    | 16        | <b>Recall</b> the partial differentiation for the functions of several variables                                   | CO 4                   | Remember        |
| 10   | Jacobian<br>transformations                                   | 17        | Make use of Jacobian transformations<br>for the functions are to be dependent or<br>independent                    | CO 4                   | Apply           |
| 11   | Maxima and<br>minima of a<br>function                         | 18        | <b>Identify</b> the maxima and minima of a<br>function with several variables by using<br>partial derivatives      | CO 4                   | Apply           |
| 12   | Euler coefficients                                            | 19        | <b>State</b> the Euler coefficients for Fourier<br>expansion of periodic functions in a given<br>interval          | CO 5                   | Remember        |
| 13   | Fourier series in<br>periodic interval                        | 20        | <b>Extend</b> the Fourier series of given<br>functions in a given periodic interval<br>$(-\pi, \pi)$               | CO 5                   | Understand      |
|      |                                                               | 21        | <b>Extend</b> the Fourier series of given<br>functions in a given periodic interval<br>$(0,2\pi)$                  | CO 5                   | Understand      |
| 14   | Fourier series in<br>non -periodic<br>intervall               | 22        | <b>Compute</b> the Fourier series of given<br>functions in non-periodic interval (0,21)                            | CO 5                   | Apply           |
| 15   | Half- range<br>Fourier series                                 | 23        | <b>Extend</b> the half- range Fourier series<br>expansions of a function in a given<br>periodic interval $(0,\pi)$ | CO 5                   | Apply           |
|      |                                                               | 24        | <b>Extend</b> the half- range Fourier series<br>expansions of a function in a given<br>arbitrary interval (0, 1)   | CO 5                   | Apply           |

| S.No | $\operatorname{Topic}(s)$      | TLO<br>No | Topic Learning Outcome's                                                                        | Course<br>Out-<br>come | Blooms<br>Level |
|------|--------------------------------|-----------|-------------------------------------------------------------------------------------------------|------------------------|-----------------|
|      |                                | 25        | <b>Solve</b> the double integrals of functions in given constant limits                         | CO 6                   | Apply           |
| 16   | Double integrals               | 26        | <b>Solve</b> the double integrals of functions in cartesian coordinates with given limits       | CO 6                   | Apply           |
|      |                                | 27        | <b>Solve</b> the double integrals of functions in polar coordinates with given limits           | CO 6                   | Apply           |
| 17   | Change order of<br>integration | 28        | <b>Identify</b> the change order of integration<br>of double integrals in cartesian form        | CO 6                   | Remember        |
| 18   | Triple integrals               | 29        | <b>Calculate</b> the triple integrals of function<br>in given constant limits                   | CO 6                   | Apply           |
|      |                                | 30        | <b>Calculate</b> the triple integrals of function<br>in cartesian coordinates with given limits | CO 6                   | Apply           |

#### 19. Employability Skills

1. Linear Algebra: Employability/ Skill development: Apply the concepts of Linear Algebra in programming languages

2. Matrices and Differential Calculus: Employability/ Skill development: Uses the basic of matrices and Calculus calculation concept in the field of Engineering

3. Integral Calculus: Employability/ Skill development: Uses the concept of definite integral in engineering problems

4. **Multivariable calculus:** Employability/ Skill development: Can solve the different Multivariable calculus

#### 20. Content Delivery / Instructional Methologies:

| ~ | Power Point Pressentation | ~ | Chalk & Talk | ~ | Assignments  | x | MOOC   |
|---|---------------------------|---|--------------|---|--------------|---|--------|
| x | Open Ended Experiments    | x | Seminars     | x | Mini Project | ~ | Videos |

#### 21. Evaluation Methodology:

The course will be evaluated for a total of 100 marks, with 40 marks for Continuous Internal Assessment (CIA) and 60 marks for Semester End Examination (SEE). CIA is conducted for a total of 40 marks, with 20 marks for Continuous Internal Examination (CIE), and 05 marks for each Definitions and Terminology / Quiz and remaining 10 marks for Tech Talk / Assignments.

Semester End Examination (SEE): The SEE is conducted for 60 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. No choice is given from first two modules. Each question carries 12 marks. There could be a maximum of two sub divisions in a question.

| Jutilie for Continuous Internal Assessments (CIA - I and CIA - II) and SEE . |          |          |           |             |
|------------------------------------------------------------------------------|----------|----------|-----------|-------------|
| Activities                                                                   | CIA - I  | CIA - II | SEE       | Total Marks |
| Continuous Internal Examination (CIE)                                        | 10 Marks | 10 Marks |           | 20 Marks    |
| Definitions and Terminology / Quiz                                           | 05 Marks | 05 Marks |           | 10 Marks    |
| Tech Talk / Assignment                                                       | 05 Marks | 05 Marks |           | 10 Marks    |
| Semester End Examination (SEE)                                               | -        | -        | 60 Marks  | 60 Marks    |
| Total                                                                        | -        | -        | 100 Marks |             |

## Outline for Continuous Internal Assessments (CIA - I and CIA - II) and SEE :

#### 22. Course content - Number of modules: Five

| MODULE I   | MATRICES                                                                              | Number of Lectures: 09     |  |
|------------|---------------------------------------------------------------------------------------|----------------------------|--|
|            | Rank of a matrix by echelon form and normal form                                      | ; inverse of non-singular  |  |
|            | matrices by Gauss-Jordan method; system of linear equations: solving system of        |                            |  |
|            | homogeneous and non-homogeneous equations.                                            |                            |  |
| MODULE II  | EIGEN VALUES AND EIGEN VECTORS                                                        | Number of Lectures: 10     |  |
|            | Eigen values; Eigen vectors and their properties (w                                   | ithout proof);             |  |
|            | Cayley-Hamilton theorem (without proof), verification                                 | tion; finding inverse and  |  |
|            | power of a matrix by Cayley-Hamilton theorem; di                                      | agonalization of a matrix. |  |
| MODULE III | FUNCTIONS OF SINGLE AND SEVERAL                                                       | VARIABLES                  |  |
|            |                                                                                       | Number of Lectures: 10     |  |
|            | Mean value theorems: Rolle's theorem; Lagrange's theorem; Cauchy's                    |                            |  |
|            | theorem-without proof.                                                                |                            |  |
|            | Functions of several variables: Partial differentiation                               | n; Jacobian; functional    |  |
|            | dependence; maxima and minima of functions of two variables and three                 |                            |  |
|            | variables; method of Lagrange multipliers.                                            |                            |  |
| MODULE IV  | FOURIER SERIES                                                                        | Number of Lectures: 09     |  |
|            | Fourier expansion of periodic function in a given interval of length $2\pi$ ; Fourier |                            |  |
|            | series of even and odd functions; Fourier series in an arbitrary interval; half-      |                            |  |
|            | range Fourier sine and cosine expansions.                                             |                            |  |
| MODULE V   | MULTIPLE INTEGRALS                                                                    | Number of Lectures: 10     |  |
|            | Evaluation of double integrals (cartesian and polar                                   | coordinates); change of    |  |
|            | order of integration (only cartesian coordinates); evaluation of triple integrals     |                            |  |
|            | (cartesian coordinates).                                                              |                            |  |

#### **Text Books**

- 1. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44/e, 2017.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 10/e, 2011.

#### **ReferenceE Books:**

- 1. R. K. Jain and S. R. K. Iyengar, "Advanced Engineering Mathematics", 3/ed Narosa Publications, 5th Edition, 2016.
- George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, "Calculus", Uma Publications, 13/e Edition, Pearson Publishers, 2013.
- 3. N.P. Bali and Manish Goyall "A text book of Engineering Mathematics", Laxmi Publication, Reprint, 2008.
- 4. Dean G. Duffy, "Advanced Engineering Mathematics with MATLAB", PCRC Press
- 5. Peter O'Neil, "Advanced Engineering Mathematics", Cengage Learning.
- 6. B.V. Ramana, "Higher Engineering Mathematics", McGraw Hill Education

#### **Electronic Resources:**

- 1. https://onlinecourses.nptel.ac.in/noc23\_ma88/preview
- 2. https://onlinecourses.nptel.ac.in/noc23\_ma86/preview
- 3. https://www.efunda.com/math/math\_home/math.cfm
- 4. https://www.ocw.mit.edu/resourcs/#Mathematics
- 5. https://www.sosmath.com
- 6. https://www.mathworld.wolfram.com

#### **Materials Online:**

- 1. Course template
- 2. Tech-talk topics
- 3. Assignments
- 4. Definition and terminology
- 5. Tutorial question bank
- 6. Model question paper I
- 7. Model question paper II
- 8. Lecture notes
- 9. Early lecture readiness videos (ELRV)
- 10. Power point presentations

## 23. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No           | Topics to be covered                                                                                                                        | CO's | Reference            |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------|--|
| OBE DISCUSSION |                                                                                                                                             |      |                      |  |
| 1              | Course Description on Outcome Based Education (OBE):<br>Course Objectives, Course Outcomes (CO), Program<br>Outcomes (PO) and CO-PO Mapping |      |                      |  |
|                | CONTENT DELIVERY (THEORY)                                                                                                                   |      |                      |  |
| 1              | Theory of Matrices: Types of Real Matrices                                                                                                  | CO 1 | T1:2.4<br>R3:3.11    |  |
| 2              | Elementary Operations: Elementary Row and Column<br>Transformations                                                                         | CO 1 | T1:2.7.2<br>R3:3.34  |  |
| 3              | Rank of a Matrix by Echelon Form                                                                                                            | CO 1 | T1:2.7.4<br>R3:3.38  |  |
| 4              | Rank of a Matrix by Normal Form                                                                                                             | CO 1 | T1:2.7.7<br>R3:3.38  |  |
| 5              | Inverse of a Matrix by Gauss-Jordan Method                                                                                                  | CO 1 | T1:2.7.6<br>R3:3.37  |  |
| 6              | Solving system of Non-Homogeneous equations                                                                                                 | CO 1 | T1:2.10.1<br>R3:3.39 |  |
| 7              | Solving system of Homogeneous equations                                                                                                     | CO 1 | T1:2.10.3<br>R3:3.39 |  |
| 8              | Solving system of Non Homogeneous equations(Unknown Values)                                                                                 | CO 1 | T1:2.10.3<br>R3:3.39 |  |
| 9              | Eigen Values of a Matrix                                                                                                                    | CO 2 | T1:2.13.1<br>R3:3.46 |  |
| 10             | Eigen Vectors of a Matrix                                                                                                                   | CO 2 | T1:2.13.2<br>R3:3.47 |  |
| 11             | Properties of Eigen values and Eigen Vectors of a Matrix<br>Problems                                                                        | CO 2 | T1:2.14<br>R3:3.47   |  |
| 12             | Cayley-Hamilton Theorem- Statement, Verification                                                                                            | CO 3 | T1:2.15<br>R3:3.48   |  |
| 13             | Applications of Cayley – Hamilton: Finding Inverse and<br>Powers of a Matrix                                                                | CO 3 | T1:2.15<br>R3:3.48   |  |
| 14             | Diagonalization of Matrix by Linear Transformation                                                                                          | CO 3 | T1:2.16.1<br>R3:3.49 |  |
| 15             | Linear Dependence and Independence of Vectors                                                                                               | CO 3 | T1:2.3<br>R3:3.2     |  |
| 16             | Mean Value Theorems:1: Rolle's Theorem                                                                                                      | CO 4 | T1:4.3.1<br>R6:2.1   |  |
| 17             | Mean Value Theorems:2: Lagrange's Theorem                                                                                                   | CO 4 | T1:4.3.2<br>R6:2.2   |  |
| 18             | Mean Value Theorems:3: Cauchy's Theorem                                                                                                     | CO 4 | T1:4.3.3<br>R6:2.3   |  |

| S.No | Topics to be covered                                         | CO's | Reference |
|------|--------------------------------------------------------------|------|-----------|
| 19   | Functions of Several Variables: Partial Differentiation      | CO 4 | T1:5.2    |
|      |                                                              |      | R3:5.1    |
| 20   | Jacobian Transformations                                     | CO 4 | T1:5.7.1  |
|      |                                                              |      | R3:5.10   |
| 21   | Functional Dependence                                        | CO 4 | T1-5.7.4  |
|      |                                                              |      | R3:5.11   |
| 22   | Maxima and Minima of Functions with Two Variables            | CO 4 | T1:5.11.1 |
|      |                                                              |      | R3:5.13   |
| 23   | Maxima and Minima of Functions with Three Variables          | CO 4 | T1-5.11.1 |
|      |                                                              |      | R3:5.14   |
| 24   | Method of Lagrange Multipliers                               | CO 4 | T1-5.12   |
|      |                                                              |      | R3:5.15   |
| 25   | Euler Coefficients for Fourier Expansion of Periodic         | CO 5 | T1-10.2   |
|      | Function in a Given Interval of Length $(-\pi,\pi),(0,2\pi)$ |      | R3:10.3   |
| 26   | Fourier Series of Even Functions in a Given Interval of      | CO 5 | T1-10.6.1 |
|      | Length $(-\pi,\pi)$                                          |      | R3:10.3   |
| 27   | Fourier Series of Odd Functions in a Given Interval of       | CO 5 | T1-10.6.2 |
|      | Length $(-\pi,\pi)$                                          |      | R3:10.3   |
| 28   | Fourier Series of Neither Functions in a Given Interval of   | CO 5 | T1-10.6.2 |
|      | Length $(-\pi,\pi)$                                          |      | R3:10.3   |
| 29   | Fourier Series in an Arbitrary Interval (0,21)               | CO 5 | T1-10.6.1 |
|      |                                                              |      | R3:10.6   |
| 30   | Fourier Series in an Arbitrary Interval (-l,l)               | CO 5 | T1-10.6.2 |
|      |                                                              |      | R3:10.6   |
| 31   | Half- Range Fourier Sine Expansions in a Given Interval of   | CO 5 | T1-10.7   |
|      | Length $(0,\pi)$                                             |      | R3:10.7   |
| 32   | Half- Range Fourier Cosine Expansions in a Given Interval    | CO 5 | T1-10.7   |
|      | of Length $(0,\pi)$                                          |      | R3:10.7   |
| 33   | Double Integrals in Constant Limits                          | CO 6 | T1-7.1    |
|      |                                                              |      | R3:6.1    |
| 34   | Double Integrals in Variable Limits                          | CO 6 | T1-7.1    |
|      |                                                              |      | R3:6.2    |
| 35   | Double Integrals in cartesian coordinates (Area enclosed by  | CO 6 | T1-7.4    |
|      | plane curves)                                                |      | R3:6.2    |
| 36   | Double Integrals in polar coordinates                        | CO 6 | T1-7.3    |
|      |                                                              |      | R3:6.3    |
| 37   | Change of order of integration (only Cartesian form)         | CO 6 | T1-7.2    |
|      |                                                              |      | R3:6.4    |
| 38   | Triple Integrals in Constant Limits                          | CO 6 | T1-7.5    |
|      |                                                              |      | R3:6.5    |
| 39   | Triple Integrals in Variable Limits                          | CO 6 | T1-7.5    |
|      |                                                              |      | R3:6.5    |

| S.No | Topics to be covered                                          | CO's                                                         | Reference |  |  |  |
|------|---------------------------------------------------------------|--------------------------------------------------------------|-----------|--|--|--|
| 40   | Double and Triple Integrals                                   | CO 6                                                         | T1-7.1    |  |  |  |
|      |                                                               |                                                              | R3:6.5    |  |  |  |
|      | PROBLEM SOLVING/ CASE STUDIES                                 |                                                              |           |  |  |  |
| 1    | Rank of the Matrix by Echelon and Normal Form                 | CO 1                                                         | T1-2.7    |  |  |  |
|      |                                                               |                                                              | R3:3.38   |  |  |  |
| 2    | Homogeneous and Non Homogeneous Equations                     | CO 1                                                         | T1-2.10   |  |  |  |
|      |                                                               |                                                              | R3:3.39   |  |  |  |
| 3    | Eigen Values and Eigen Vectors of the Matrix                  | CO 2                                                         | T1-2.13   |  |  |  |
|      |                                                               |                                                              | R3:3.46   |  |  |  |
| 4    | Eigen Values and Eigen Vectors of the Matrix                  | CO 2                                                         | T1-2.16   |  |  |  |
|      |                                                               |                                                              | R3:3.49   |  |  |  |
| 5    | Cayley Hamilton Theorem Problems                              | CO 3                                                         | T1-2.15   |  |  |  |
|      |                                                               |                                                              | R3:3.48   |  |  |  |
| 6    | Powers of the Matrix by Cayley Hamilton Theorem               | CO 3                                                         | T1-2.15   |  |  |  |
|      |                                                               |                                                              | R3:3.48   |  |  |  |
| 7    | Powers of the Matrix by Cayley Hamilton Theorem               | CO 4                                                         | T1-4.3    |  |  |  |
|      |                                                               |                                                              | R6:2.1    |  |  |  |
| 8    | Jacobians, Functional Relationship                            | CO 4                                                         | T1-5.7    |  |  |  |
|      |                                                               |                                                              | R3:5.10   |  |  |  |
| 9    | Maxima and minima problems                                    | CO 4                                                         | T1-5.11   |  |  |  |
|      |                                                               |                                                              | R3:5.13   |  |  |  |
| 10   | Fourier Series expansion of Periodic Function in a Given      | CO 5                                                         | T1-10.2   |  |  |  |
|      | Interval of Length $2\pi$                                     |                                                              | R3:10.3   |  |  |  |
| 11   | Fourier Expansion of Periodic Function in a Given Interval    | CO 5                                                         | T1-10.6   |  |  |  |
|      | of Length $(-\pi,\pi)$                                        |                                                              | R3:10.3   |  |  |  |
| 12   | Fourier Series in an Arbitrary Interval (-l,l), Fourier Sine, | CO 5                                                         | T1-10.6   |  |  |  |
|      | Cosine Series in Interval (0,1)                               |                                                              | R3:10.6   |  |  |  |
| 13   | Finding Double Integrals in Cartesian and Polar               | CO 6                                                         | T1:7.1    |  |  |  |
|      | Coordinates                                                   |                                                              | R3:6.1    |  |  |  |
| 14   | Change of order of integration                                | CO 6                                                         | T1-7.2    |  |  |  |
|      |                                                               |                                                              | R3:6.4    |  |  |  |
| 15   | Triple Integrals                                              | CO 6                                                         | T1-7.5    |  |  |  |
|      |                                                               |                                                              | R3:6.5    |  |  |  |
|      | DISCUSSION OF DEFINITION AND TERMI                            | NOLOGY                                                       |           |  |  |  |
| 1    | Rank of a Matrix, Homogeneous and Non-Homogeneous             | CO 1                                                         | T1-2.7    |  |  |  |
|      | equations                                                     |                                                              | R3:3.39   |  |  |  |
| 2    | Eigen Values and Eigen Vectors, Diagonalization               | $\begin{array}{c} \text{CO } 2, \\ \text{CO } 2 \end{array}$ | T1-2.13   |  |  |  |
|      |                                                               | CO3                                                          | R3:3.46   |  |  |  |
| 3    | Mean Value Theorems, Jacobian Transformations,                | CO 4                                                         | T1-4.3    |  |  |  |
|      | Functionally Dependent and Independent                        |                                                              | R6:2.1    |  |  |  |
| 4    | Fourier Series (Even, Odd, Neither Functions)                 | CO 5                                                         | T1-10.2   |  |  |  |
|      |                                                               |                                                              | R3:10.3   |  |  |  |

| S.No | Topics to be covered                   | CO's  | Reference |
|------|----------------------------------------|-------|-----------|
| 5    | Multiple Integrals (Double and Triple) | CO 6  | T1-7.1    |
|      |                                        |       | R3:3.6.1  |
|      | DISCUSSION OF TUTORIAL QUESTION        | BANK  |           |
| 1    | Matrices                               | CO 1  | T1-2.4    |
|      |                                        |       | R3:3.11   |
| 2    | Eigen Values and Eigen Vectors         | CO 2, | T1-2.13   |
|      |                                        | CO 3  | R3:3.46   |
| 3    | Functions of Several Variables         | CO 4  | T1-5.2    |
|      |                                        |       | R3:5.1    |
| 4    | Fourier Series                         | CO 5  | T1-10.2   |
|      |                                        |       | R3:10.3   |
| 5    | Multiple Integrals                     | CO 6  | T1-7.1    |
|      |                                        |       | R3:6.1    |

#### 24. PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES:

| Program Outcomes |                                                                                                                                                                                                                                                                                                 |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PO 1             | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of                                                                                                                                       |  |  |
|                  | complex engineering problems.                                                                                                                                                                                                                                                                   |  |  |
| PO 2             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                        |  |  |
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations |  |  |
| PO 4             | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                       |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques,<br>resources, and modern Engineering and IT tools including prediction and modelling<br>to complex Engineering activities with an understanding of the limitations                                                         |  |  |
| PO 6             | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                      |  |  |
| PO 7             | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                          |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                           |  |  |
| PO 9             | Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                 |  |  |

| Program Outcomes          |                                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PO 10                     | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |
| PO 11                     | <b>Project management and finance:</b> Demonstrate knowledge and<br>understanding of the engineering and management principles and apply these to<br>one's own work, as a member and leader in a team, to manage projects and in<br>multidisciplinary environments.                                      |  |  |
| PO 12                     | <b>Life-Long Learning:</b> Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                 |  |  |
| Program Specific Outcomes |                                                                                                                                                                                                                                                                                                          |  |  |
| PSO 1                     | Build the prototype of UAVs and aero-foil models for testing by using low speed wind tunnel towards research in the area of experimental aerodynamics.                                                                                                                                                   |  |  |
| PSO 2                     | Focus on formulation and evaluation of aircraft elastic bodies for characterization of aero elastic phenomena.                                                                                                                                                                                           |  |  |
| PSO 3                     | Make use of multi physics, computational fluid dynamics and flight simulation<br>tools for building career paths towards innovative startups, employability and<br>higher studies.                                                                                                                       |  |  |

## 25. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes                                     | Strength | Proficiency  |
|------|------------------------------------------------------|----------|--------------|
|      |                                                      |          | Assessed by  |
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of | 3        | CIE/Quiz/AAT |
|      | mathematics, science, engineering fundamentals,      |          |              |
|      | and an engineering specialization to the solution of |          |              |
|      | complex engineering problems.                        |          |              |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review | 3        | CIE/Quiz/AAT |
|      | research literature, and analyze complex engineering |          |              |
|      | problems reaching substantiated conclusions using    |          |              |
|      | first principles of mathematics, natural sciences,   |          |              |
|      | and engineering sciences.                            |          |              |

## 26. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes                           | Strength | Proficiency<br>Assessed by |
|-------|-----------------------------------------------------|----------|----------------------------|
| PSO 1 | Build the prototype of UAVs and aero-foil models    | -        | -                          |
|       | for testing by using low speed wind tunnel towards  |          |                            |
|       | research in the area of experimental aerodynamics.  |          |                            |
| PSO 2 | Focus on formulation and evaluation of aircraft     | -        | -                          |
|       | elastic bodies for characterization of aero elastic |          |                            |
|       | phenomena.                                          |          |                            |

| PSO 3 | Make use of multi physics, computational fluid    | - | - |
|-------|---------------------------------------------------|---|---|
|       | dynamics and flight simulation tools for building |   |   |
|       | career paths towards innovative startups,         |   |   |
|       | employability and higher studies.                 |   |   |
|       |                                                   | • |   |

3 = High; 2 = Medium; 1 = Low

## 27. MAPPING OF EACH CO WITH PO(s), PSO(s):

|         |              |              |    | PSO'S |    |    |    |    |    |    |    |    |     |     |     |
|---------|--------------|--------------|----|-------|----|----|----|----|----|----|----|----|-----|-----|-----|
| COURSE  | РО           | PO           | PO | PO    | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO | PSO |
| OUTCOME | 1            | 2            | 3  | 4     | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1    | $\checkmark$ | -            | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 2    | $\checkmark$ | $\checkmark$ | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 3    | $\checkmark$ | -            | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 4    | $\checkmark$ | -            | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 5    | $\checkmark$ | $\checkmark$ | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 6    | $\checkmark$ | $\checkmark$ | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |

## 28. JUSTIFICATIONS FOR CO – PO / PSO MAPPING - DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                    | No. of Key<br>Competencies |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 1          | Explain the role of rank and inverse of real and complex<br>matrices in solving complex engineering problems by using<br>elementary transformation methods (principles of<br>mathematics).                                              | 2                          |
| CO 2               | PO 1          | Determine the Eigen values, Eigen vectors, Spectral matrix<br>complex engineering problems modelled by matrices with<br>help of Characteristic Equation (principles of<br>mathematics).                                                 | 2                          |
|                    | PO 2          | Model the problem into matrices, prepare precise statement<br>of the problem and apply the concepts of Eigen values and<br>Eigen vectors to develop the solution and interpret,<br>validate the results through proper documentation.   | 6                          |
| CO 3               | PO 1          | Make use of Cayley Hamilton theorem for finding positive<br>and negative powers of the matrix and apply them in the<br>complex engineering problems modelled by matrices<br>(principles of mathematics).                                | 2                          |
| CO 4               | PO 1          | Explain the mean-value theorems for the single variable<br>functions and the extreme values for functions of several<br>variables apply them in the complex engineering problems<br>Partial derivatives of (principles of mathematics). | 2                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                   | No. of Key<br>Competencies |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 5               | PO 1          | Build the Fourier series expansion for the complex<br>engineering problems modelled by given periodic, even and<br>odd functions in various intervals with the help of Fourier<br>coefficients formulae (principles of mathematics).                                                                                   | 2                          |
|                    | PO 2          | Model the problem with the help of suitable periodic<br>functions, prepare precise statement of the problem and<br>apply Fourier series expansions to develop the solution and<br>interpret, validate the results through proper<br>documentation                                                                      | 6                          |
| CO 6               | PO 1          | Determine the solution of complex engineering problems<br>modelled by Double and Triple Integrals by using<br>substitution method and principles of mathematics.                                                                                                                                                       | 2                          |
|                    | PO 2          | Model the problem with the help of ordinary integrations,<br>prepare precise statement of the problem and apply on<br>double and triple integrations by method of ordinary<br>integration and other analytical methods to develop the<br>solution and interpret, validate the results through proper<br>documentation. | 6                          |

## 29. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO):

|          |    |    | PSO'S |    |    |    |    |    |    |    |    |    |     |     |     |
|----------|----|----|-------|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| COURSE   | РО | PO | PO    | РО | РО | РО | РО | РО | РО | PO | РО | PO | PSO | PSO | PSO |
| OUTCOMES | 1  | 2  | 3     | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 2  | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 2     | 2  | 6  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 3     | 2  | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 4     | 2  | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 5     | 2  | 6  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 6     | 2  | 6  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |

## **30. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):**

|          |      | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     |     | PSO'S |  |  |
|----------|------|------------------|----|----|----|----|----|----|----|----|----|----|-----|-----|-------|--|--|
| COURSE   | РО   | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO | PSO   |  |  |
| OUTCOMES | 1    | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3     |  |  |
| CO 1     | 66.6 | -                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -     |  |  |
| CO 2     | 66.6 | 60               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -     |  |  |
| CO 3     | 66.6 | -                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -     |  |  |
| CO 4     | 66.6 | -                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -     |  |  |
| CO 5     | 66.6 | 60               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -     |  |  |
| CO 6     | 66.6 | 60               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -     |  |  |

#### 31. COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\pmb{\theta}$  - 0  $\leq$  C  $\leq$  5% – No correlation

 $\pmb{\mathcal{2}}$  - 40 % < C < 60% – Moderate

 $1-5 < C \le 40\% - Low/Slight$ 

 $\boldsymbol{3}$  - 60%  $\leq$  C < 100% – Substantial /High

|          | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |
|----------|------------------|----|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|
| COURSE   | РО               | PO | РО | PO | PO | PO | PSO | PSO   | PSO |
| OUTCOMES | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |
| CO 1     | 3                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | I     | -   |
| CO 2     | 3                | 3  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | I     | -   |
| CO 3     | 3                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | -   |
| CO 4     | 3                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | -   |
| CO 5     | 3                | 3  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | -   |
| CO 6     | 3                | 3  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | I     | -   |
| TOTAL    | 18               | 9  | -  | -  | -  | -  | -  | -  | _  | -  | -  | -  | -   | -     | _   |
| AVERAG   | Ξ3               | 3  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | -   |

#### **32. ASSESSMENT METHODOLOGY DIRECT:**

| CIE Exams                      | $\checkmark$ | SEE Exams                      | $\checkmark$ | Seminars                  | - |
|--------------------------------|--------------|--------------------------------|--------------|---------------------------|---|
| Laboratory<br>Practices        | -            | Student Viva                   | _            | Certification             | - |
| Term Paper                     | -            | Tech-Talk / 5<br>Minutes Video | ~            | Open Ended<br>Experiments | - |
| Definitions and<br>Terminology | ~            | Quiz                           | ~            | Assignments               | ~ |

#### **33. ASSESSMENT METHODOLOGY INDIRECT:**

| x | Assessment of Mini Projects by | $\checkmark$ | End Semester OBE Feedback |
|---|--------------------------------|--------------|---------------------------|
|   | Experts                        |              |                           |

#### 34. Relevance to Sustainability goals:

#### Brief description about the course and how its relevance to SDGs.

Mathematics plays an important role in the achievement of the Sustainable Development Goals (SDG) and at the same time these allow working with real situations in the subject of mathematics, providing the student with active learning. Sustainability is used to make the student see the usefulness of mathematics while instilling values and attitudes towards it.

| × | NO<br>Poverty                              | -                                                                                                                                                                                                                                                                                                         |
|---|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <b>Ň</b> ¥ <b>Ť</b> ŤŧŤ                    |                                                                                                                                                                                                                                                                                                           |
| × | ZERO<br>HUNGER                             | -                                                                                                                                                                                                                                                                                                         |
|   |                                            |                                                                                                                                                                                                                                                                                                           |
| × | GOOD HEALTH<br>And Well-Being              | -                                                                                                                                                                                                                                                                                                         |
|   | -∕√∕•                                      |                                                                                                                                                                                                                                                                                                           |
| ~ | QUALITY<br>EDUCATION                       | <b>Quality Education:</b> Minimizing school dropout: The teaching of mathematics plays an important role in the implementation of sustainable education to achieve future goals: to make learning mathematics more relevant and applicable, as well as to support the development of 21st century skills. |
| × | GENDER<br>EQUALITY                         | -                                                                                                                                                                                                                                                                                                         |
|   | <b>₽</b>                                   |                                                                                                                                                                                                                                                                                                           |
| × | CLEAN WATER<br>And Sanitation              | -                                                                                                                                                                                                                                                                                                         |
|   | <b>Ç</b>                                   |                                                                                                                                                                                                                                                                                                           |
| × | AFFORDABLE AND<br>Clean Energy             | -                                                                                                                                                                                                                                                                                                         |
|   | ÷                                          |                                                                                                                                                                                                                                                                                                           |
| × | DECENT WORK AND<br>Economic growth         | -                                                                                                                                                                                                                                                                                                         |
|   | 1                                          |                                                                                                                                                                                                                                                                                                           |
| × | INDUSTRY, INNOVATION<br>And infrastructure | -                                                                                                                                                                                                                                                                                                         |
|   |                                            |                                                                                                                                                                                                                                                                                                           |
| × | REDUCED<br>Inequalities                    | -                                                                                                                                                                                                                                                                                                         |
|   | <€≻                                        |                                                                                                                                                                                                                                                                                                           |
| × | SUSTAINABLE CITIES<br>And communities      | -                                                                                                                                                                                                                                                                                                         |
|   |                                            |                                                                                                                                                                                                                                                                                                           |

| × | RESPONSIBLE<br>Consumption<br>And Production | - |
|---|----------------------------------------------|---|
|   | $\mathcal{C}\mathcal{O}$                     |   |
| × | CLIMATE<br>Action                            | - |
|   |                                              |   |
| × | LIFE BELOW<br>WATER                          | - |
|   |                                              |   |
| × | LIFE<br>On land                              | - |
|   | <b>4</b> ~~                                  |   |
| × | PEACE, JUSTICE<br>AND STRONG<br>INSTITUTIONS | - |
|   |                                              |   |
| × | PARTNERSHIPS<br>For the goals                | - |
|   | *                                            |   |

Approved by: Board of Studies in the meeting conducted on ———.

Signature of Course Coordinator Mr.P.Shantan kumar, Assistant Professor HOD



#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE TEMPLATE

#### 1 Department **AERONAUTICAL ENGINEERING** $\mathbf{2}$ Course Title **Elements of Electrical and Electronics Engineering** 3 Course Code AEED01 4Class/ Semester I/I5Regulation **BT-23** Theory Practical 6 Structure of the course Tutorials Credits Lab Lecture Credits 3 3 \_ Professional Open Core Type of course VAC MOOCs 7 Elective Elective (Tick type of course) \_ \_ \_ Course Offered Odd Semester 8 $\checkmark$ Even Semester $\times$ Total lecture, tutorial and practical hours for this course 9 (16 weeks of teaching per semester) Lectures: 48 hours Nil hours Nil hours Tutorials: Practical: 10Course Coordinator Ms.K Linga Swamy 11 Date Approved by BOS 24/08/2023 www.iare.ac.in/---/---12Course Webpage Level Course Course Semester Code title 13**Course Prerequistes** \_ \_ \_ \_

#### 14. Course Overview

The course provides basic foundation in electrical and electronics. It includes the concepts related to electrical circuits, the fundamental operating principles of electrical machines and the characteristics of semiconductor devices. It also empowers students to understand electronics and electrical systems in their daily lives, from household appliances to personal devices.

#### **15. COURSE OBJECTIVES:**

#### The students will try to learn:

| Ι   | The fundamentals of electrical circuits and analysis of circuits with DC and AC   |
|-----|-----------------------------------------------------------------------------------|
|     | excitation using circuit laws.                                                    |
| II  | The construction and operation of Electrical machines                             |
| III | The operational characteristics of semiconductor devices with their applications. |
|     |                                                                                   |

## 16. COURSE OUTCOMES:

## After successful completion of the course, students should be able to:

| CO 1 | Make use of basic electrical laws for solving DC and AC circuits.         | Understand |
|------|---------------------------------------------------------------------------|------------|
| CO 2 | Solve the network theorems to calculate the parameters in electrical      | Understand |
|      | circuits.                                                                 |            |
| CO 3 | Demonstrate the fundamentals of electromagnetism for the operation        | Uderstand  |
|      | of DC and AC machines.                                                    |            |
| CO 4 | Utilize the characteristics of diodes for the construction of rectifiers  | Understand |
|      | and regulators circuits.                                                  |            |
| CO 5 | Interpret the transistor configurations for optimization of the operating | Apply      |
|      | point.                                                                    |            |
| CO 6 | Illustrate the amplifier circuits using transistors for computing hybrid  | Apply      |
|      | parameters.                                                               |            |

#### 18. Topic Learning Outcome (TLOs):

| SNo | TOPIC(S)               | TLO<br>No | Topic Learning Outcome's                                                                       | Course<br>Out- | Blooms<br>Level |
|-----|------------------------|-----------|------------------------------------------------------------------------------------------------|----------------|-----------------|
|     |                        |           |                                                                                                | come:          |                 |
| 1   | Electrical<br>Circuits | TLO 1     | Introduction to electrical circuits                                                            | CO1            | Understand      |
|     |                        | TLO 2     | Basic Definitions of Electrical<br>Circuits                                                    | CO 1           | Understand      |
|     |                        | TLO 3     | Equivalent resistance of electrical circuits and source transformation of electrical circuits. | CO 1           | Understand      |
| 2   | Electrical laws        | TLO 4     | Basic Electric laws                                                                            | CO 1           | Understand      |
|     |                        | TLO 5     | Star to delta and delta bto star transformation                                                | CO 1           | Understand      |
| 3   | Electrical<br>analysis | TLO 6     | Calculate voltages and currents with mesh analysis.                                            | CO 1           | Apply           |
|     |                        | TLO 7     | Calculate voltages and currents<br>with nodal analysis                                         | CO 1           | Apply           |
| 4   | AC Circuits            | TLO 8     | Demonstrate the basics of<br>single-phase AC circuits                                          | CO 1           | Understand      |
| 5   | Electrical<br>Theorem  | TLO9      | Procedure for Superposition<br>theorem                                                         | CO2            | Understand      |
| 6   | Electrical<br>Theorem  | TLO10     | Procedure for Reciprocity theorem                                                              | CO2            | Understand      |
| 7   | Electrical<br>Theorem  | TLO11     | Procedure for Thevenin's theorem                                                               | CO2            | Understand      |
| 8   | Electrical<br>Theorem  | TLO12     | Procedure for Norton's theorem                                                                 | CO2            | Understand      |
| SNo | $\operatorname{TOPIC}(\mathbf{S})$        | TLO      | Topic Learning Outcome's                                                                         | Course | Blooms     |
|-----|-------------------------------------------|----------|--------------------------------------------------------------------------------------------------|--------|------------|
|     |                                           | No       |                                                                                                  | Out-   | Level      |
|     |                                           | TTT O 10 |                                                                                                  | come:  |            |
| 9   | Electrical                                | TLO13    | Procedure for Maximum Power                                                                      | CO2    | Understand |
| 10  | 2 mbaga walta mag                         | TIO14    | Valtage and summent relationshing                                                                | CO2    | Understand |
| 10  | 3 phase voltages                          | 1L014    | in star and delta connections                                                                    | 002    | Understand |
| 11  | DC Circuits                               | TLO 15   | Apply the basic theorems to solve<br>the problems on DC circuits.                                | CO2    | Apply      |
| 12  | 3Phase cirrcuits                          | TLO 16   | Basics of three-phase AC circuits                                                                | CO2    | Understand |
| '13 | DCmachines and<br>AC machines             | TLO 17   | Illustrate the construction and<br>operation of DC and AC motors<br>and generators               | CO3    | Understand |
| 14  | DC machines                               | TLO 18   | EMF equation of DC motors and generators                                                         | CO3    | Understand |
| 15  | DC machines                               | TLO 19   | Types of DC motors and generators                                                                | CO3    | Understand |
| 16  | DC machines                               | TLO 20   | Applications and losses of DC<br>motors and generators                                           | CO3    | Understand |
| 17  | DC machines                               | TLO 21   | Problems based on losses and<br>Efficiency of DC motors and<br>generators                        | CO3    | Apply      |
| 18  | semiconductor<br>diode                    | TLO 22   | Understand the basics of<br>semiconductor elements                                               | CO4    | Understand |
| 19  | semiconductor<br>diode<br>characterictics | TLO 23   | Illustrate the characteristics of the<br>PN junction diode                                       | CO4    | Understand |
| 20  | rectifiers                                | TLO 24   | Develop the rectifiers using diodes<br>and their characteristics                                 | CO4    | Apply      |
| 21  | Operation of<br>semiconductor<br>diode    | TLO25    | Operation of a diode as a switch                                                                 | CO4    | Understand |
| 22  | Zener diode                               | TLO26    | Operation of Zener diode as the<br>voltage regulator                                             | CO4    | Understand |
| 23  | Rectifier<br>parameters                   | TLO27    | Calculation of Rectifier parameters                                                              | CO4    | Apply      |
| 24  | Transistors                               | TLO28    | Introduction to bipolar junction<br>transistors                                                  | CO5    | Understand |
| 25  | Transistor<br>configurations              | TLO29    | Illustrate the characteristics of<br>bipolar junction transistors with<br>various configurations | CO5    | Understand |
| 26  | Transistor<br>principle                   | TLO30    | Working principle of NPN<br>Transistor                                                           | CO5    | Understand |
| 27  | Transistor<br>principle                   | TLO31    | Working principle of PNP<br>Transistor                                                           | CO5    | Understand |

| SNo | TOPIC(S)                    | TLO   | Topic Learning Outcome's                                                                                      | Course | Blooms     |
|-----|-----------------------------|-------|---------------------------------------------------------------------------------------------------------------|--------|------------|
|     |                             | No    |                                                                                                               | Out-   | Level      |
|     |                             |       |                                                                                                               | come:  |            |
| 28  | Transistor                  | TLO32 | Transistor characteristics under CE                                                                           | CO5    | Understand |
|     | configuration               |       | configuration                                                                                                 |        |            |
| 29  | transistor<br>configuration | TLO33 | Transistor characteristics under CB configuration                                                             | CO5    | Understand |
| 30  | transistor<br>configuration | TLO34 | Transistor characteristics under CC configuration                                                             | CO5    | Understand |
| 31  | BJT<br>characteristics      | TLO35 | Input and output characteristics of<br>bipolar junction transistor                                            | CO5    | Understand |
| 32  | Amplifiers                  | TLO36 | Understand the operation of a transistor as an amplifier                                                      | CO6    | Understand |
| 33  | Amplifier circuits          | TLO37 | Understand the two port devices<br>and networks of Amplifier circuits                                         | CO6    | Understand |
| 34  | Models of<br>transistors    | TLO38 | Small signal operation and models<br>for transistors                                                          | CO6    | Understand |
| 35  | CE Amplifier                | TLO39 | Method of amplification in CE<br>amplifier                                                                    | CO6    | Understand |
| 36  | H parameters                | TLO40 | Describe the h parameters of<br>bipolar junction transistors with<br>the concept of small signal<br>operation | CO6    | Understand |

### 18. Employability Skills

Example: Communication skills / Programming skills / Project based skills / Project based skillsElements of electrical and electronics engineering for students based on qualitative and quantitative analysis of experimental skills

### 19. Content Delivery / Instructional Methologies:

| $\checkmark$ | Power Point Pressentation | ~ | Chalk & Talk | ~ | Assignments  | x | MOOC   |
|--------------|---------------------------|---|--------------|---|--------------|---|--------|
| x            | Open Ended Experiments    | x | Seminars     | x | Mini Project | ~ | Videos |

## 20. Evaluation Methodology:

The course will be evaluated for a total of 100 marks, with 40 marks for Continuous Internal Assessment (CIA) and 60 marks for Semester End Examination (SEE). CIA is conducted for a total of 40 marks, with 20 marks for Continuous Internal Examination (CIE), and and 05 marks for each Definitions and Terminology / Quiz and remaining 10 marks for Tech Talk / Assignments.

| Activities                            | CIA - I  | CIA - II | SEE       | Total Marks |
|---------------------------------------|----------|----------|-----------|-------------|
| Continuous Internal Examination (CIE) | 10 Marks | 10 Marks |           | 20 Marks    |
| Definitions and Terminology / Quiz    | 05 Marks | 05 Marks |           | 10 Marks    |
| Tech Talk / Assignment                | 05 Marks | 05 Marks |           | 10 Marks    |
| Semester End Examination (SEE)        | -        | -        | 60 Marks  | 60 Marks    |
| Total                                 | -        | -        | 100 Marks |             |

Table 4: Outline for Continuous Internal Assessments (CIA - I and CIA - II) and SEE

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 12 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

## 21. Course Content-Number of Modules: Five

| MODULE I   | INTRODUCTION TO ELECTRICAL CIRCUITS                                                                                                                                                                                                                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | . Number of Lectures: 09                                                                                                                                                                                                                                                                                                                              |
|            | Concept: Ohm's law, Kirchhoff's laws, the equivalent resistance of networks, star to delta transformation, mesh and nodal analysis (with DC source only). Single phase AC circuits: representation of alternating quantities, RMS, average, form and peak factor, RLC series circuit.                                                                 |
| MODULE II  | NETWORK THEOREMS AND THREE PHASE VOLTAGES         .         Number of Lectures: 10                                                                                                                                                                                                                                                                    |
|            | <b>Network Theorems:</b> Superposition, reciprocity, Thevenin's, Norton's, Maximum power transfer theorems for DC excitation circuits. Three phase voltages (Definitions only): voltage and current relationships in star and delta connections. ;                                                                                                    |
| MODULE III | ELECTRICAL MACHINES AND SEMICONDUCTOR DIODES . Number of Lectures: 10                                                                                                                                                                                                                                                                                 |
|            | <b>DC and AC machines:</b> Motors and generators, Principle of operation, parts, EMF equation, types, applications, losses and efficiency. <b>Semiconductor diode:</b> P-N Junction diode, symbol, V-I characteristics, half wave rectifier, full wave rectifier, bridge rectifier and filters, diode as a switch, zener diode as a voltage regulator |
| MODULE IV  | BIPOLAR JUNCTION TRANSISTOR AND APPLICATIONS .   Number of Lectures: 10                                                                                                                                                                                                                                                                               |
|            | Bipolar junction transistor: characteristics and configurations, working<br>principle NPN and PNP transistor, CE, CB, CC configurations – input and<br>output characteristics, transistor as a switch                                                                                                                                                 |

| MODULE V | TRANSISTOR AMPLIFIERS                                                             |
|----------|-----------------------------------------------------------------------------------|
|          | . Number of Lectures: 09                                                          |
|          | Amplifier circuits: Two port devices and network Small signal models for          |
|          | transistors – concept of small signal operation - amplification in CE amplifier - |
|          | h parameter model of a BJT- CE, CB and Emitter follower analysis                  |

#### TEXTBOOKS

- 1. M.S.Sukhija, T K Nagsarkar, "Basic Electrical and Electronics Engineering." Oxford, 1st Edition, 2012.
- 2. Salivahanan, " Electronics devices and Circuits ." TMH, 4th Edition, 2012.

#### **REFERENCE BOOKS:**

- 1. C.L. Wadhwa & "*Electrical Circuit Analysis including Passive Network Synthesis*", International,2nd edition,2009.
- 2. DavidA Bell, "Electric circuits", Oxford University Press,7th edition,2009.
- 3. P.S Bimbra "Electrical Machines", KhannaPublishers, 2nd edition, 2008.
- 4. D.P. Kothari and I. J. Nagrath, "*Basic Electrical Engineering*", Tata McGraw Hill, 4th Edition, 2021.

#### **MATERIALS ONLINE:**

- 1. https://www.kuet.ac.bd/webportal/ppmv2/uploads/1364120248DC%20Machines
- $2. \ https://www.eleccompengineering.files.wordpress.com/2014/08/a-textbook-of-electrical-technologyvolume-ii-ac-and-dc-machines-b-l-thferaja.pdf$
- 3. https://www.geosci.uchicago.edu/ moyer/GEOS24705/Readings/Klempner\_Ch1.pdf
- 4. https://www.ibiblio.org/kuphaldt/electricCircuits/DC/DC.pdf
- 5. https://www.users.ece.cmu.edu/ dwg/personal/sample.pdf.
- 6. https://www.iare.ac.in

#### 22. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                    | Course<br>Out-<br>come's | Reference |
|------|---------------------------------------------------------|--------------------------|-----------|
|      | Discussion on OBE                                       |                          |           |
| 1    | Discussion on Outcome Based Education, CO, POs and PSOs |                          |           |

| S.No                      | Topics to be covered                                              | Course | Reference  |  |  |  |
|---------------------------|-------------------------------------------------------------------|--------|------------|--|--|--|
|                           |                                                                   | come's |            |  |  |  |
| CONTENT DELIVERY (THEORY) |                                                                   |        |            |  |  |  |
| 1                         | Introduction to electrical circuits                               | CO 1   | T1:1.1-1.3 |  |  |  |
| 2                         | Basic definitions of electrical circuits                          | CO 1   | T1:1.4-1.8 |  |  |  |
| 3                         | Equivalent resistance of electrical circuits and Source           | CO 1   | T1:2.6     |  |  |  |
|                           | transformation of electrical circuits                             |        |            |  |  |  |
| 4                         | Star to delta and delta to star transformation                    | CO 1   | T1:2.7     |  |  |  |
| 5                         | Mesh analysis and problems on mesh analysis                       | CO 1   | T1:2.9     |  |  |  |
| 6                         | Nodal Analysis and problems on nodal analysis                     | CO 1   | T1:2.8     |  |  |  |
| 7                         | Representation of alternating quantities average value, rms       | CO 1   | T1:4.1-4.5 |  |  |  |
|                           | value, form factor and peak factor for various waveforms          |        |            |  |  |  |
| 8                         | Concept of impedance, admittance and complex power                | CO 1   | T1:4.7-4.8 |  |  |  |
| 9                         | Procedure for superposition theorem and problems                  | CO 2   | T1:2.11    |  |  |  |
| 10                        | Procedure for reciprocity theorem and problems                    | CO 2   | T1:2.11.1  |  |  |  |
| 11                        | Procedure for Thevinin's theorem and problems                     | CO 2   | T1:2.11.2  |  |  |  |
| 12                        | Problems on Thevinin's theorem                                    | CO 2   | T1:2.11.3  |  |  |  |
| 13                        | Procedure for Norton's theorem and problems                       | CO 2   | T1:2.11.4  |  |  |  |
| 14                        | Problems on Norton's theorem                                      | CO 2   | T1:2.11.5  |  |  |  |
| 15                        | Procedure for Maximum power transfer theorem and                  | CO 2   | T1:2.11.6  |  |  |  |
|                           | problems                                                          |        |            |  |  |  |
| 16                        | Voltage and current relationships in star delta connections       | CO 2   | T1: 5.2    |  |  |  |
| 17                        | Construction and operation of DC machines                         | CO 3   | T1: 9.2    |  |  |  |
| 18                        | Classification of DC generators and efficiency                    | CO 3   | T1: 9.6    |  |  |  |
| 19                        | Types of DC motors, losses and efficiency                         | CO 3   | T1: 9.7    |  |  |  |
| 20                        | Introduction to semiconductor devices                             | CO 4   | T2: 1.1    |  |  |  |
| 21                        | PN junction diode, symbol and its voltage current characteristics | CO 4   | T2: 1.2    |  |  |  |
| 22                        | Operation of half wave rectifier with and without filters         | CO 4   | T2: 1.9    |  |  |  |
| 23                        | Operation of full wave rectifier with and without filters         | CO 4   | T2: 1.10   |  |  |  |
| 24                        | Operation of diode as switch                                      | CO 4   | T2: 1.11   |  |  |  |
| 25                        | Operation of zener diode as voltage regulator                     | CO 4   | T2: 1.12   |  |  |  |
| 26                        | Calculation of Rectifier parameters                               | CO 4   | T2: 1.10   |  |  |  |
| 27                        | Introduction to bipolar junction transistors                      | CO 5   | T2: 3.1    |  |  |  |
| 28                        | Working principle of NPN transistor                               | CO 5   | T2: 3.1.2  |  |  |  |
| 29                        | Operation of PNP transistor                                       | CO 5   | T2: 3.1.3  |  |  |  |
| 30                        | Transistor characteristics under CB configuration                 | CO 5   | T2: 3.6    |  |  |  |
| 31                        | Transistor characteristics under CE configuration                 | CO 5   | T2: 3.7    |  |  |  |
| 32                        | Transistor characteristics under CC configuration                 | CO 5   | T2: 3.8    |  |  |  |
| 33                        | Biasing and load line of transistors                              | CO 5   | T2: 4.1    |  |  |  |
| 34                        | Operation of transistor as an amplifier                           | CO 6   | T2: 3.9    |  |  |  |
| 35                        | Introduction to port devices and network                          | CO 6   | T2: 5.2    |  |  |  |

| S.No | Topics to be covered                                                            | Course                 | Reference    |  |  |  |
|------|---------------------------------------------------------------------------------|------------------------|--------------|--|--|--|
|      |                                                                                 | Out-                   |              |  |  |  |
|      |                                                                                 | come's                 |              |  |  |  |
| 30   | Concept of small signal operation for transistors                               | CO 6                   | T2: 5.2.7    |  |  |  |
| 37   | Amplification in common emitter amplifier                                       | CO 6                   | T2: 5.3.1    |  |  |  |
| 38   | Calculation of h parameter model of a BJT CE configuration                      | CO 6                   | T2: 5.3.2    |  |  |  |
| 39   | Calculation of h parameter model of a BJT CB configuration                      | CO 6                   | T2: 5.3.3    |  |  |  |
| 40   | Calculation of h parameter model of a BJT CC                                    | CO 6                   | T2: $5.5$    |  |  |  |
|      | configuration.                                                                  | DC                     |              |  |  |  |
| 1    | PROBLEM SOLVING/ CASE STUDI                                                     |                        | T1. 9.6      |  |  |  |
|      | Problems on equivalent resistance                                               |                        | T1: 2.0      |  |  |  |
| 2    | Problems on star to delta and delta to star transformation                      | CO 1                   | T1: 2.7      |  |  |  |
| 3    | Problems on mesh and nodal analysis                                             | CO I                   | T1: 2.8-2.9  |  |  |  |
| 4    | Problems on superposition theorem                                               | CO 2                   | 11: 2.11     |  |  |  |
| 5    | Problems on reciprocity theorem                                                 | CO 2                   | T1: 2.11.1   |  |  |  |
| 6    | Problems on Maximum power transfer theorem                                      | CO 2                   | T1: 2.11.2   |  |  |  |
| 7    | Problems on emf equation of DC generators                                       | CO 3                   | T1: 9.2      |  |  |  |
| 8    | Problems on efficiency of DC generators                                         | CO 3                   | T1: 9.3      |  |  |  |
| 9    | Problems on DC motors                                                           | CO 3                   | T1: 9.4      |  |  |  |
| 10   | Problems on efficiency of DC motors                                             | CO 3                   | T1: 9.5      |  |  |  |
| 11   | Problems on alternator emf equation                                             | CO 4                   | T1: 7.4      |  |  |  |
| 12   | Problems on alternators                                                         | CO 4                   | T1: 7.5      |  |  |  |
| 13   | Problems on rectifiers using diodes                                             | CO 4                   | T2: 1.10     |  |  |  |
| 14   | Problems on transistors CB configuration                                        | CO 5                   | T2: 3.6      |  |  |  |
| 15   | Problems on transistors CE and CC configuration                                 | CO 6                   | T2: 3.7-3.8  |  |  |  |
|      | DISCUSSION OF DEFINITION AND TERM                                               | INOLOGY                |              |  |  |  |
| 1    | Introduction to Engineering Mechanics                                           | CO 1                   | T1: 1.1-1.12 |  |  |  |
| 2    | Definition and terminology from network theorems and<br>three phase AC circuits | CO 2                   | T1: 2.1-2.12 |  |  |  |
| 3    | Definition and terminology from electrical machines and                         | CO 3, CO 4             | T1: 7,8,9    |  |  |  |
|      | diodes                                                                          |                        | T2: 1.1-1.12 |  |  |  |
| 4    | Definition and terminology from transistors                                     | CO 5                   | T2: 3.1-3.10 |  |  |  |
| 5    | Definition and terminology from transistor amplifier circuits                   | CO 6                   | T2: 9.1-9.6  |  |  |  |
|      | DISCUSSION OF TUTORIAL QUESTION BANK                                            |                        |              |  |  |  |
| 1    | Question bank from electrical circuits                                          | CO 1                   | T1: 1.1-1.12 |  |  |  |
| 2    | Question bank from network theorems and three phase AC                          | CO 2                   | T1: 1.1-1.12 |  |  |  |
|      | circuits                                                                        |                        |              |  |  |  |
| 3    | Question bank from electrical machines and diodes                               | CO 3,CO $\overline{4}$ | T1: 7,8,9    |  |  |  |
|      |                                                                                 |                        | T2: 1.1-1.12 |  |  |  |
| 4    | Question bank from electrical machines and diodes                               | CO 5                   | T2: 3.1-3.10 |  |  |  |
| 5    | Question bank from transistor amplifier circuits                                | CO 6                   | T2:9.1-9.6   |  |  |  |

## 23. PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES:

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations          |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques,<br>resources, and modern Engineering and IT tools including prediction and modelling<br>to complex Engineering activities with an understanding of the limitations                                                                  |
| PO 6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and<br>understanding of the engineering and management principles and apply these to<br>one's own work, as a member and leader in a team, to manage projects and in<br>multidisciplinary environments.                                      |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                 |
|       | Program Specific Outcomes                                                                                                                                                                                                                                                                                |
| PSO 1 | Build the prototype of UAVs and aero-foil models for testing by using low speed<br>wind tunnel towards research in the area of experimental aerodynamics.                                                                                                                                                |

| Program Outcomes |                                                                                     |  |  |  |
|------------------|-------------------------------------------------------------------------------------|--|--|--|
| PSO 2            | Focus on formulation and evaluation of aircraft elastic bodies for characterization |  |  |  |
|                  | of aero elastic phenomena.                                                          |  |  |  |
| PSO 3            | Make use of multi physics, computational fluid dynamics and flight simulation       |  |  |  |
|                  | tools for building career paths towards innovative startups, employability and      |  |  |  |
|                  | higher studies.                                                                     |  |  |  |

## 24. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes                                     | Strength | Proficiency |
|------|------------------------------------------------------|----------|-------------|
|      |                                                      |          | Assessed by |
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of | 3        | CIE/SEE/AAT |
|      | mathematics, science, engineering fundamentals,      |          |             |
|      | and an engineering specialization to the solution of |          |             |
|      | complex engineering problems.                        |          |             |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review | 2        | CIE/SEE/AAT |
|      | research literature, and analyze complex engineering |          |             |
|      | problems reaching substantiated conclusions using    |          |             |
|      | first principles of mathematics, natural sciences,   |          |             |
|      | and engineering sciences.                            |          |             |

## 25. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|      | Program Specific Outcomes                           | Strength | Proficiency |
|------|-----------------------------------------------------|----------|-------------|
|      |                                                     |          | Assessed by |
| PSO1 | Build the prototype of UAVs and aero-foil models    | 1        | -           |
|      | for testing by using low speed wind tunnel towards  |          |             |
|      | research in the area of experimental aerodynamics   |          |             |
| PSO2 | Focus on formulation and evaluation of aircraft     | 1        | -           |
|      | elastic bodies for characterization of aero elastic |          |             |
|      | phenomena                                           |          |             |
| PSO3 | Make use of multi physics, computational fluid      | 1        | -           |
|      | dynamics and flight simulation tools for building   |          |             |
|      | career paths towards innovative startups,           |          |             |
|      | employability and higher studies                    |          |             |

3 = High; 2 = Medium; 1 = Low

## **26. MAPPING OF EACH CO WITH PO(s), PSO(s):**

|        |              | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |  |
|--------|--------------|------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|--|
| COURSE | РО           | PO               | PO | PO | PO | PO | PO | PO | PO | PO | РО | PO | PSO | PSO   | PSO |  |
| OUTCOM | 1            | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
| CO 1   | $\checkmark$ | $\checkmark$     | -  | -  | -  | -  | -  | -  | -  | -  | -  |    | -   | -     | -   |  |
| CO 2   | $\checkmark$ | $\checkmark$     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | -   |  |
| CO 3   | $\checkmark$ | $\checkmark$     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | -   |  |
| CO 4   | $\checkmark$ | $\checkmark$     | -  | -  | -  | -  | -  | -  | -  | -  | -  |    | -   | -     | -   |  |

|         |              | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|---------|--------------|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE  | РО           | РО               | PO | РО | PO | РО | PSO   | PSO | PSO |
| OUTCOME | 1            | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 5    | $\checkmark$ | $\checkmark$     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 6    | $\checkmark$ | $\checkmark$     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |

# 27. JUSTIFICATIONS FOR CO – PO / PSO MAPPING - DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                          | No. of Key<br>Competencies |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 1          | Recollect the concept of electricity is described through<br>scientific principles, importance Kirchhoff laws in relation<br>with law of conservation of energy and charge circuits are<br>explained using mathematics, engineering fundamentals<br>and various source transformation techniques are adopted<br>for solving complex circuits. | 3                          |
|                    | PSO 1         | Solve complex electrical circuits by applying basic circuit concepts by using computer programs                                                                                                                                                                                                                                               | 1                          |
| CO 2               | PO 1          | Demonstrate various network theorems in order to<br>determine the same using principles of mathematics,<br>science, and engineering fundamentals.                                                                                                                                                                                             | 3                          |
|                    | PO 2          | Verify various network theorems for their validation using mathematical calculations.                                                                                                                                                                                                                                                         | 4                          |
|                    | PSO 1         | Simplify complex electrical networks by applying various circuit theorems by using computer programs                                                                                                                                                                                                                                          | 1                          |
| CO 3               | PO 1          | The principle of operation and characteristics of DC and AC machines are explained by applying engineering fundamentals including device physics.                                                                                                                                                                                             | 3                          |
|                    | PO 2          | Calculate the voltage generated and torque developed in DC and AC generators and motors by using first principles of mathematics .                                                                                                                                                                                                            | 4                          |
| CO 4               | PO1           | Illustrate the volt-ampere characteristics of semiconductor<br>devices to derive mathematical model for diode current,<br>static and dynamic resistance by applying the principles of<br>mathematics and scientific principles for solving complex<br>engineering problems.                                                                   | 2                          |
|                    | PO 2          | Understand the given problem statement and formulate<br>the static and dynamic resistance from the volt-ampere<br>characteristics of the semiconductor devices using<br>experimental design.                                                                                                                                                  | 3                          |
| CO 5               | PO 1          | Understand the characteristics and operation of transistors<br>with the knowledge of engineering fundamentals                                                                                                                                                                                                                                 | 2                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                       | No. of Key<br>Competencies |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 6               | PO 1          | Understand the mathematical principles for design the<br>biasing techniques for BJT amplifier circuits for stable<br>operation by applying the methodology | 2                          |
|                    | PO 2          | Demonstrate the calculation of h parameters with small<br>signal operation using the principles of mathematics and<br>natural sciences.                    | 4                          |

## 28. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | РО | PO | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 3  | 4                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 2     | 3  | 4                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 3     | 3  | 4                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 4     | 2  | 3                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 5     | 2  | 4                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 6     | 2  | 4                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |

### 29. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

|          |      | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|------|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | РО   | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1    | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 100  | 40               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 2     | 100  | 40               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 3     | 100  | 40               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 4     | 66.6 | 30               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 5     | 66.6 | 40               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 6     | 66.6 | 40               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | _   |

## **30. COURSE ARTICULATION MATRIX (PO – PSO MAPPING):**

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$  0  $\leq$  C  $\leq$  5% – No correlation
- ${\it 2}$  40 % < C < 60% – Moderate
- $\it 1-5 < C \le 40\% Low/$  Slight
- ${\it 3}$  60%  $\leq$  C < 100% Substantial /High

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | РО  | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 3   | 1                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 2     | 3   | 1                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 3     | 3   | 1                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 4     | 3   | 1                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 5     | 3   | 1                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 6     | 3   | 1                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| TOTAL    | 18  | 6                | -  | -  | -  | -  | -  | -  | -  | -  | _  | -  | -     | -   | -   |
| AVERAGI  | E 3 | 1                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1     | -   | -   |

## **31. ASSESSMENT METHODOLOGY DIRECT:**

| CIE Exams               | $\checkmark$ | SEE Exams       | $\checkmark$ | Seminars                  | - |
|-------------------------|--------------|-----------------|--------------|---------------------------|---|
| Laboratory<br>Practices | ~            | Student Viva    | ~            | Certificates              | - |
| Term Paper              | -            | 5 Minutes Video | ~            | Open Ended<br>Experiments | - |
| Assignments             | $\checkmark$ |                 |              |                           |   |

### 32. ASSESSMENT METHODOLOGY INDIRECT:

| x | Assessment of Mini Projects by | $\checkmark$ | End Semester OBE Feedback |
|---|--------------------------------|--------------|---------------------------|
|   | Experts                        |              |                           |

## 33. Relevance to Sustainability goals

Write brief description about the course and how its relevance to SDGs.

|   | NO<br>Poverty   |  |
|---|-----------------|--|
| 1 | Ŵĸ <b>Ŕ</b> ŔŧŔ |  |
|   | ZERO<br>HUNGER  |  |
| 2 | 222             |  |

|   | GOOD HEALTH<br>AND WELL-BEING              |                                                                                                                                |
|---|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 3 | /\/                                        |                                                                                                                                |
|   | QUALITY<br>Education                       |                                                                                                                                |
| 4 |                                            | This subject improves the quality of education in engineers and gives<br>the awareness of electrical usage in day to day life. |
|   | GENDER<br>EQUALITY                         |                                                                                                                                |
| 5 | Ţ                                          |                                                                                                                                |
|   | CLEAN WATER<br>AND SANITATION              |                                                                                                                                |
| 6 | Ø                                          |                                                                                                                                |
|   | AFFORDABLE AND<br>Clean Energy             |                                                                                                                                |
| 7 | <del>کې:</del>                             |                                                                                                                                |
|   | DECENT WORK AND<br>Economic growth         |                                                                                                                                |
| 8 | 11                                         |                                                                                                                                |
| 9 | INDUSTRY, INNOVATION<br>AND INFRASTRUCTURE |                                                                                                                                |

| [  |                                              |                                                                                                                                                                                                                                                                                             |
|----|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | REDUCED<br>INEQUALITIES                      |                                                                                                                                                                                                                                                                                             |
|    |                                              |                                                                                                                                                                                                                                                                                             |
| 10 | Ì₹Í                                          |                                                                                                                                                                                                                                                                                             |
|    | SUSTAINABLE CITIES<br>AND COMMUNITIES        |                                                                                                                                                                                                                                                                                             |
|    |                                              |                                                                                                                                                                                                                                                                                             |
| 11 |                                              |                                                                                                                                                                                                                                                                                             |
|    | RESPONSIBLE<br>CONSUMPTION<br>AND PRODUCTION |                                                                                                                                                                                                                                                                                             |
| 12 |                                              | Responsible Consumption and Production: This subject gives the<br>importance of electricity, by learning how to optimize electrical energy<br>for different applications, students can contribute to reducing energy<br>consumption and minimizing electronic waste and the need for saving |
|    |                                              | energy.                                                                                                                                                                                                                                                                                     |
|    | CLIMATE<br>ACTION                            |                                                                                                                                                                                                                                                                                             |
| 13 |                                              |                                                                                                                                                                                                                                                                                             |
|    | LIFE BELOW<br>WATER                          |                                                                                                                                                                                                                                                                                             |
| 14 |                                              |                                                                                                                                                                                                                                                                                             |
| 14 |                                              |                                                                                                                                                                                                                                                                                             |
| 15 |                                              |                                                                                                                                                                                                                                                                                             |

| 16 | PEACE, JUSTICE<br>AND STRONG<br>INSTITUTIONS |  |
|----|----------------------------------------------|--|
|    | PARTNERSHIPS<br>For the goals                |  |
| 17 | <b>&amp;</b>                                 |  |

Approved by: Board of Studies in the meeting conducted on - 24/08/2023

Signature of Course Coordinator Ms.K Linga Swamy, Assistant Professor HOD



#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

## OBJECT ORIENTED PROGRAMMING COURSE TEMPLATE

| 1  | Department              | AERONAUTICAL ENGINEERING |                 |              |               |             |  |
|----|-------------------------|--------------------------|-----------------|--------------|---------------|-------------|--|
| 2  | Course code             | ACSD01                   | ACSD01          |              |               |             |  |
| 3  | Course Title            | OBJECT                   | ORIENTED        | PROGRAM      | IMING         |             |  |
| 4  | Class / Semester        | Ι/Ι                      |                 |              |               |             |  |
| 5  | Regulation              | BT-23                    |                 |              |               |             |  |
|    |                         |                          | Theory          |              | Pra           | ctical      |  |
| 6  | Structure of the cours  | e Lecture                | Tutorials       | Credits      | Lab           | Credits     |  |
|    |                         | 3                        | 0               | 3            | -             | -           |  |
|    | Type of course          | Coro                     | Professional    | Open         | VAC           | MOOCs       |  |
| 7  | (Tick type of course)   | Core                     | Elective        | Elective     | VAU           | MOOCS       |  |
|    | (lick type of course)   | $\checkmark$             | -               | -            | -             | -           |  |
| 8  | Course Offered          | Odd Semest               | er 🖌            | Even Semes   | ter $\times$  |             |  |
|    | Total lecture, tutorial | and practic              | cal hours for   | this course  |               |             |  |
| 9  | (16 weeks of teaching   | per semeste              | er)             |              |               |             |  |
|    | Lectures: 48 hours      |                          | Tutorials:      | 0 hours      | Practical:    | – hours     |  |
| 10 | Course Coordinator      | Mr. Athota               | Rathan Babu     |              |               |             |  |
| 11 | Date Approved by        | 28/08/2023               |                 |              |               |             |  |
|    | BOS                     |                          |                 |              |               |             |  |
| 12 | Course Webpage          | https://www              | w.iare.ac.in/?q | =pages/btech | -course-sylla | bi-bt23-cse |  |
|    |                         | Level                    | Course          | Semester     | Prerequisi    | ites        |  |
| 12 | Course Proroquistes     |                          | Code            |              |               |             |  |
| 10 | Course r rerequistes    | -                        | -               | -            | -             |             |  |

### 14. Course Overview

The course provides a solid foundation in object-oriented programming concepts in using them. It includes concepts object-oriented concepts such as information hiding, encapsulation, and polymorphism. It contrasts the use of inheritance and composition as techniques for software reuse. It provides an understanding of object-oriented design using graphical design notations such as Unified Modelling Language (UML) as well as object design patterns.

## 15. Course Objectives:

### The students will try to learn:

| I   | The fundamental concepts and principles of object-oriented programming in high-level programming languages.                                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | Advanced concepts for developing well-structured and efficient programs that involve complex data structures, numerical computations, or domain-specific operations.                            |
| III | The design and implementation of features such as inheritance, polymorphism, and<br>encapsulation for tackling complex problems and creating well-organized, modular,<br>and maintainable code. |
| IV  | The usage of input/output interfaces to transmit and receive data to solve real-time computing problems.                                                                                        |

## 16. Course Outcomes:

### After successful completion of the course, students should be able to:

| CO 1 | <b>Interpret</b> the features of object-oriented programming languages, comparison, and evolution of programming languages. |
|------|-----------------------------------------------------------------------------------------------------------------------------|
| CO 2 | <b>Model</b> the real-world scenario using class diagrams and exhibit communication between objects.                        |
| CO 3 | Estimate the need for special functions for data initialization.                                                            |
| CO 4 | <b>Outline</b> the features of object-oriented programming for binding the attributes and behavior of a real-world entity.  |
| CO 5 | <b>Use</b> the concepts of streams and files that enable data management to enhance programming skills.                     |
| CO 6 | <b>Develop</b> contemporary solutions to software design problems using object-oriented principles.                         |

## 17. Topic Learning Outcome (TLOs):

| S No | Topic(s)       | TLO<br>No | Topic Learning Outcome               | Course<br>Out- | Blooms<br>Level |
|------|----------------|-----------|--------------------------------------|----------------|-----------------|
|      |                |           |                                      | come           |                 |
| 1    | Objects and    | 1         | Summarize fundamental concepts of    | CO 1           | Understand      |
|      | legacy systems |           | programming through a procedural     |                |                 |
|      |                |           | approach.                            |                |                 |
|      |                | 2         | <b>Differentiate</b> between OOP and | CO 1           | Understand      |
|      |                |           | other programming paradigms such     |                |                 |
|      |                |           | as procedural programming.           |                |                 |
| 2    | Object-        | 3         | Gain knowledge to design and         | CO 1           | Remember        |
|      | oriented       |           | implement software solutions using   |                |                 |
|      | programming    |           | OOP principles.                      |                |                 |

| S No | Topic(s)                                                   | TLO<br>No | Topic Learning Outcome                                                                                                                                              |      | Blooms<br>Level |
|------|------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
|      |                                                            | 4         | <b>Discuss</b> applications of OOP in<br>software development, graphical user<br>interface development, and mobile<br>application development.                      | CO 1 | Understand      |
| 3    | Abstraction:<br>Levels of<br>abstraction                   | 5         | <b>Identify</b> the data components and<br>behaviors of multiple abstract data<br>types.                                                                            | CO 1 | Remember        |
|      |                                                            | 6         | <b>Apply</b> techniques of decomposition<br>to break a program into smaller<br>pieces.                                                                              | CO 1 | Apply           |
|      |                                                            | 7         | <b>Implement</b> a coherent abstract data<br>type with loose coupling between<br>components and behaviors.                                                          | CO 6 | Apply           |
| 4    | Classes and<br>objects:<br>Fields,<br>methods,<br>messages | 8         | <b>Interpret</b> knowledge by defining<br>classes and creating instances to<br>represent and interact with real-world<br>entities or concepts.                      | CO 2 | Understand      |
|      |                                                            | 9         | <b>Instantiate</b> objects from classes to<br>understand the relationship between<br>classes and objects.                                                           | CO 2 | Remember        |
| 5    | Access<br>specifiers:<br>public,<br>private,<br>protected  | 10        | <b>Enumerate</b> access specifiers' visibility and accessibility of class members (variables and methods) within different parts of a program.                      | CO 2 | Remember        |
| 6    | Class<br>diagrams                                          | 11        | <b>Create and interpret class</b><br>diagrams to visually represent classes,<br>relationships, and interactions.                                                    | CO 2 | Apply           |
| 7    | Encapsulation                                              | 12        | <b>Review</b> the encapsulation principle<br>by specifying who can access and<br>modify class members.                                                              | CO 3 | Remember        |
|      |                                                            | 13        | <b>Implement</b> encapsulation by using<br>access modifiers (public, private,<br>protected) to control access to class<br>members.                                  | CO 2 | Apply           |
|      |                                                            | 14        | <b>Use</b> static fields to keep a count of<br>the number of objects that have been<br>instantiated or to store a value that<br>must be shared among all instances. | CO 6 | Apply           |

| S No | Topic(s)                                                        | TLO<br>No | Topic Learning Outcome                                                                                                                                                          | Course<br>Out-<br>come | Blooms<br>Level |
|------|-----------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|
| 8    | Special<br>member<br>functions:<br>Constructors,<br>destructors | 15        | Select the constructor methods in<br>initializing object attributes when<br>instances are created.                                                                              | CO 3                   | Remember        |
|      |                                                                 | 16        | <b>Illustrate</b> destructors to manage<br>resources and perform cleanup<br>operations in the classes such as<br>closing files, releasing locks, or<br>cleaning up cached data. | CO 6                   | Apply           |
| 9    | Overloading:<br>Functions,<br>operators,<br>constructors        | 17        | <b>Express</b> the behavior of operators of<br>a class that enriches programming<br>skills in various ways that are both<br>intuitive and flexible.                             | CO 3                   | Understand      |
|      |                                                                 | 18        | <b>Infer</b> that data is in a compatible<br>format for specific operations or<br>assignments to avoid unexpected<br>behavior or data loss.                                     | CO 3                   | Understand      |
|      |                                                                 | 19        | List the types of inheritance to<br>facilitate code reuse, organization,<br>and hierarchy for modeling complex<br>systems.                                                      | CO 4                   | Remember        |
| 10   | Inheritance:<br>Subclasses,<br>and method<br>overriding         | 20        | <b>Use</b> subclassing to design class<br>hierarchies that allow code to be<br>reused for distinct subclasses.                                                                  | CO 4                   | Apply           |
|      |                                                                 | 21        | <b>Identify</b> the type of inheritance to<br>create specialized classes that inherit<br>the properties and behaviors of more<br>general classes.                               | CO 4                   | Remember        |
| 11   | Virtual<br>functions                                            | 22        | <b>Demonstrate</b> code flexibility using<br>virtual functions to work with<br>different types of objects through a<br>common interface.                                        | CO 4                   | Understand      |
| 12   | Polymorphism                                                    | 23        | <b>Review</b> polymorphism on different<br>derived classes to be treated as<br>objects of their common base class.                                                              | CO 4                   | Remember        |
|      |                                                                 | 24        | Understand and demonstrate<br>polymorphic behavior through<br>function overriding and function<br>overloading.                                                                  | CO 4                   | Understand      |

| S No | Topic(s)                  | TLO<br>No | Topic Learning Outcome                                                                                                                                                                                       | Course<br>Out-<br>come | Blooms<br>Level |
|------|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|
| 13   | Streams and<br>files      | 25        | <b>Illustrate</b> console input and output<br>to create applications that interact<br>with users, and process data.                                                                                          | CO 5                   | Understand      |
|      |                           | 26        | Label objects to store them in files<br>and deserialize them to recreate<br>objects from files.                                                                                                              | CO 5                   | Remember        |
|      |                           | 27        | <b>Demonstrate</b> file-handling<br>operations to enrich programming<br>capabilities to create more<br>sophisticated applications that<br>interact with and manipulate external<br>data sources effectively. | CO 5                   | Understand      |
|      |                           | 28        | <b>Use</b> output with manipulators and<br>predefined manipulators for<br>formatting input and output data.                                                                                                  | CO 6                   | Apply           |
| 14   | Command line<br>arguments | 29        | <b>Interpret</b> software systems and<br>applications to configure and control<br>via command-line arguments.                                                                                                | CO 5                   | Understand      |

## 18. Employability Skills

Example: Communication skills / Programming skills / Project based skills / 1. Programming skills - The tech industry evolves rapidly, and staying up-to-date with the latest programming languages, frameworks, and development practices is crucial. Combining OOP skills with a commitment to continuous learning demonstrates a student's dedication to staying relevant in a dynamic field.

2. Project-based skills - Creating projects that utilize OOP principles allows a student to apply theoretical knowledge to real-world scenarios. This hands-on experience helps solidify their understanding of how OOP concepts work in practice.

## 19. Content Delivery / Instructional Methologies:

| $\checkmark$ | Power Point Presentation | ~ | Chalk & Talk | ~ | Assignments  | x | MOOC   |
|--------------|--------------------------|---|--------------|---|--------------|---|--------|
| x            | Open Ended Experiments   | x | Seminars     | x | Mini Project | ~ | Videos |

## 20. Evaluation Methodology:

The course will be evaluated for a total of 100 marks, with 40 marks for Continuous Internal Assessment (CIA) and 60 marks for Semester End Examination (SEE). CIA is conducted for a total of 40 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for each Definitions and Terminology / Quiz, and the remaining 10 marks for Tech Talk / Assignments.

| Jutime for Continuous internal Assessments (CIA - I and CIA - II) and SEE. |          |          |          |             |  |  |
|----------------------------------------------------------------------------|----------|----------|----------|-------------|--|--|
| Activities                                                                 | CIA - I  | CIA - II | SEE      | Total Marks |  |  |
| Continuous Internal Examination (CIE)                                      | 10 Marks | 10 Marks |          | 20 Marks    |  |  |
| Definitions and Terminology / Quiz                                         | 05 Marks | 05 Marks |          | 10 Marks    |  |  |
| Tech Talk / Assignment                                                     | 05 Marks | 05 Marks |          | 10 Marks    |  |  |
| Semester End Examination (SEE)                                             | -        | -        | 60 Marks | 60 Marks    |  |  |
| Total                                                                      | -        | -        | 100      | Marks       |  |  |

Outling for Continuous Internal Assessments (CIA I and CIA II) and SFF.

Semester End Examination (SEE): The SEE is conducted for 60 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. No choice is given in the first two modules. Each question carries 12 marks. There could be a maximum of two sub-divisions in a question.

### 21. Course content - Number of modules: Five

| MODULE I   | Object-oriented concepts.                                                                                                                                                                                                                                                                               | Number of Lectures: 09                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|            | Objects and legacy systems, procedural versus C<br>top-down and bottom-up approaches and their of<br>applications of OOP, and features of OOP.                                                                                                                                                          | jects and legacy systems, procedural versus Object-oriented programming,<br>-down and bottom-up approaches and their differences, benefits of OOP,<br>plications of OOP, and features of OOP                                                                                                        |  |  |  |  |  |
|            | <b>Abstraction:</b> Layers of abstraction, forms of al mechanisms.                                                                                                                                                                                                                                      | <b>on:</b> Layers of abstraction, forms of abstraction, abstraction s.                                                                                                                                                                                                                              |  |  |  |  |  |
| MODULE II  | Classes and objects                                                                                                                                                                                                                                                                                     | Number of Lectures: 09                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|            | Classes and objects: Object data, object beh<br>attributes, methods, messages, creating class dia<br>Access specifiers and initialization of class<br>members and methods, access specifiers - public<br>allocation. Static members, static methods.                                                    | s and objects: Object data, object behaviors, creating objects,<br>tes, methods, messages, creating class diagrams.<br>s specifiers and initialization of class members: Accessing<br>rs and methods, access specifiers - public, private, protected, memory<br>on. Static members, static methods. |  |  |  |  |  |
| MODULE III | Special member functions and overloading   Number of Lectures: 09                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|            | <b>Constructors and destructors:</b> Need for con<br>constructors, dynamic constructors, parameteriz<br>constructors and destructors with static member<br><b>Overloading:</b> Function overloading, constructor<br>overloading - rules for overloading operators, over<br>operators, friend functions. | structors and destructors, copy<br>eed constructors, destructors,<br>rs.<br>or overloading, operator<br>erloading unary and binary                                                                                                                                                                  |  |  |  |  |  |

| MODULE IV | Inheritance and polymorphism   Number of Lectures: 09                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <ul> <li>Inheritance: types of inheritance, base class, derived class, usage of final, ambiguity in multiple and multipath inheritances, virtual base class, overriding member functions, order of execution of constructors and destructors.</li> <li>Polymorphism and virtual functions: Virtual functions, pure virtual functions, abstract classes, introduction to polymorphism, static polymorphism, dynamic polymorphism.</li> </ul> |
| MODULE V  | Console I/O and working with files   Number of Lectures: 09                                                                                                                                                                                                                                                                                                                                                                                 |
|           | <ul> <li>Console I/O: Concept of streams, hierarchy of console stream classes, unformatted I/O operations, managing output with manipulators.</li> <li>Working with files: Opening, reading, writing, appending, processing, and closing different types of files, and command line arguments.</li> </ul>                                                                                                                                   |

#### **TEXTBOOKS**

1. Matt Weisfeld, *The Object-Oriented Thought Process*, Addison Wesley Object Technology Series, 4th Edition, 2013.

#### **REFERENCE BOOKS:**

- 1. Timothy Budd, *Introduction to object-oriented programming*, Addison Wesley Object Technology Series, 3rd Edition, 2002.
- 2. Gaston C. Hillar, Learning Object-Oriented Programming, Packt Publishing, 2015.
- 3. Kingsley Sage Concise Guide to Object-Oriented Programming, Springer International Publishing, 1st Edition, 2019.
- 4. Rudolf Pecinovsky, OOP Learn Object Oriented Thinking and Programming, Tomas Bruckner, 2013.
- 5. Grady Booch, *Object-oriented analysis and design with applications*, Addison Wesley Object Technology Series, 3rd Edition, 2007.

#### **MATERIALS ONLINE:**

- 1. https://docs.oracle.com/javase/tutorial/java/concepts/
- 2. https://www.w3schools.com/cpp/
- 3. https://www.edx.org/learn/object-oriented-programming
- 4. https://www.geeksforgeeks.org/introduction-of-object-oriented-programming/

## 22. Course plan:

The course plan is meant as a guideline. Probably there may be changes.

| S.No                                                     | Topics to be covered                                         | CO's  | Reference                 |  |  |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------|-------|---------------------------|--|--|--|--|--|
|                                                          | OBE DISCUSSION                                               |       |                           |  |  |  |  |  |
| Discussion on Outcome Based Education, CO, POs, and PSOs |                                                              |       |                           |  |  |  |  |  |
|                                                          | CONTENT DELIVERY (THEORY)                                    |       |                           |  |  |  |  |  |
| 1                                                        | Objects and legacy systems                                   | CO 1  | T1, Pg: 05                |  |  |  |  |  |
| 2                                                        | Object-oriented programming                                  | CO 1  | T1, Pg: 06                |  |  |  |  |  |
| 3                                                        | Procedural versus object-oriented programming                | CO 1  | T1, Pg: 07,<br>R4: Pg: 13 |  |  |  |  |  |
| 4                                                        | Top-down and bottom-up approaches and their differences      | CO 1  | R5: 1.5                   |  |  |  |  |  |
| 5                                                        | Benefits and applications of OOP                             | CO 1  | R5: 1.6                   |  |  |  |  |  |
| 6                                                        | Features of OOP                                              | CO 1  | T1, Pg: 12                |  |  |  |  |  |
| 7                                                        | Abstraction and layers of abstraction                        | CO 1  | R1: 2.1                   |  |  |  |  |  |
| 8                                                        | Forms of abstraction                                         | CO 1  | R1: 2.2                   |  |  |  |  |  |
| 9                                                        | Abstraction mechanisms                                       | CO 1  | R1: 2.3                   |  |  |  |  |  |
| 10                                                       | Object data, object behaviors, creating objects              | CO 2  | T1, Pg:12,<br>13          |  |  |  |  |  |
| 11                                                       | Attributes, methods, messages                                | CO 2  | T1, Pg:19,<br>20          |  |  |  |  |  |
| 12                                                       | Classes                                                      | CO 2  | T1, Pg: 17                |  |  |  |  |  |
| 13                                                       | Creating class diagrams with examples                        | CO 2  | T1, Pg: 20                |  |  |  |  |  |
| 14                                                       | Accessing members                                            | CO 2  | R5: 3.1                   |  |  |  |  |  |
| 15                                                       | Accessing methods                                            | CO 2  | R5: 3.2                   |  |  |  |  |  |
| 16                                                       | Access specifiers - public, private, protected with examples | CO 2  | T1, Pg: 188               |  |  |  |  |  |
| 17                                                       | Memory allocation                                            | CO 2  | T1, Pg: 90                |  |  |  |  |  |
| 18                                                       | Static members, static methods                               | CO 2  | T1, Pg: 90                |  |  |  |  |  |
| 19                                                       | Constructors need constructors and destructors               | CO 3  | T1, Pg: 71                |  |  |  |  |  |
| 20                                                       | Copy constructors with examples                              | CO 3  | R1: 15.1                  |  |  |  |  |  |
| 21                                                       | Dynamic constructors with examples                           | CO 3  | R1: 15.3                  |  |  |  |  |  |
| 22                                                       | Parameterized constructors and destructors                   | CO 3  | R1: 15.3.1                |  |  |  |  |  |
| 23                                                       | Constructors and destructors with static members             | CO 3  | R1: 15.3.2                |  |  |  |  |  |
| 24                                                       | Function overloading, constructor overloading                | CO 3  | R1: 15.3.2                |  |  |  |  |  |
| 25                                                       | Operator overloading - rules for overloading operators       | CO 3  | R1: 15.3.2                |  |  |  |  |  |
| 26                                                       | Overloading unary and binary operators                       | CO 3  | R1: 15.3.2                |  |  |  |  |  |
| 27                                                       | Friend functions                                             | CO 3  | R1: 15.3.2                |  |  |  |  |  |
| 28                                                       | Inheritance and types of inheritance                         | CO 4  | T1, Pg: 153               |  |  |  |  |  |
| 29                                                       | Base class, derived class, usage of final                    | CO 4  | T1, Pg: 45                |  |  |  |  |  |
| 30                                                       | Ambiguity in multiple and multipath inheritance              | CO 45 | T1, Pg: 136               |  |  |  |  |  |

| S.No | Topics to be covered                                                                                                                                                                                                                                     | CO's | Reference              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------|
| 31   | Virtual base class, overriding member functions                                                                                                                                                                                                          | CO 4 | T1, Pg: 137            |
| 32   | Order of execution of constructors and destructors                                                                                                                                                                                                       | CO 4 | T1, Pg: 28<br>R1: 14.1 |
| 33   | Virtual functions, pure virtual functions                                                                                                                                                                                                                | CO 4 | T1, Pg: 28             |
| 34   | Abstract classes                                                                                                                                                                                                                                         | CO 4 | T1, Pg: 21             |
| 35   | Introduction to polymorphism                                                                                                                                                                                                                             | CO 4 | T1, Pg: 21             |
| 36   | Static polymorphism, dynamic polymorphism.                                                                                                                                                                                                               | CO 4 | T1, Pg: 21             |
| 37   | Concept of streams, hierarchy of console stream classes.                                                                                                                                                                                                 | CO 5 | T1, Pg: 225            |
| 38   | Unformatted I/O operations                                                                                                                                                                                                                               | CO 5 | T1, Pg: 221            |
| 39   | Managing output with manipulators and predefined manipulators.                                                                                                                                                                                           | CO 5 | T1, Pg: 225            |
| 40   | Data streams, the opening of a file                                                                                                                                                                                                                      | CO 5 | R1: 2.5                |
| 41   | Reading/writing a character from/into a file                                                                                                                                                                                                             | CO 5 | T1, Pg: 225            |
| 42   | Appending into a file                                                                                                                                                                                                                                    | CO 5 | T1, Pg: 232            |
| 43   | Processing and closing files                                                                                                                                                                                                                             | CO 6 | T1, Pg: 227            |
| 44   | Different types of files and file systems.                                                                                                                                                                                                               | CO 5 | T1, Pg: 226            |
| 45   | Command line arguments                                                                                                                                                                                                                                   | CO 5 | T1, Pg: 228            |
| 46   | Question bank discussion                                                                                                                                                                                                                                 | CO 6 | T1                     |
| 47   | Question bank discussion                                                                                                                                                                                                                                 | CO 6 | T1                     |
| 48   | Question bank discussion                                                                                                                                                                                                                                 | CO 6 | T1                     |
|      | PROBLEM SOLVING/ CASE STUDI                                                                                                                                                                                                                              | ES   |                        |
| 1    | Design a class to represent books with attributes like title,<br>author, and ISBN. Create a class for library patrons with<br>borrowing history and due dates. Implement methods to<br>borrow and return books, tracking availability, and due<br>dates. | CO 1 |                        |
| 2    | Design a class for products with properties like name, price,<br>and description. Develop a shopping cart class that allows<br>users to add and remove products. Use objects to create an<br>interactive shopping experience with calculated totals.     | CO 1 |                        |
| 3    | Create a class for students with attributes like name, age,<br>and enrolment status. Design a class for courses with<br>properties like title, instructor, and schedule. Implement<br>methods to enroll students in courses and track their<br>progress. | CO 1 |                        |
| 4    | Design a class representing a geometric shape (e.g., circle, rectangle). Use the const keyword to declare methods that provide information about the shape without modifying its properties.                                                             | CO 2 |                        |

| S.No | Topics to be covered                                                                                                                                                                                                                                                                                   | CO's | Reference |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 5    | Design a university class with nested classes for departments<br>and courses. Utilize nested classes to represent the<br>hierarchical structure of the university's organization.                                                                                                                      | CO 2 |           |
| 6    | Design a class representing employees with attributes like<br>name, employee ID, and position. Use a constructor to<br>initialize employee information when an object is created.<br>Implement a destructor to handle any cleanup tasks or<br>logging when an employee object is destroyed.            | CO 2 |           |
| 7    | Implement a class for complex numbers with overloaded<br>operators for addition, subtraction, multiplication, and<br>division. Allow users to perform arithmetic operations on<br>complex numbers using intuitive syntax.                                                                              | CO 3 |           |
| 8    | Design a class for representing dates and overload<br>comparison operators. Allow users to compare dates and<br>determine their chronological order.                                                                                                                                                   | CO 3 |           |
| 9    | Create a utility to convert measurements between different<br>units (e.g., inches to centimeters, pounds to kilograms).<br>Utilize type conversion to handle unit conversions based on<br>user input.                                                                                                  | CO 3 |           |
| 10   | Design a base class Character with virtual functions for<br>movement, attack, and interaction. Implement derived<br>classes PlayerCharacter and EnemyCharacter that override<br>the virtual functions. Use polymorphism to handle<br>interactions between various characters in the game.              | CO 4 |           |
| 11   | Create a base class Employee with virtual functions for<br>calculating salary and displaying information. Implement<br>derived classes RegularEmployee and ContractEmployee<br>that override the virtual functions.                                                                                    | CO 4 |           |
| 12   | Design classes representing accounts (e.g., savings, checking)<br>and customers. Use encapsulation to hide sensitive data and<br>provide methods to deposit, withdraw, and check balances.<br>Apply inheritance to create specialized account types, such<br>as VIP accounts with additional features. | CO 4 |           |
| 13   | Develop an application to manage tasks and to-do lists. Use<br>console stream classes to display tasks, prompt users for<br>new tasks, and mark tasks as completed. Enable users to<br>save and load their to-do lists to/from text files using file<br>stream classes.                                | CO 5 |           |
| 14   | Create a calculator application that performs basic<br>arithmetic operations. Utilize console stream classes to<br>prompt users for operands and operators, and display the<br>calculation results.                                                                                                    | CO 5 |           |

| S.No | Topics to be covered                                                                                                                                                               | CO's    | Reference |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 15   | Create a utility that parses and analyzes log files. Read log files, extract relevant information, and present summaries. Use file streams to process large log files efficiently. | CO 5    |           |
|      | DISCUSSION OF DEFINITION AND TERM                                                                                                                                                  | INOLOGY | 1         |
| 1    | Introduction to programming and object legacy.                                                                                                                                     | CO 1    |           |
| 2    | Constructor and destructor.                                                                                                                                                        | CO 2    |           |
| 3    | Operator overloading.                                                                                                                                                              | CO 3    |           |
| 4    | Data hiding.                                                                                                                                                                       | CO 4    |           |
| 5    | Command line arguments.                                                                                                                                                            | CO 5    |           |
|      | DISCUSSION OF TUTORIAL QUESTION                                                                                                                                                    | BANK    |           |
| 1    | Classes and objects.                                                                                                                                                               | CO 1    |           |
| 2    | Constructors and destructors.                                                                                                                                                      | CO 2    |           |
| 3    | Overloading a unary and binary operator using friend<br>function and member function.                                                                                              | CO 3    |           |
| 4    | Ambiguity in derived classes for multipath inheritance.                                                                                                                            | CO 4    |           |
| 5    | Console stream classes.                                                                                                                                                            | CO 5    |           |

# 23. Program outcomes and Program specific outcomes:

|      | Program Outcomes                                                                                                                                                                                                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                         |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                        |
| PO 3 | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations |
| PO 4 | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                       |
| PO 5 | Modern Tool Usage: Create, select, and apply appropriate techniques,<br>resources, and modern Engineering and IT tools including prediction and modelling<br>to complex Engineering activities with an understanding of the limitations                                                         |
| PO 6 | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                      |

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |  |  |  |  |  |  |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |  |  |  |  |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |  |  |  |  |  |  |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |  |  |  |  |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and<br>understanding of the engineering and management principles and apply these to<br>one's own work, as a member and leader in a team, to manage projects and in<br>multidisciplinary environments.                                      |  |  |  |  |  |  |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                 |  |  |  |  |  |  |
|       | Program Specific Outcomes                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| PSO 1 | Build the prototype of UAVs and aero-foil models for testing by using low speed wind tunnel towards research in the area of experimental aerodynamics.                                                                                                                                                   |  |  |  |  |  |  |
| PSO 2 | Focus on formulation and evaluation of aircraft elastic bodies for characterization of aero elastic phenomena.                                                                                                                                                                                           |  |  |  |  |  |  |
| PSO 3 | Make use of multi physics, computational fluid dynamics and flight simulation<br>tools for building career paths towards innovative startups, employability and<br>higher studies.                                                                                                                       |  |  |  |  |  |  |

## 24. How program outcomes are assessed:

|      | Program Outcomes                                                                                                                                                                                                                                         | Strength | Proficiency<br>Assessed by |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                  | 3        | CIE/SEE                    |
| PO 2 | <b>Problem analysis:</b> Identity, formulate, review<br>research literature, and analyze complex engineering<br>problems reaching substantiated conclusions using<br>the first principles of mathematics, natural sciences,<br>and engineering sciences. | 2        | CIE/SEE                    |

| PO 3  | <b>Design/Development of Solutions:</b> Design<br>solutions for complex Engineering problems and<br>design system components or processes that meet<br>the specified needs with appropriate consideration<br>for public health and safety, and cultural, societal,<br>and Environmental considerations.                | 3 | CIE/SEE                                     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------|
| PO 5  | Modern Tool Usage: Create, select and apply<br>appropriate techniques, resources, and modern<br>Engineering and IT tools including prediction and<br>modeling to complex Engineering activities with an<br>understanding of the limitations.                                                                           | 3 | CIE/SEE                                     |
| PO 10 | <b>Communication:</b> Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as being<br>able to comprehend and write effective reports and<br>design documentation, make effective presentations,<br>and give and receive clear instructions. | 2 | Tech<br>talk/Definitions<br>and terminology |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                                | 2 | CIE/SEE                                     |

### 25. How program-specific outcomes are assessed:

|       | Program Specific Outcomes                                                                                                                                                             | Strength | Proficiency<br>Assessed by                                   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|
| PSO 3 | Make use of multi physics, computational fluid<br>dynamics and flight simulation tools for building<br>career paths towards innovative startups,<br>employability and higher studies. | 3        | Tech talk<br>/Definitions and<br>terminology/<br>Assignments |

3 = High; 2 = Medium; 1 = Low

### 26. Mapping of each CO with PO(s), PSO(s):

|         | PROGRAM OUTCOMES |              |              |    |              |    |    |    |    |              |    |              | PSO'S |     |              |
|---------|------------------|--------------|--------------|----|--------------|----|----|----|----|--------------|----|--------------|-------|-----|--------------|
| COURSE  | РО               | PO           | PO           | PO | PO           | PO | PO | PO | PO | PO           | PO | PO           | PSO   | PSO | PSO          |
| OUTCOME | 1                | 2            | 3            | 4  | 5            | 6  | 7  | 8  | 9  | 10           | 11 | 12           | 1     | 2   | 3            |
| CO 1    | $\checkmark$     | -            | -            | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | -            | -     | -   | -            |
| CO 2    | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | -            | -     | -   | $\checkmark$ |
| CO 3    | $\checkmark$     | -            | $\checkmark$ | -  | $\checkmark$ | -  | -  | -  | -  | -            | -  | -            | -     | -   | $\checkmark$ |
| CO 4    | $\checkmark$     | -            | $\checkmark$ | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | $\checkmark$ | -     | -   | $\checkmark$ |
| CO 5    | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | $\checkmark$ | _  | -  | _  | _  | _            | -  | -            | -     | -   | -            |
| CO 6    | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | $\checkmark$ | -     | -   | $\checkmark$ |

27. Justifications for CO – PO / PSO mapping - DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                          | No. of Key<br>Competencies |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 1          | Understand (knowledge) the basic concept of<br>object-oriented programming while evaluating<br>mathematical expressions in program statements. These<br>concepts provide insight into expression evaluation by<br>applying the principles of mathematics and science.                         | 3                          |
|                    | PO 5          | With the help of modern engineering tools, we can easily<br>understand the basic concept of objects and classes while<br>evaluating mathematical expressions in program<br>statements.                                                                                                        | 1                          |
|                    | PO 10         | Extend the knowledge of object-oriented programming to communicate effectively with the engineering community.                                                                                                                                                                                | 1                          |
| CO 2               | PO 1          | By applying the knowledge of mathematics, science, and<br>engineering fundamentals we can effectively use the<br>properties of OOP.                                                                                                                                                           | 3                          |
|                    | PO 2          | Apply nested classes in problem identification, statement, and validation.                                                                                                                                                                                                                    | 5                          |
|                    | PO 3          | Apply constructors and destructors to investigate and<br>understand different complex engineering problems<br>efficiently.                                                                                                                                                                    | 8                          |
|                    | PO 5          | Apply static members to model complex engineering activities.                                                                                                                                                                                                                                 | 1                          |
|                    | PO 10         | Communicate effectively on complex engineering activities<br>with the engineering community and with society at large,<br>such as being able to comprehend and write effective<br>reports and design documentation, make effective<br>presentations, and give and receive clear instructions. | 3                          |
|                    | PSO 3         | Acquire sufficient knowledge of object-oriented concepts<br>and apply it in real-time to build a successful career and do<br>higher studies.                                                                                                                                                  | 2                          |
| CO 3               | PO 1          | Summarize indexing and slicing mechanisms for extracting<br>a portion of data in a sequence using principles of<br>mathematics, and engineering fundamentals.                                                                                                                                 | 8                          |
|                    | PO 3          | Demonstrate the importance of indexing mechanisms in<br>sequences while developing solutions for complex<br>engineering problems and design systems using principles<br>of mathematics, science, and engineering fundamentals.<br>Use creativity to develop more innovative solutions.        | 6                          |
|                    | PO 5          | Demonstrate overloading operators with the usage of modern tools.                                                                                                                                                                                                                             | 1                          |
|                    | PSO 3         | Infer sufficient knowledge of container data types and<br>apply it in real-time for building a successful career and<br>doing higher studies.                                                                                                                                                 | 2                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                   | No. of Key<br>Competencies |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 4               | PO 1          | Demonstrate different modules/packages in object-oriented<br>programming while developing solutions using the<br>fundamentals of mathematics, science, and engineering.                                                                                                | 3                          |
|                    | PO 3          | Understand the usage of modules/packages while<br>developing solutions for complex engineering problems and<br>design systems using principles of mathematics, science,<br>and engineering fundamentals. Use creativity to develop<br>more innovative solutions.       | 8                          |
|                    | PO 5          | Interpret different string functions by using modern tools.                                                                                                                                                                                                            | 1                          |
|                    | PO 10         | Extend the focus to understanding the usage of modules/packages and communicating effectively with the engineering community.                                                                                                                                          | 2                          |
|                    | PO 12         | Summarize string handling functions that involve<br>manipulating and managing text or character data for<br>tasks like data validation, formatting, and communication.                                                                                                 | 7                          |
|                    | PSO 3         | Illustrate modern computer tools in implementing string<br>handling mechanisms for various applications to become a<br>successful professional in the domains.                                                                                                         | 2                          |
| CO 5               | PO 1          | Make use of parameter passing and different types of<br>arguments in user-defined functions to design efficient<br>modular programs by applying the knowledge of<br>mathematics, science, and Engineering fundamentals.                                                | 3                          |
|                    | PO 2          | Apply modular programming concepts for problem identification, formulation, and data collection.                                                                                                                                                                       | 8                          |
|                    | PO 3          | Select a strong foundation for writing efficient modular<br>programs using parameter-passing mechanisms for career<br>building by understanding the requirements and<br>communicating effectively with the engineering community.                                      | 7                          |
|                    | PO 5          | Develop different functions by using modern tools.                                                                                                                                                                                                                     | 1                          |
| CO 6               | PO 1          | Apply scientific principles and methodologies,<br>mathematical principles, and other engineering disciplines<br>for procedural and object-oriented programming.                                                                                                        | 3                          |
|                    | PO 2          | Apply object-oriented concepts in problem identification,<br>statement, and validation.                                                                                                                                                                                | 7                          |
|                    | PO 3          | Identify the need for object-oriented concepts while<br>developing solutions for complex engineering problems and<br>design systems using principles of mathematics, science,<br>and engineering fundamentals. Use creativity to develop<br>more innovative solutions. | 7                          |
|                    | PO 5          | Develop object-oriented principles using modern tools.                                                                                                                                                                                                                 | 1                          |
|                    | PO 10         | Apply the knowledge of object-oriented programming to<br>communicate effectively with the engineering community.                                                                                                                                                       | 2                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                             | No. of Key<br>Competencies |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                    | PO 12         | Identify the need for object-oriented principles for the<br>preparation and the ability to engage in independent and<br>lifelong learning        | 6                          |
|                    | PSO 3         | Acquire sufficient knowledge of object-oriented concepts<br>and apply it in real-time to build a successful career and<br>pursue higher studies. | 2                          |

### 28. Total count of key competencies for CO – PO / PSO mapping:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    | PSO'S |    |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|-------|----|-----|-----|-----|
| COURSE   | РО | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO    | PO | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11    | 12 | 1   | 2   | 3   |
| CO 1     | 3  | -                | -  | -  | 3  | -  | -  | -  | -  | 1  | -     | -  | -   | -   | -   |
| CO 2     | 3  | 2                | 3  | -  | 3  | -  | -  | -  | -  | 3  | -     | -  | -   | -   | 3   |
| CO 3     | 3  | -                | 3  | -  | 3  | -  | -  | -  | -  | -  | -     | -  | -   | -   | 3   |
| CO 4     | 3  | -                | 3  | -  | 3  | -  | -  | -  | -  | 2  | -     | 3  | -   | -   | 3   |
| CO 5     | 3  | 2                | 3  | -  | 3  | -  | -  | -  | -  | -  | -     | -  | -   | -   | -   |
| CO 6     | 3  | 3                | 3  | -  | 3  | -  | -  | -  | -  | 2  | -     | 3  | -   | -   | 3   |

## 29. Percentage of key competencies CO – PO / PSO:

|          |     | PROGRAM OUTCOMES |     |     |     |     |     |     |     |     | PSO'S |     |     |     |     |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|
| COURSE   | РО  | РО               | РО  | РО  | РО  | РО  | РО  | РО  | РО  | РО  | РО    | РО  | PSO | PSO | PSO |
| OUTCOMES | 1   | 2                | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11    | 12  | 1   | 2   | 3   |
| CO 1     | 100 | 0.0              | 0.0 | 0.0 | 100 | 0.0 | 0.0 | 0.0 | 0.0 | 20  | 0.0   | 0.0 | 0.0 | 0.0 | 0.0 |
| CO 2     | 100 | 50               | 80  | 0.0 | 100 | 0.0 | 0.0 | 0.0 | 0.0 | 60  | 0.0   | 0.0 | 0.0 | 0.0 | 100 |
| CO 3     | 100 | 0.0              | 60  | 0.0 | 100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0   | 0.0 | 0.0 | 0.0 | 100 |
| CO 4     | 100 | 0.0              | 80  | 0.0 | 100 | 0.0 | 0.0 | 0.0 | 0.0 | 40  | 0.0   | 88  | 0.0 | 0.0 | 100 |
| CO 5     | 100 | 80               | 70  | 0.0 | 100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0   | 0.0 | 0.0 | 0.0 | 0.0 |
| CO 6     | 100 | 80               | 70  | 0.0 | 100 | 0.0 | 0.0 | 0.0 | 0.0 | 40  | 0.0   | 75  | 0.0 | 0.0 | 100 |

## 30. Course articulation matrix PO / PSO mapping:

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- $1-5 < C \le 40\% Low/$  Slight
- 2 40 % < C < 60% –Moderate
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

|          |         | PROGRAM OUTCOMES |         |    |     |    |         |    |    |          | PSO'S    |          |       |          |     |
|----------|---------|------------------|---------|----|-----|----|---------|----|----|----------|----------|----------|-------|----------|-----|
| COURSE   | PO<br>1 | PO               | PO<br>2 | PO | PO  | PO | PO<br>7 | PO | PO | PO<br>10 | PO<br>11 | PO<br>12 | PSO 1 | PSO 2    | PSO |
| OUTCOMES | T       | 2                | 3       | 4  | 5   | 0  | 1       | 0  | 9  | 10       | 11       | 12       | 1     | <u> </u> | ა   |
| CO 1     | 3       | -                | -       | -  | 3   | -  | -       | -  | -  | 1        | -        | -        | -     | -        | -   |
| CO 2     | 3       | 2                | 3       | -  | 3   | -  | -       | -  | -  | 3        | -        | -        | -     | -        | 3   |
| CO 3     | 3       | -                | 3       | -  | 3   | -  | -       | -  | -  | -        | -        | -        | -     | -        | 3   |
| CO 4     | 3       | -                | 3       | -  | 3   | -  | -       | -  | -  | 2        | -        | 3        | -     | -        | 3   |
| CO 5     | 3       | 2                | 3       | -  | 3   | -  | -       | -  | -  | -        | -        | -        | -     | -        | -   |
| CO 6     | 3       | 3                | 3       | -  | 3   | -  | -       | -  | -  | 2        | -        | 3        | -     | -        | 3   |
| TOTAL    | 18      | 7                | 15      | -  | 18  | -  | -       | -  | -  | 8        | -        | 6        | -     | -        | 12  |
| AVERAGE  | 3       | 2.3              | 3       | -  | 3.0 |    | -       | -  | -  | 2.0      | -        | 3.0      | -     | -        | 3.0 |

## **31.** Assessment methodology - Direct:

| CIE Exams                      | $\checkmark$ | SEE Exams                      | $\checkmark$ | Seminars                  | -                     |
|--------------------------------|--------------|--------------------------------|--------------|---------------------------|-----------------------|
| Laboratory<br>Practices        | -            | Student Viva                   | -            | Certification             | -                     |
| Definitions and<br>Terminology | ~            | Tech talk / 5<br>Minutes Video | ~            | Open Ended<br>Experiments | -                     |
| Assignments                    | $\checkmark$ | Quiz                           | $\checkmark$ | Tech Talk                 | <ul> <li>✓</li> </ul> |

## 32. Assessment methodology - Indirect:

| x | Assessment of mini projects by | $\checkmark$ | End Semester OBE Feedback |
|---|--------------------------------|--------------|---------------------------|
|   | experts                        |              |                           |

## 33. Relevance to Sustainability goals

Write a brief description of the course and its relevance to SDGs.

| 1 | NO<br>POVERTY<br>MXAAA |  |
|---|------------------------|--|
| 2 |                        |  |

| 3 | GOOD HEALTH<br>AND WELL-BEING              |                                                                                                                                                                                                                                                                                                                   |
|---|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | QUALITY<br>EDUCATION                       | <b>Quality education:</b> Guarantee an education system that is both inclusive and fair, offering high-quality learning experiences and lifelong opportunities accessible to all.                                                                                                                                 |
| 5 |                                            |                                                                                                                                                                                                                                                                                                                   |
| 6 | CLEAN WATER<br>AND SANITATION              |                                                                                                                                                                                                                                                                                                                   |
| 7 | AFFORDABLE AND<br>CLEAN ENERGY             |                                                                                                                                                                                                                                                                                                                   |
| 8 | DECENT WORK AND<br>ECONOMIC GROWTH         |                                                                                                                                                                                                                                                                                                                   |
| 9 | INDUSTRY, INNOVATION<br>AND INFRASTRUCTURE | <b>Industry, innovation, and infrastructure:</b> Strong OOP skills<br>enable to design and development of services like microservice<br>architecture, cloud computing, machine learning, and AI integration in<br>a modular and maintainable way, contributing to a more flexible and<br>scalable infrastructure. |

| 10 | REDUCED<br>INEQUALITIES                      |                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 |                                              | <b>Sustainable cities and communities:</b> OOP skills can develop<br>software solutions that contribute to urban sustainability, improve<br>quality of life, and address challenges like smart city solutions, energy<br>efficiency and monitoring, waste management systems, public<br>transportation optimization, environmental sensor networks,<br>education, and awareness faced by modern cities. |
| 12 | RESPONSIBLE<br>CONSUMPTION<br>AND PRODUCTION |                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13 | CLIMATE<br>ACTION                            |                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14 | LIFE BELOW<br>WATER                          |                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15 | LIFE<br>ON LAND                              |                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16 | PEACE, JUSTICE<br>AND STRONG<br>INSTITUTIONS |                                                                                                                                                                                                                                                                                                                                                                                                         |

| PARTNERSHIPS<br>For the goals | TNERSHIPS<br>The goals              |
|-------------------------------|-------------------------------------|
|                               | $\langle \boldsymbol{\chi} \rangle$ |
| 8                             | \$                                  |

Approved by: Board of Studies in the meeting conducted on 28-08-2023.

Signature of Course Coordinator Mr. Athota Rathan Babu, Assistant Professor HOD AE



## INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE TEMPLATE

| 1  | Department              | AERONAUTICAL ENGINEERING |                                       |                        |                         |  |  |  |  |
|----|-------------------------|--------------------------|---------------------------------------|------------------------|-------------------------|--|--|--|--|
| 2  | Course Title            | PROFESS                  | PROFESSIONAL COMMUNICATION LABORATORY |                        |                         |  |  |  |  |
| 3  | Course Code             | AHSD04                   | AHSD04                                |                        |                         |  |  |  |  |
| 4  | Program                 | B.Tech                   |                                       |                        |                         |  |  |  |  |
| 5  | Semester                | I Semester               |                                       |                        |                         |  |  |  |  |
| 6  | Regulation              | BT23                     |                                       |                        |                         |  |  |  |  |
|    |                         | Practical                |                                       |                        |                         |  |  |  |  |
| 7  | Structure of the course |                          | Lecture Hours                         | Practical Hours        |                         |  |  |  |  |
|    |                         |                          | 3                                     | 3                      |                         |  |  |  |  |
| 8  | Course Offered          | Odd Semest               | er 🖌                                  | Even Semester $\times$ |                         |  |  |  |  |
| 9  | Course Coordinator      | Dr Jetty Wi              | ilson                                 |                        |                         |  |  |  |  |
| 10 | Date Approved by BOS    | 24/08/2023               |                                       |                        |                         |  |  |  |  |
| 11 | Course Webpage          | https://www              | w.iare.ac.in/?q                       | =pages/btech           | -course-syllabi-bt23-ae |  |  |  |  |
|    |                         | Level                    | Course                                | Semester               | Prerequisites           |  |  |  |  |
| 10 |                         |                          | Code                                  |                        |                         |  |  |  |  |
| 12 | Course Prerequistes     | B.Tech                   | AHSD04                                | Ι                      | -                       |  |  |  |  |

### 13. Course Overview

This laboratory course is designed to introduce students to create a wide exposure on language learning techniques of the basic elements of listening skills, speaking skills, reading skills and writing skills. In this laboratory, students are trained in communicative English language skills, phonetics, word accent, word stress, rhythm, intonation, oral presentations and extempore speeches. Students are also taught in terms of seminars, group-discussions, presenting techniques of writing, participating in role plays, telephonic etiquettes, asking and giving directions, information transfer, debates, description of persons, places and objects etc. The laboratory encourages students to work in a group, engage in peer-reviews and inculcate team spirit through various exercises on grammar, vocabulary, and pronunciation games etc. Students will make use of all these language skills in academic, professional and real time situations.

#### **18. COURSE OBJECTIVES:**

#### The students will try to learn:

| Ι   | English speech sounds, word accent, intonation and stress patterns for effective pronunciation.        |
|-----|--------------------------------------------------------------------------------------------------------|
| II  | Critical aspect of speaking and reading for interpreting in-depth meaning between the sentences.       |
| III | Language techniques for social interactions such as public speaking, group discussions and interviews. |

| IV | Computer-assisted multi-media instructions and independent language learning. |
|----|-------------------------------------------------------------------------------|
|    | compater appleted mater modula more determinate enderer anguage rearming.     |

## **19. COURSE OUTCOMES:**

#### After successful completion of the course, students should be able to:

| CO 1 | Articulate the use of draw, modify and dimension commands of            |            |  |  |  |  |  |
|------|-------------------------------------------------------------------------|------------|--|--|--|--|--|
|      | AutoCAD for development of 2D and 3D drawings.                          |            |  |  |  |  |  |
| CO 2 | Differentiatestress shifts, syllabification and make use of past tense  | Understnad |  |  |  |  |  |
|      | and plural markers effectively in connected speech; besides participate |            |  |  |  |  |  |
|      | in role plays with confidence.                                          |            |  |  |  |  |  |
| CO 3 | Apply weak forms and strong forms in spoken language and maintain       | Understand |  |  |  |  |  |
|      | intonation patterns as a native speaker to avoid mother tongue          |            |  |  |  |  |  |
|      | influence; moreover, practice various etiquettes at professional        |            |  |  |  |  |  |
|      | platform.                                                               |            |  |  |  |  |  |
| CO 4 | <b>Demonstrate</b> Errors in pronunciation and the decorum of oral      | Understand |  |  |  |  |  |
|      | presentations; for that reason, take part joining in group discussions  |            |  |  |  |  |  |
|      | and debates with much critical observations                             |            |  |  |  |  |  |
| CO 5 | Strengthen writing effective messages, notices, summaries and also      | Understnad |  |  |  |  |  |
|      | able to write reviews very critically of art and academical videos.     |            |  |  |  |  |  |
| CO 6 | Argue scholarly, giving the counters to open ended experiments, and     | Understand |  |  |  |  |  |
|      | also writing slogans for the products talentedly.                       |            |  |  |  |  |  |

### 14. Employability Skills

1. **Employment advantage:**Effective English language and communication skills are crucial in many aspects of life, including education, business, workplace and social interactions. Proficient English language skills enable individuals to express themselves clearly, understand others, and engage in meaningful conversations. As the primary language of communication across the globe, proficiency in English is a highly sought-after skill in the international workplace and one of the benefits of learning English is therefore that it significantly boosts our job opportunities

### 16. Content Delivery / Instructional Methologies:

| ~ | Day to Day     | ~ | Demo       | ~ | Viva Voce      | x | ()<br>Open Ended             |
|---|----------------|---|------------|---|----------------|---|------------------------------|
|   | lab evaluation |   | Video      |   | questions      |   | Experiments                  |
| x | Competitions   | x | hackathons | x | Certifications | x | Probing Further<br>Questions |
### **17.** Evaluation Methodology:

Each laboratory will be evaluated for a total of 100 marks consisting of 40 marks for internal assessment and 60 marks for semester end lab examination. Out of 40 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance including viva voce, 10 marks for the final internal lab assessment and remaining 10 marks for The remaining 10 marks are for Laboratory Report/Project and Presentation, which consists of the Design (or) Software / Hardware Model Presentation (or) App Development (or) Prototype Presentation submission which shall be evaluated after completion of laboratory course and before semester end practical examination.

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 40 marks (Table 1), with 20 marks for continuous lab assessment during day-to-day performance including viva voce, 10 marks for final internal lab assessment and remaining 10 marks for Laboratory Report / Project and Presentation.

| Table 3: CIA marks distribution |                                                           |                                  |                                                    |             |  |  |  |  |  |
|---------------------------------|-----------------------------------------------------------|----------------------------------|----------------------------------------------------|-------------|--|--|--|--|--|
| Component                       |                                                           |                                  |                                                    |             |  |  |  |  |  |
| Type of Assessment              | Day to Day<br>performance<br>and viva voce<br>examination | Final internal<br>lab assessment | Laboratory<br>Report / Project<br>and Presentation | Total Marks |  |  |  |  |  |
| CIA marks                       | 20                                                        | 10                               | 10                                                 | 40          |  |  |  |  |  |

#### Continuous Internal Examination (CIE): One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### Table 4: Experiment based

| Objective | Analysis | Design | Conclusion | Viva voce | Total |
|-----------|----------|--------|------------|-----------|-------|
|           |          |        |            |           | 20    |

#### Table 5: Programming based

| Objective | Analysis | Design | Viva voce | Total |    |
|-----------|----------|--------|-----------|-------|----|
|           |          |        |           |       | 20 |

#### **Semester End Examination:**

The Semester End Examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed from the other colleges which will be decided by the Head of the institution.

In the Semester End Examination held for 3 hours, total 60 marks are divided and allocated as shown below:

- 1. 10 marks for write-up
- 2. 15 for experiment/program
- 3. 15 for evaluation of results
- 4. 10 marks for presentation on another experiment/program in the same laboratory course and
- 5. 10 marks for viva-voce on concerned laboratory course.

# 20. SYLLABUS:

| CO 1 | Recognise English speech sounds in order to execute formal and informal communication                                                   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|
|      | 1. Introduction to pronunciation                                                                                                        |
|      | 2. Introducing self and introducing others and feedback                                                                                 |
|      | 3. Introduction to phonetics, listening to English sounds, Vowel and Consonant sounds                                                   |
|      | 4. Describing a person or place or a thing using relevant adjectives – feedback                                                         |
|      | 5. Pronunciation practice                                                                                                               |
| CO 2 | Construct required dialogues in role plays in verbal communication                                                                      |
|      | 1. Role plays on fixed expressions in various situations                                                                                |
|      | 2. Structure of syllables                                                                                                               |
|      | 3. Asking for directions and giving directions                                                                                          |
|      | 4. Weak forms and strong forms                                                                                                          |
|      | 5. Intonation                                                                                                                           |
| CO 3 | ADifferentiate mother tongue influence while speaking English in JAM sessions, debates, group discussions and telephonic conversations. |
|      | 1. Word accent and stress shifts                                                                                                        |
|      | 2. JAM Sessions using public address system                                                                                             |
|      | 3. Extempore-Picture                                                                                                                    |
|      | 4. Etiquette                                                                                                                            |
|      | 5. Debates                                                                                                                              |
|      | 6. Listening comprehension                                                                                                              |
|      | 7. Group discussion                                                                                                                     |
| CO 4 | Pronounce past tense and plural markers and weak forms and strong<br>forms as a native speaker.                                         |
|      | 1. Past tense and plural markers                                                                                                        |
|      | 2. Neutralization of Mother Tongue Influence (MTI)                                                                                      |
|      | 3. Weak forms and strong forms                                                                                                          |
|      | 4. Common errors in pronunciation practice through tongue twisters                                                                      |
|      | 5. Minimal pairs                                                                                                                        |
|      |                                                                                                                                         |

| CO 5 | Demonstrate the techniques of writing leaflets, messages and notices                                                                                                                                                                            |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | <ol> <li>Writing slogan related to the image</li> <li>Providing reviews and remarks</li> <li>Writing slogan related to the image</li> <li>Demonstration on how to write leaflets, messages and notices</li> </ol>                               |
| CO 6 | Use language appropriately during interviews and oral presentations.                                                                                                                                                                            |
|      | <ol> <li>Oral presentations</li> <li>Techniques and methods to write summaries and reviews of videos</li> <li>Information transfer</li> <li>Open ended experiments-phonetics practice</li> <li>Open ended experiments-text to speech</li> </ol> |

Note: One Course Outcome may be mapped to multiple number of experiments. **TEXTBOOKS** 

1. Professional Communication laboratory manual.

#### **REFERENCE BOOKS:**

- 1. Meenakshi Raman, Sangeetha Sharma, Technical Communication Principles and Practices, Oxford University Press, New Delhi, 3rd Edition, 2015..
- 2. Rhirdion, Daniel, Technical Communication, Cengage Learning, New Delhi, 1st Edition, 2009..

#### MATERIALS ONLINE:

- 1. Cambridge online pronunciation dictionary https://dictionary.cambridge.org/
- 2. Cambridge online pronunciation dictionary https://dictionary.cambridge.org/
- 3. Repeat after us https://brycs.org/clearinghouse/3018/
- 4. Language lab https://brycs.org/clearinghouse/3018/
- 5. Oxford online videos

# 22. COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY** 

# 33. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                                                                         | CO's | Reference  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| 1    | CALL LAB: Introduction to pronunciation<br>ICS LAB: Introducing self and introducing others and<br>feedback:                                                                                 | CO 1 | Understnad |
| 2    | CALL LAB: Introduction to phonetics, listening to English<br>sounds, Vowel and Consonant sounds.<br>ICS LAB: Describing a person or place or a thing using<br>relevant adjectives – feedback | CO 1 | Understnad |
| 3    | CALL LAB: Structure of syllables.<br>ICS LAB: JAM Sessions using public address system                                                                                                       | CO 2 | Understnad |
| 4    | CALL LAB: Word accent and stress shifts.<br>ICS LAB: Asking for directions and giving directions                                                                                             | CO 2 | Understand |
| 5    | CALL LAB: Past tense and plural markers<br>ICS LAB: Role plays on fixed expressions in various<br>situations                                                                                 | CO 2 | Understand |
| 6    | CALL LAB: Weak forms and strong forms<br>ICS LAB: Extempore-Picture                                                                                                                          | CO 3 | Understand |
| 7    | CALL LAB: Intonation<br>ICS LAB: Interpretation of Proverbs and Idioms                                                                                                                       | CO 3 | Understand |
| 8    | CALL LAB: Neutralization of Mother Tongue Influence<br>(MTI)<br>ICS LAB: Etiquette                                                                                                           | CO 3 | Understand |

| S.No | Topics to be covered                                                                                                                                      | CO's | Reference  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| 9    | CALL LAB: Common errors in pronunciation practice<br>through tongue twisters<br>ICS LAB: Oral Presentations                                               | CO 4 | Understand |
| 10   | CALL LAB: Minimal pairs<br>ICS LAB: Debates                                                                                                               | CO 4 | Understand |
| 11   | CALL LAB: Listening comprehension<br>ICS LAB: Group discussion                                                                                            | CO 4 | Understand |
| 12   | CALL LAB: Demonstration on how to write leaflets,<br>messages and notices.<br>ICS LAB: Techniques and methods to write summaries and<br>reviews of videos | CO 5 | Understand |
| 13   | CALL LAB: Pronunciation practice<br>ICS LAB: Information transfer                                                                                         | CO 5 | Understand |
| 14   | CALL LAB; Open Ended Experiments-Phonetics Practice<br>ICS LAB: Providing reviews and remarks                                                             | CO 6 | Understand |
| 15   | CALL LAB: Open Ended experiments-Text to Speech.<br>ICS LAB: Writing slogan related to the image                                                          | CO 6 | Understand |

# 23. PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES:

|      | Program Specific Outcomes                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                         |  |  |  |  |  |  |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                        |  |  |  |  |  |  |
| PO 3 | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations |  |  |  |  |  |  |
| PO 4 | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                       |  |  |  |  |  |  |
| PO 5 | Modern Tool Usage: Create, select, and apply appropriate techniques, resources,<br>and modern Engineering and IT tools including prediction and modelling to<br>complex Engineering activities with an understanding of the limitations                                                         |  |  |  |  |  |  |
| PO 6 | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                             |  |  |  |  |  |  |

|       | Program Specific Outcomes                                                                                                                                                                                                                                                                                |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                 |
|       | Program Specific Outcomes                                                                                                                                                                                                                                                                                |
| PSO 1 | Build the prototype of UAVs and aero-foil models for testing by using low speed wind tunnel towards research in the area of experimental aerodynamics.                                                                                                                                                   |
| PSO 2 | Focus on formulation and evaluation of aircraft elastic bodies for characterization of aero elastic phenomena.                                                                                                                                                                                           |
| PSO 3 | Make use of multi physics, computational fluid dynamics and flight simulation tools<br>for building career paths towards innovative startups, employability and higher<br>studies.                                                                                                                       |

# 24. HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | Program Outcomes                                                                                                                                                                                                                                                                                                       | Strength | Proficiency<br>Assessed by |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                                 | 3        | CIE/Quiz/AAT               |
| PO 10 | <b>Communication:</b> Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and write effective reports and<br>design documentation, make effective presentations,<br>and give and receive clear instructions | 5        | CIE/Quiz/AAT               |

# 25. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes                                                                                                                                                             | Strength | Proficiency<br>Assessed by |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PSO 1 | Build the prototype of UAVs and aero-foil models<br>for testing by using low speed wind tunnel towards<br>research in the area of experimental aerodynamics.                          | _        | -                          |
| PSO 2 | Focus on formulation and evaluation of aircraft<br>elastic bodies for characterization of aero elastic<br>phenomena                                                                   | _        | -                          |
| PSO 3 | Make use of multi physics, computational fluid<br>dynamics and flight simulation tools for building<br>career paths towards innovative startups,<br>employability and higher studies. | -        | -                          |

3 = High; 2 = Medium; 1 = Low

# 26. MAPPING OF EACH CO WITH PO(s), PSO(s):

|         | PROGRAM OUTCOMES |    |    |    |    |    |    |    |              |              |    | PSO'S |     |     |     |
|---------|------------------|----|----|----|----|----|----|----|--------------|--------------|----|-------|-----|-----|-----|
| COURSE  | РО               | PO | PO | PO | PO | РО | PO | PO | PO           | PO           | PO | PO    | PSO | PSO | PSO |
| OUTCOME | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9            | 10           | 11 | 12    | 1   | 2   | 3   |
| CO 1    | -                | -  | -  | -  | -  | -  | -  | -  | -            | $\checkmark$ | -  | -     | -   | -   | -   |
| CO 2    | -                | -  | -  | -  | -  | -  | -  | -  | $\checkmark$ | $\checkmark$ | -  | -     | -   | -   | -   |
| CO 3    | -                | -  | -  | -  | -  | -  | -  | -  | $\checkmark$ | $\checkmark$ | -  | -     | -   | -   | -   |
| CO 4    | -                | -  | -  | -  | -  | -  | -  | -  |              | $\checkmark$ | -  | -     | -   | -   | -   |
| CO 5    | -                | -  | -  | -  | -  | -  | -  | -  |              | $\checkmark$ | -  | -     | -   | -   | -   |
| CO 6    | -                | -  | -  | -  | -  | -  | -  | -  | $\checkmark$ | $\checkmark$ | -  | -     | -   | -   | -   |

### 27. JUSTIFICATIONS FOR CO – PO / PSO MAPPING - DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S  | Justification for mapping (Students will be able to)                                                                                                 | No. of Key<br>Competencies |
|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 10          | Discuss the significance of individual learning and the<br>advantages of being a team member and also develop<br>leadership qualities.               | 5                          |
| CO 2               | PO 9,<br>PO 10 | Demonstrate about roleplays and its impact to enhance<br>fluency levels. Strengthen word accent and stress shifts<br>while doing group discussions.  | 3, 5                       |
| CO 3               | PO 9,<br>PO 10 | Use intonation in connected speech while participating<br>debates. Identify the number syllables in words and<br>pronounce them as a native speaker. | 3, 5                       |
| CO 4               | PO 10          | Pronouns the sentences within the tone boundaries<br>maintaining the melody of the language                                                          | 3                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S  | Justification for mapping (Students will be able to)                                                                                                                           | No. of Key<br>Competencies |
|--------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 5               | PO 10          | Interpret writing leaflets, messages and notices like a professional.                                                                                                          | 5                          |
| CO 6               | PO 9,<br>PO 10 | Explain the procedure of preparing for interviews and<br>academical oral presentations. Besides, recognising English<br>speech sounds in order to maintain speaking efficiency | 3, 5                       |

### 28. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    | PSO'S |    |    |    |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|-------|----|----|----|-----|-----|-----|
| COURSE   | РО | PO               | PO | РО | PO | РО | PO | РО | PO    | PO | PO | PO | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9     | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1     | -  | -                | -  | -  | -  | -  | -  | -  | -     | 5  | -  | -  | -   | -   | -   |
| CO 2     | -  | -                | -  | -  | -  | -  | -  | -  | 3     | 5  | -  | -  | -   | -   | -   |
| CO 3     | -  | -                | -  | -  | -  | -  | -  | -  | 3     | 5  | -  | -  | -   | -   | -   |
| CO 4     | -  | -                | -  | -  | -  | -  | -  | -  | -     | 5  | -  | -  | -   | -   | -   |
| CO 5     | -  | -                | -  | -  | -  | -  | -  | -  | -     | 5  | -  | -  | -   | -   | -   |
| CO 6     | -  | -                | -  | -  | -  | -  | -  | -  | 3     | 5  | -  | -  | -   | -   | -   |

# 29. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |     |     | PSO'S |    |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|-----|-----|-------|----|-----|-----|-----|
| COURSE   | РО | РО               | РО | РО | PO | PO | PO | РО | РО  | PO  | РО    | PO | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9   | 10  | 11    | 12 | 1   | 2   | 3   |
| CO 1     | -  | -                | -  | -  | -  | -  | -  | -  | -   | 100 | -     | -  | -   | -   | -   |
| CO 2     | -  | -                | -  | -  | -  | -  | -  | -  | 100 | 100 | -     | -  | -   | -   | -   |
| CO 3     | -  | -                | -  | -  | -  | -  | -  | -  | 100 | 100 | -     | -  | -   | -   | -   |
| CO 4     | -  | -                | -  | -  | -  | -  | -  | -  | -   | 100 | -     | -  | -   | -   | -   |
| CO 5     | -  | -                | -  | -  | -  | -  | -  | -  | -   | 100 | -     | -  | _   | -   | -   |
| CO 6     | -  | -                | -  | -  | -  | -  | -  | -  | 100 | 100 | -     | -  | -   | -   | -   |

### 30. COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  -  $0 \leq C \leq 5\%$  – No correlation

 ${\it 2}$  - 40 % < C < 60% – Moderate

 $1-5 < C \le 40\% - Low/$  Slight

 $\boldsymbol{3}$  -  $60\% \leq C < 100\%$  – Substantial /High

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    | PSO'S |    |    |     |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|-------|----|----|-----|-----|-----|
| COURSE   | PO  | PO               | PO | PO | PO | PO | PO | PO | PO | PO    | PO | PO | PSO | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10    | 11 | 12 | 1   | 2   | 3   |
| CO 1     | -   | -                | -  | -  | -  | -  | -  | -  | -  | 3     | -  | -  | -   | I   | -   |
| CO 2     | -   | -                | -  | -  | -  | -  | -  | -  | 3  | 3     | -  | -  | -   | -   | -   |
| CO 3     | -   | -                | -  | -  | -  | -  | -  | -  | 3  | 3     | -  | -  | -   | -   | -   |
| CO 4     | -   | -                | -  | -  | -  | -  | -  | -  | -  | 3     | -  | -  | -   | -   | -   |
| CO 5     | -   | -                | -  | -  | -  | -  | -  | -  | -  | 3     | -  | -  | -   | -   | -   |
| CO 6     | -   | -                | -  | -  | -  | -  | -  | -  | 3  | 3     | -  | -  | -   | -   | -   |
| TOTAL    | -   | -                | -  | -  | -  | -  | -  | -  | 9  | 18    | -  | -  | -   | -   | -   |
| AVERAGI  | £ - | -                | -  | -  | -  | -  | -  | -  | 3  | 3     | -  | -  | -   | -   | -   |

# **31. ASSESSMENT METHODOLOGY DIRECT:**

| CIE Exams     | ~ | SEE Exams    | ~ | Laboratory<br>Practices   | <ul> <li>✓</li> </ul> |
|---------------|---|--------------|---|---------------------------|-----------------------|
| Certification | - | Student Viva | ~ | Open Ended<br>Experiments | -                     |

# 32. ASSESSMENT METHODOLOGY INDIRECT:

| x | Assessment of Mini Projects by | $\checkmark$ | End Semester OBE Feedback |
|---|--------------------------------|--------------|---------------------------|
|   | Experts                        |              |                           |

### 15. Relevance to Sustainability goals

Write brief description about the course and how its relevance to SDGs.

|   | NO<br>POVERTY                 |  |  |
|---|-------------------------------|--|--|
| 1 | ſĨĸ <b>ŧ</b> ŧ                |  |  |
|   | ZERO<br>HUNGER                |  |  |
| 2 | 222                           |  |  |
|   | GOOD HEALTH<br>And Well-Being |  |  |
|   | -/v/                          |  |  |
| 3 | V                             |  |  |

| 4  | QUALITY<br>EDUCATION                       | English language has become linguafranca across the globe. For that<br>reason, it is compulsory to learn this language at advanced level. In<br>MNC commpanies, those who have excellent communication skills<br>,their carrer graph is going to high very quickly. Hence ,the role of<br>English language has become a part of the life. |
|----|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |                                            |                                                                                                                                                                                                                                                                                                                                           |
| 6  | CLEAN WATER<br>AND SANITATION              |                                                                                                                                                                                                                                                                                                                                           |
| 7  | AFFORDABLE AND<br>CLEAN ENERGY             |                                                                                                                                                                                                                                                                                                                                           |
| 8  | DECENT WORK AND<br>ECONOMIC GROWTH         |                                                                                                                                                                                                                                                                                                                                           |
| 9  | INDUSTRY, INNOVATION<br>AND INFRASTRUCTURE |                                                                                                                                                                                                                                                                                                                                           |
| 10 | REDUCED<br>INEQUALITIES                    |                                                                                                                                                                                                                                                                                                                                           |
| 11 |                                            |                                                                                                                                                                                                                                                                                                                                           |

|    | RESPONSIBLE<br>Consumption<br>And production |  |  |
|----|----------------------------------------------|--|--|
| 12 | 60                                           |  |  |
|    | CLIMATE<br>• • Action                        |  |  |
| 13 |                                              |  |  |
|    | LIFE BELOW<br>WATER                          |  |  |
| 14 |                                              |  |  |
|    | LIFE<br>ON LAND                              |  |  |
| 15 | <b>₽</b> ~~                                  |  |  |
|    | PEACE, JUSTICE<br>AND STRONG<br>INSTITUTIONS |  |  |
| 16 |                                              |  |  |
| 10 | PARTNERSHIPS<br>FOR THE GOALS                |  |  |
|    | <b>8</b>                                     |  |  |
| 17 |                                              |  |  |

Approved by: Board of Studies in the meeting conducted on —

Signature of Course Coordinator Dr Jetty Wilson, Associate Professor HOD



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

# COURSE TEMPLATE

| 1  | Department              | AERONAUTICAL ENGINEERING |                  |                 |                    |  |  |  |
|----|-------------------------|--------------------------|------------------|-----------------|--------------------|--|--|--|
| 2  | Course Code             | AEED03                   |                  |                 |                    |  |  |  |
| 3  | Course Title            | ELECTRIC                 | AL AND EI        | LECTRONI        | CS ENGINEERING LAB |  |  |  |
| 4  | Semester                | Ι                        |                  |                 |                    |  |  |  |
| 5  | Regulations             | BT-23                    |                  |                 |                    |  |  |  |
|    |                         |                          | Practical        |                 |                    |  |  |  |
| 6  | Structure of the course | 1                        | Lecture Hours    | Practical Hours |                    |  |  |  |
|    |                         |                          | -                | 36              |                    |  |  |  |
| 7  | Course Offered          | Odd Semester             | r 🖌              | Even Semes      | ter $\times$       |  |  |  |
| 8  | Course Coordinator      | Mr. K Linga              | Swamy            |                 |                    |  |  |  |
| 9  | Date Approved by BOS    | 24/08/2023               |                  |                 |                    |  |  |  |
| 10 | Course Webpage          | https://www              | .iare.ac.in/site | s/default/files | s/BT23/AEED03.pdf  |  |  |  |
|    |                         | Level                    | Course           | Semester        | Prerequisites      |  |  |  |
| 11 |                         |                          | Code             |                 |                    |  |  |  |
| 11 | Course Prerequistes     | Intermediate             | -                | -               | Physics            |  |  |  |

### 12. Course Overview

This course serves as a foundation course on electrical engineering. It covers a broad range of fundamental electrical circuits and devices. The concepts of current, voltage, power, basic circuit elements, electrical and electronic devices and their application in more complex electrical systems are to be imparted to the students

#### 13. Course Objectives:

#### The students will try to learn:

| Ι   | The basic laws for different circuits.                                                                                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | The elementary experimental and modeling skills for handling problems with electrical machines in the industries and domestic applications to excel in professional career.           |
| III | The intuitive knowledge needed to test and analyze the performance leading to design<br>of electric machines by conducting various tests and calculate the performance<br>parameters. |
| IV  | Gain knowledge on semiconductor devices like diode and transistor                                                                                                                     |

### 14. Course Outcomes:

| CO1 | Demonstrate an electric circuit by proving laws and solving theorems     | Understand |
|-----|--------------------------------------------------------------------------|------------|
| CO2 | Identify the performance characteristics of DC shunt motor by suitable   | Apply      |
|     | test.                                                                    |            |
| CO3 | Discuss the performance of induction generator to study magnetizing      | Apply      |
|     | characteristics.                                                         |            |
| CO4 | Acquire basic knowledge on the working of diodes and rectifiers to       | Understand |
|     | study their characteristics.                                             |            |
| CO5 | Identify transistor configuration to deduce its working characteristics. | Apply      |
| CO6 | Use of half wave and full wave rectifiers to study the characteristics.  | Understand |

After successful completion of the course, students should be able to:

### 15. Employability Skills

1. **Innovative Thinking:** This course helps the students to think innovative through different experiments and tests.

2. Technological Knowledge: Here they gain technical knowledge on electrical equipment.

3. Safety awareness: Students get holistic safety awareness about electricity which is very important for anyone.

### 16. Content Delivery / Instructional Methologies:

| $\checkmark$ | Day to Day<br>lab evaluation | ~ | Demo<br>Video | ~ | Viva Voce<br>questions | x | Open Ended<br>Experiments    |
|--------------|------------------------------|---|---------------|---|------------------------|---|------------------------------|
| x            | 2 1 3<br>Competitions        | x | hackathons    | x | Certifications         | ~ | Probing Further<br>Questions |

### 17. Evaluation Methodology:

Each laboratory will be evaluated for a total of 100 marks consisting of 40 marks for internal assessment and 60 marks for semester end lab examination. Out of 40 marks for internal assessment, continuous lab assessment will be done for 20 marks for the day today's performance including viva voce, 10 marks for the final internal lab assessment, and the remaining 10 marks for Laboratory Report/Project and Presentation, which consists of the Design (or) Software / Hardware Model Presentation (or) AppDevelopment (or) Prototype Presentation submission which shall be evaluated after completion of laboratory course and before semester end practical examination.

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 40 marks (Table 1), with 20 marks for continuous lab assessmentduring day-to-day performance including viva voce, 10 marks for final internal lab assessment and remaining 10 marks for Laboratory Report/Project and Presentation.

| Component          |               |                |                  |              |  |
|--------------------|---------------|----------------|------------------|--------------|--|
| Type of Assessment | Day to Day    | Final internal | Laboratory       | Total Manlea |  |
|                    | performance   | lab assessment | Report / Project | 10tal Marks  |  |
|                    | and viva voce |                | and Presentation |              |  |
|                    | examination   |                |                  |              |  |
| CIA marks          | 20            | 10             | 10               | 40           |  |

Table 1.0: CIA marks distribution

**Continuous Internal Examination (CIE):** One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Table 2.0: Experiment based

| Objective | Analysis | Design | Conclusion | Viva voce | Total |
|-----------|----------|--------|------------|-----------|-------|
| 4         | 4        | 4      | 4          | 4         | 20    |

#### Table 3.0: Programming based

| Objective | Analysis | Design | Conclusion | Viva voce | Total |
|-----------|----------|--------|------------|-----------|-------|
|           |          |        |            |           |       |

#### Semester End Examination:

The Semester End Examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed from the other colleges which will be decided by the Head of the institution.

In the Semester End Examination held for 3 hours, total 60 marks are divided and allocated as shown below:

- 1. 10 marks for write-up
- 2. 15 for experiment/program
- 3. 15 for evaluation of results
- 4. 10 marks for presentation on another experiment/program in the same laboratory course and
- 5. 10 marks for viva-voce on concerned laboratory course.

# 18. Course Content:

|                      | <u>د</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 1                 | Solve the source resistance, cu'rrents, voltage and power using various                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | laws associated with electrical circuits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | 1. Introduction to electrical circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 2. Exercises on Basic Electrical Circuit Law's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | 3. Exercises on Mesh Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | 4. Exercises on Nodal Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CO 2                 | Analyze open circuit characteristics of DC Shunt Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | 1. Observe the voltage build up, critical field resistance, critical speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CO 3                 | Perform Open circuit and Short Circuit tests on single phase<br>transformer to observe efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | 1. Conduct Open circuit and Short circuit tests on Transformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CO 4                 | Demonstrate Thevenin's and Norton's theorems to reduce complex<br>networks into simple equivalent networks with DC excitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CO 4                 | Demonstrate Thevenin's and Norton's theorems to reduce complex networks into simple equivalent networks with DC excitation         1. Exercises on Thevenin's Theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CO 4                 | Demonstrate Thevenin's and Norton's theorems to reduce complex networks into simple equivalent networks with DC excitation         1. Exercises on Thevenin's Theorem         2. Exercises on Norton's Theorem                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CO 4<br>CO 5         | Demonstrate Thevenin's and Norton's theorems to reduce complex networks into simple equivalent networks with DC excitation         1. Exercises on Thevenin's Theorem         2. Exercises on Norton's Theorem         Apply Faraday's laws of electromagnetic induction for calculating the various performance parameters in magnetic circuits.                                                                                                                                                                                                                                                                                     |
| CO 4<br>CO 5         | Demonstrate Thevenin's and Norton's theorems to reduce complex networks into simple equivalent networks with DC excitation         1. Exercises on Thevenin's Theorem         2. Exercises on Norton's Theorem         Apply Faraday's laws of electromagnetic induction for calculating the various performance parameters in magnetic circuits.         1. Exercises on Determination of Circuit Impedance                                                                                                                                                                                                                          |
| CO 4<br>CO 5         | Demonstrate Thevenin's and Norton's theorems to reduce complex networks into simple equivalent networks with DC excitation         1. Exercises on Thevenin's Theorem         2. Exercises on Norton's Theorem         Apply Faraday's laws of electromagnetic induction for calculating the various performance parameters in magnetic circuits.         1. Exercises on Determination of Circuit Impedance         2. Exercise on Series and Parallel Resonance                                                                                                                                                                     |
| CO 4<br>CO 5<br>CO 6 | Demonstrate Thevenin's and Norton's theorems to reduce complex networks into simple equivalent networks with DC excitation         1. Exercises on Thevenin's Theorem         2. Exercises on Norton's Theorem         Apply Faraday's laws of electromagnetic induction for calculating the various performance parameters in magnetic circuits.         1. Exercises on Determination of Circuit Impedance         2. Exercise on Series and Parallel Resonance         Use the connecting wires of good continuity, short circuit of connecting wire leads damage of circuit parameters.                                           |
| CO 4<br>CO 5<br>CO 6 | Demonstrate Thevenin's and Norton's theorems to reduce complex networks into simple equivalent networks with DC excitation         1. Exercises on Thevenin's Theorem         2. Exercises on Norton's Theorem         Apply Faraday's laws of electromagnetic induction for calculating the various performance parameters in magnetic circuits.         1. Exercises on Determination of Circuit Impedance         2. Exercise on Series and Parallel Resonance         Use the connecting wires of good continuity, short circuit of connecting wire leads damage of circuit parameters.         1. Exercise on Z and Y Parameters |

# 19. Course Plan:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                 | CO's | Reference    |
|------|------------------------------------------------------|------|--------------|
| 1    | Course Description on Outcome Based Education (OBE): | -    |              |
|      | Course Objectives, Course Outcomes (CO), Program     |      |              |
|      | Outcomes (PO) and CO-PO Mapping                      |      |              |
| 2    | Introduction to electrical circuits                  | CO 1 | T1:2.1       |
|      |                                                      |      | R1:1.12.3    |
| 3    | Exercises on Basic Electrical Circuit Law's          | CO 1 | T1:1.12-1.18 |
|      |                                                      |      | R1:1.15      |
| 4    | Exercises on Mesh Analysis                           | CO 1 | T1:5.1-5.2   |
|      |                                                      |      | R1:1.16      |
| 5    | Exercises on Nodal Analysis                          | CO 2 | T1:5.3       |
|      |                                                      |      | R1:1.13.1    |
| 6    | Exercises on Characteristics of Periodic Waveforms   | CO 3 | T1:2.4       |
|      |                                                      |      | R1:1.13.2    |
| 7    | Exercises on Determination of Circuit Impedance      | CO 5 | T1:2.4       |
|      |                                                      |      | R1:1.13.3    |
| 8    | Exercises on Thevenin's Theorem.                     | CO 4 | T1:5.1-5.2   |
|      |                                                      |      | R1:1.7.1     |
| 9    | Exercises on Norton's Theorem                        | CO 4 | T1:5.3       |
|      |                                                      |      | R1:1.17.3    |
| 10   | Exercises on Superposition Theorem                   | CO 3 | T1:5.3       |
|      |                                                      |      | R1:2.6.1     |
| 11   | Exercises on Reciprocity Theorem                     | CO 3 | T1:5.7       |
|      |                                                      |      | R1:2.6.2     |
| 12   | Exercise on Series and Parallel Resonance            | CO 5 | T1:1.3-1.8   |
|      |                                                      |      | R1:2.10      |
| 13   | Exercise on Maximum Power Transfer Theorem           | CO 3 | T1:8.12-8.14 |
| 14   | Exercise on Half Wave Rectifier                      | CO 6 | T1:8.12-8.14 |
| 15   | Exercise on Full Wave Rectifier                      | CO 6 | T1:8.12-8.14 |

# 20 Experiments for Enhanced Learning (EEL):

| S.No | Design Oriented Experiments                             |
|------|---------------------------------------------------------|
| 1    | To study the Speed Control methods of D.C. motor        |
| 2    | To study the Rectifier working and it's characteristics |

# 21. Program Outcomes & Program Specific Outcomes:

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations          |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                      |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                 |

| Program Outcomes          |                                                                                        |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------|--|--|--|
| Program Specific Outcomes |                                                                                        |  |  |  |
| PSO 1                     | Build the prototype of UAVs and aero-foil models for testing by using low speed        |  |  |  |
|                           | wind tunnel towards research in the area of experimental aerodynamics.                 |  |  |  |
| PSO 2                     | Focus on formulation and evaluation of aircraft elastic bodies for characterization of |  |  |  |
|                           | aero elastic phenomena.                                                                |  |  |  |
| PSO 3                     | Make use of multi physics, computational fluid dynamics and flight simulation tools    |  |  |  |
|                           | for building career paths towards innovative startups, employability and higher        |  |  |  |
|                           | studies.                                                                               |  |  |  |

# 22. How program outcomes are assessed:

|       | Program Outcomes                                                                                                                                                                                                                                                                                                        | Strength | Proficiency<br>Assessed by |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                                 | 3        | CIE/Quiz/AAT               |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review<br>research literature, and analyze complex engineering<br>problems reaching substantiated conclusions using<br>first principles of mathematics, natural sciences,<br>and engineering sciences.                                                                    | 2        | CIE/Quiz/AAT               |
| PO 5  | Modern tool usage: Create, select, and apply<br>appropriate techniques, resources, and modern<br>engineering and IT tools including prediction and<br>modeling to complex engineering activities with an<br>understanding of the limitations.                                                                           | 2        | CIE/Quiz/AAT               |
| PO 10 | <b>Communication:</b> Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and write effective reports and<br>design documentation, make effective<br>presentations, and give and receive clear instructions. | 2        | CIE/Quiz/AAT               |

### 23. How program specific outcomes are assessed:

|      | Program Specific Outcomes                           | Strength | Proficiency |
|------|-----------------------------------------------------|----------|-------------|
|      |                                                     |          | Assessed by |
| PSO1 | Build the prototype of UAVs and aero-foil models    | -        | -           |
|      | for testing by using low speed wind tunnel towards  |          |             |
|      | research in the area of experimental aerodynamics   |          |             |
| PSO2 | Focus on formulation and evaluation of aircraft     | -        | -           |
|      | elastic bodies for characterization of aero elastic |          |             |
|      | phenomena                                           |          |             |
| PSO3 | Make use of multi physics, computational fluid      | -        | -           |
|      | dynamics and flight simulation tools for building   |          |             |
|      | career paths towards innovative startups,           |          |             |
|      | employability and higher studies                    |          |             |

3 = High; 2 = Medium; 1 = Low

# 24. Mapping of each CO with PO(s), PSO(s):

|         |              | PROGRAM OUTCOMES |    |    |              |    |    |    |    |              |    |    | PSO'S |     |     |
|---------|--------------|------------------|----|----|--------------|----|----|----|----|--------------|----|----|-------|-----|-----|
| COURSE  | РО           | PO               | PO | РО | PO           | PO | PO | PO | PO | PO           | PO | PO | PSO   | PSO | PSO |
| OUTCOME | 1            | 2                | 3  | 4  | 5            | 6  | 7  | 8  | 9  | 10           | 11 | 12 | 1     | 2   | 3   |
| CO 1    | $\checkmark$ | $\checkmark$     | -  | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  |    | -     | -   |     |
| CO 2    | $\checkmark$ | $\checkmark$     | -  | -  | $\checkmark$ | -  | -  | -  | -  | -            | -  | -  | -     | -   | -   |
| CO 3    | $\checkmark$ | $\checkmark$     | -  | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | -  | -     | -   |     |
| CO 4    | $\checkmark$ | $\checkmark$     | -  | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  |    | -     | -   |     |
| CO 5    | $\checkmark$ | $\checkmark$     | -  | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | -  | -     | -   |     |
| CO 6    | $\checkmark$ | $\checkmark$     | -  | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | -  | -     | -   |     |

# 25. Justifications for CO – PO / PSO mapping - direct:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                            | No. of Key<br>Competencies |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 1          | Apply the basics of mathematics, engineering sciences and<br>other sciences to understand the concept of DC and AC<br>Circuits.                                                 | 3                          |
|                    | PO 2          | Validate the principles of different laws associated with<br>electrical circuits from obtained principles using basics<br>fundamentals of mathematics and engineering sciences. | 3                          |
|                    | P0 5          | Validate the principles of different laws associated with<br>electrical circuits using digital simulation                                                                       | 1                          |
|                    | P0 10         | Improve the documentation skills for their problem-solving<br>approaches, calculations, and findings, resulting in<br>well-structured and informative reports                   | 1                          |
|                    | PS0 1         | Verify the various electrical circuit laws using computing<br>tools like Simulink                                                                                               | 1                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                     | No. of Key<br>Competencies |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 2               | PO 1          | Recall the basics of mathematics, engineering sciences and<br>other sciences to understand the concept of Kirch- hom's<br>laws                                                                                                           | 3                          |
|                    | PO 2          | Analyze mesh analysis and nodal analysis technique using<br>principles of mathematics, science and engineering<br>fundamentals                                                                                                           | 5                          |
|                    | PO 5          | Analyze mesh analysis and nodal analysis technique using digital simulation                                                                                                                                                              | 1                          |
|                    | P0 10         | Improve the documentation skills for their problem-solving<br>approaches, calculations, and findings, resulting in<br>well-structured and informative reports                                                                            | 1                          |
|                    | PS0 1         | Verify mesh and nodal analysis using computing tools like<br>Simulink                                                                                                                                                                    | 1                          |
| CO 3               | PO 1          | Apply the basics of mathematics, engineering sciences and<br>other sciences to understand the network theorems                                                                                                                           | 3                          |
|                    | PO 2          | Describes the different Theorems with AC and DC<br>excitation from obtained principles using basics<br>fundamentals of mathematics and engineering sciences.                                                                             | 5                          |
|                    | PO 5          | Construct various electrical circuits to validate Theorems<br>with DC excitation using digital simulation                                                                                                                                | 1                          |
|                    | P0 10         | Improve the documentation skills for their problem-solving<br>approaches, calculations, and findings, resulting in<br>well-structured and informative reports                                                                            | 1                          |
|                    | PS0 1         | Verify the superposition principle, reciprocity and<br>maximum power transfer condition for the electrical<br>network with DC excitation using computing tools like<br>Simulink                                                          | 1                          |
| CO 4               | PO 1          | Apply the knowledge of mathematics, science, engineering<br>fundamentals to the solution of magnetic circuits                                                                                                                            | 3                          |
|                    | PO 2          | Describes the fundamental characteristics of<br>electromagnetic induction, self and mutual inductance in<br>the single coil and coupled coils magnetic circuits using<br>basics fundamentals of mathematics and engineering<br>sciences. | 5                          |
|                    | PO 5          | Construct various electrical circuit s to validate Thevenin's and Norton's theorems using digital simulation                                                                                                                             | 1                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                     | No. of Key<br>Competencies |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                    | P0 10         | Improve the documentation skills for their problem-solving<br>approaches, calculations, and findings, resulting in<br>well-structured and informative reports            | 1                          |
|                    | PS0 1         | Verify Thevenin's and Norton's theorems for the electrical<br>network with DC excitation using computing tools like<br>Simulink                                          | 1                          |
| CO 5               | PO 1          | Recall the basics of mathematics, engineering sciences and<br>other sciences to understand the concept of two port<br>network and graph theory.                          | 3                          |
|                    | PO 2          | Validate the principles of different parameters and net-<br>work topology from obtained principles using basics<br>fundamentals of mathematics and engineering sciences. | 5                          |
|                    | PO 5          | Validate the principles of different parameters and net-<br>work topology using digital simulation.                                                                      | 1                          |
|                    | P0 10         | Improve the documentation skills for their problem-solving<br>approaches, calculations, and findings, resulting in<br>well-structured and informative reports            | 1                          |
| CO 6               | PO 1          | Identify complex engineering problems on two port net-<br>work and graph theory using first principles of<br>mathematics, natural sciences, and engineering sciences.    | 3                          |
|                    | PO 2          | Recall the basics of mathematics, engineering sciences and<br>other sciences to understand the concept of duality.                                                       | 5                          |
|                    | PO 5          | Determine the H and ABCD parameters for Circuit using digital simulation.                                                                                                | 1                          |
|                    | P0 10         | Improve the documentation skills for their problem-solving<br>approaches, calculations, and findings, resulting in<br>well-structured and informative reports            | 1                          |

### 26. Total count of key competencies for CO – (PO, PSO) MAPPING:

|          |    | PROGRAM OUTCOMES PS |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |
|----------|----|---------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|
| COURSE   | РО | PO                  | PO | PO | РО | PO | PO | PO | PO | РО | РО | РО | PSO | PSO   | PSO |
| OUTCOMES | 1  | 2                   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |
| CO 1     | 3  | 5                   | -  | -  | 1  | -  | -  | -  | -  | 3  | -  | -  | -   | -     | -   |
| CO 2     | 3  | 5                   | -  | -  | 1  | -  | -  | -  | -  | 3  | -  | -  | -   | -     | -   |
| CO 3     | 3  | 5                   | -  | -  | 1  | -  | -  | -  | -  | 3  | -  | -  | -   | -     | -   |
| CO 4     | 3  | 5                   | -  | -  | 1  | -  | -  | -  | -  | 3  | -  | -  | -   | -     | -   |
| CO 5     | 3  | 5                   | -  | -  | 1  | -  | -  | -  | -  | 3  | -  | -  | -   | -     | -   |
| CO 6     | 3  | 5                   | -  | -  | 1  | -  | -  | -  | -  | 3  | -  | -  | -   | -     | -   |

|          |     | PROGRAM OUTCOMES |    |    |     |    |    |    |    |    |    |    |     | PSO'S |     |  |
|----------|-----|------------------|----|----|-----|----|----|----|----|----|----|----|-----|-------|-----|--|
| COURSE   | РО  | PO               | PO | PO | PO  | PO | PO | PO | РО | PO | PO | PO | PSO | PSO   | PSO |  |
| OUTCOMES | 1   | 2                | 3  | 4  | 5   | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
| CO 1     | 100 | 50               | -  | -  | 100 | -  | -  | -  | -  | 60 | -  | -  | -   | -     | -   |  |
| CO 2     | 100 | 50               | -  | -  | 100 | -  | -  | -  | -  | 60 | -  | -  | -   | -     | -   |  |
| CO 3     | 100 | 50               | -  | -  | 100 | -  | -  | -  | -  | 60 | -  | -  | -   | -     | -   |  |
| CO 4     | 100 | 50               | -  | -  | 100 | -  | -  | -  | -  | 60 | -  | -  | -   | -     | -   |  |
| CO 5     | 100 | 50               | -  | -  | 100 | -  | -  | -  | -  | 60 | -  | -  | -   | -     | -   |  |
| CO 6     | 100 | 50               | -  | -  | 100 | -  | -  | -  | -  | 60 | -  | -  | -   | -     | -   |  |

### 27. Percentage of key competencies for CO – (PO, PSO):

### 28. Course articulation matrix (PO – PSO mapping):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\pmb{\theta}$  - 0  $\leq$  C  $\leq$  5% – No correlation

 $\pmb{\mathcal{2}}$  - 40 % < C < 60% –Moderate

 $\it 1-5 < C \le 40\% - Low/$  Slight

 $\boldsymbol{3}$  -  $60\% \leq C < 100\%$  – Substantial /High

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | РО  | PO               | PO | PO | PO | PO | PO | PO | РО | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 3   | 2                | -  | -  | 3  | -  | -  | -  | -  | 3  | -  | -  | -     | -   | -   |
| CO 2     | 3   | 2                | -  | -  | 3  | -  | -  | -  | -  | 3  | -  | -  | -     | -   |     |
| CO 3     | 3   | 2                | -  | -  | 3  | -  | -  | -  | -  | 3  | -  | -  | -     | -   | -   |
| CO 4     | 3   | 2                | -  | -  | 3  | -  | -  | -  | -  | 3  | -  | -  | -     | -   |     |
| CO 5     | 3   | 2                | -  | -  | 3  | -  | -  | -  | -  | 3  | -  | -  | -     | -   | -   |
| CO 6     | 3   | 2                | -  | -  | 3  | -  | -  | -  | -  | 3  | -  | -  | -     | -   | -   |
| TOTAL    | 18  | 12               | -  | -  | 18 |    | -  | -  | _  | -  | -  | -  | -     | -   | -   |
| AVERAGI  | E 3 | 2                | -  | -  | 3  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |

### 29. Assessment methodology direct:

| CIE Exams     | ~ | SEE Exams    | ~ | Laboratory<br>Practices   | ~ |
|---------------|---|--------------|---|---------------------------|---|
| Certification | - | Student Viva | ~ | Open Ended<br>Experiments | - |

## 30. Assessment methodology indirect:

| x | Assessment of Mini Projects by | $\checkmark$ | End Semester OBE Feedback |
|---|--------------------------------|--------------|---------------------------|
|   | Experts                        |              |                           |

# 31. Relevance to Sustainability goals

Write brief description about the course and how its relevance to SDGs.

|   | NO<br>Poverty                      |                                                                                                                                                       |
|---|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <u>Ů</u> ŧ₽ŧ₽                      |                                                                                                                                                       |
|   | ZERO<br>HUNGER                     |                                                                                                                                                       |
| 2 | <u> </u>                           |                                                                                                                                                       |
| 3 | GOOD HEALTH<br>AND WELL-BEING      |                                                                                                                                                       |
| 4 | QUALITY<br>EDUCATION               | Quality Education: This subject will improve the quality education<br>in engineers and gives the awareness in electrical usage in day-to-day<br>life. |
| 5 | GENDER<br>EQUALITY                 |                                                                                                                                                       |
| 6 | CLEAN WATER<br>AND SANITATION      |                                                                                                                                                       |
| 7 | AFFORDABLE AND<br>CLEAN ENERGY     |                                                                                                                                                       |
| 8 | DECENT WORK AND<br>ECONOMIC GROWTH |                                                                                                                                                       |

| 9  | INDUSTRY, INNOVATION<br>And infrastructure   |                                                                                                                         |
|----|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|    |                                              |                                                                                                                         |
| 10 | REDUCED<br>INEQUALITIES                      |                                                                                                                         |
| 11 |                                              |                                                                                                                         |
| 12 | RESPONSIBLE<br>CONSUMPTION<br>AND PRODUCTION | <b>Responsible Consumption and Production</b> This subject impacts the demand of electricity and need for saving energy |
| 13 | CLIMATE<br>ACTION                            |                                                                                                                         |
| 14 | LIFE BELOW<br>WATER                          |                                                                                                                         |
| 15 | LIFE<br>ON LAND                              |                                                                                                                         |

| 16 | PEACE, JUSTICE<br>AND STRONG<br>INSTITUTIONS |  |
|----|----------------------------------------------|--|
|    | PARTNERSHIPS<br>For the goals                |  |
| 17 | *                                            |  |

Approved by: Board of Studies in the meeting conducted on

Signature of Course Coordinator

HOD,AE

-.



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

### OBJECT ORIENTED PROGRAMMING WITH JAVA LABORATORY

| 1  | Department              | AERONAUTICAL ENGINEERING |                                       |            |                 |  |  |
|----|-------------------------|--------------------------|---------------------------------------|------------|-----------------|--|--|
| 2  | Course Title            | OBJECT                   | OBJECT ORIENTED PROGRAMMING WITH JAVA |            |                 |  |  |
| 3  | Course Code             | ACSD02                   |                                       |            |                 |  |  |
| 4  | Program                 | B.Tech                   | B.Tech                                |            |                 |  |  |
| 5  | Semester                | I Semester               |                                       |            |                 |  |  |
| 6  | Regulation              | BT-23                    | BT-23                                 |            |                 |  |  |
|    |                         |                          | Practical                             |            |                 |  |  |
| 7  | Structure of the course | Tutorial Hours           |                                       |            | Practical Hours |  |  |
|    |                         |                          | 1                                     |            | 2               |  |  |
| 8  | Course Offered          | Odd Semest               | er 🗸                                  | Even Semes | ter $\times$    |  |  |
| 9  | Course Coordinator      | Mr. Athota Rathan Babu   |                                       |            |                 |  |  |
| 10 | Date Approved by BOS    | 25/08/2023               |                                       |            |                 |  |  |
| 11 | Course Webpage          | www.iare.ac              | .in/—-/—-                             |            |                 |  |  |
|    |                         | Level                    | Course                                | Semester   | Prerequisites   |  |  |
| 10 | Course Dronoguistos     |                          | Code                                  |            |                 |  |  |
| 12 | Course Prerequistes     | -                        | -                                     | -          | -               |  |  |
|    |                         | -                        | _                                     | -          | -               |  |  |

### **13. COURSE OVERVIEW**

This course provides a solid foundation in object-oriented programming concepts and hands-on experience in using them. It introduces the concepts of abstraction and reusable code design via the object-oriented paradigm. Through a series of examples and exercises students gain coding skills and develop an understanding of professional programming practices. Mastering Java facilitate the learning of other technologies.

### 14. COURSE OBJECTIVES

#### The students will try to learn:

| Ι   | The strong foundation with the Java Virtual Machine, its concepts and features.   |
|-----|-----------------------------------------------------------------------------------|
| II  | The systematic understanding of key aspects of the Java Class Library             |
| III | The usage of a modern IDE with an object oriented programming language to develop |
|     | programs.                                                                         |

### **15. COURSE OUTCOMES**

#### After successful completion of the course, students should be able to:

| CO 1 | Develop non-trivial programs in an modern programming language.                                         |
|------|---------------------------------------------------------------------------------------------------------|
| CO 2 | Apply the principles of selection and iteration.                                                        |
| CO 3 | Appreciate uses of modular programming concepts for handling complex problems.                          |
| CO 4 | Recognise and apply principle features of object-oriented design such as abstraction and encapsulation. |
| CO 5 | Design classes with a view of flexibility and reusability.                                              |
| CO 6 | Code, test and evaluate small usecases to conform to a specification.                                   |

# 16. EMPLOYABILITY SKILLS

1. **Problem-Solving and Critical Thinking:** Students learn to analyze complex problems, design solutions using Java's object-oriented principles, and translate real-world scenarios into code.

2. **Debugging and Troubleshooting:** Debugging challenges in the lab help students master error identification, interpretation, and use of debugging tools, essential for real-world software development.

# 17. CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES

| ~ | Day to Day<br>lab evaluation | ~ | Demo<br>Video | ~ | Expected Viva<br>Voce questions | ~ | Open Ended<br>Experiments    |
|---|------------------------------|---|---------------|---|---------------------------------|---|------------------------------|
| x | 2 1 3<br>Competitions        | x | hackathons    | ~ | Certifications                  | ~ | Probing Further<br>Questions |

### **18. EVALUATION METHODOLOGY**

Each laboratory will be evaluated for a total of 100 marks consisting of 40 marks for internal assessment and 60 marks for semester end lab examination. Out of 40 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance including viva voce, 10 marks for the final internal lab assessment and remaining 10 marks for The remaining 10 marks are for Laboratory Report/Project and Presentation, which consists of the Design (or) Software / Hardware Model Presentation (or) App Development (or) Prototype Presentation submission which shall be evaluated after completion of laboratory course and before semester end practical examination.

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 40 marks (Table 1), with 20 marks for continuous lab assessment during day-to-day performance including viva voce, 10 marks for final internal lab assessment and remaining 10 marks for Laboratory Report / Project and Presentation.

|            |               | Component      |                  |             |
|------------|---------------|----------------|------------------|-------------|
| Type of    | Day to Day    | Final internal | Laboratory       | Total Marks |
| Assessment | performance   | lab assessment | Report / Project |             |
|            | and viva voce |                | and Presentation |             |
|            | examination   |                |                  |             |
| CIA marks  | 20            | 10             | 10               | 40          |

| Table 3: CIA marks distribution | Table 3: | ibution |
|---------------------------------|----------|---------|
|---------------------------------|----------|---------|

**Continuous Internal Examination (CIE):** One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

 Table 4: Experiment based

| Objective | Analysis | Design | Conclusion | Viva voce | Total |
|-----------|----------|--------|------------|-----------|-------|
|           |          |        |            |           | 20    |

 Table 5: Programming based

| Objective | Analysis | Program | Results | Viva voce | Total |
|-----------|----------|---------|---------|-----------|-------|
| 4         | 4        | 6       | 4       | 2         | 20    |

#### Semester End Examination:

The Semester End Examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed from the other colleges which will be decided by the Head of the institution.

In the Semester End Examination held for 3 hours, total 60 marks are divided and allocated as shown below:

- 1. 10 marks for write-up
- $2. \ 15 \ {\rm for \ experiment/program}$
- 3. 15 for evaluation of results
- 4. 10 marks for presentation on another experiment/program in the same laboratory course and
- 5. 10 marks for viva-voce on concerned laboratory course.

### **19. COURSE CONTENT**

| CO 1 | Develop non-trivial programs in an modern programming language.                                         |
|------|---------------------------------------------------------------------------------------------------------|
|      | 1. Getting Started Exercises                                                                            |
|      | 2. Exercises on Number Systems (for Science/Engineering Students)                                       |
| CO 2 | Apply the principles of selection and iteration.                                                        |
|      | 1. Exercises on Decision and Loop                                                                       |
|      | 2. Exercises on Input, Decision and Loop                                                                |
|      | 3. Exercises on Nested-Loops (Patterns)                                                                 |
|      | 4. Magic(Special) Numbers                                                                               |
|      | 5. Exercises on String and char Operations                                                              |
|      | 6. Exercises on Arrays                                                                                  |
| CO 3 | Appreciate uses of modular programming concepts for handling complex problems.                          |
|      | 1. Exercises on Methods                                                                                 |
|      | 2. Exercises on Command-line Arguments and Recursion                                                    |
|      | 3. More (Difficult) Exercises                                                                           |
| CO 4 | Recognise and apply principle features of object-oriented design such as abstraction and encapsulation. |
|      | 1. Exercises on Classes and Objects                                                                     |
| CO 5 | Design classes with a view of flexibility and reusability.                                              |
|      | 1. Exercises on Inheritance                                                                             |
| CO 6 | Code, test and evaluate small usecases to conform to a specification.                                   |
|      | 1. Exercises on Polymorphism, Abstract Classes and Interfaces                                           |

Note: One Course Outcome may be mapped to multiple number of experiments.

#### Text Books

- 1. Farrell, Joyce. "Java Programming", Cengage Learning B S Publishers, 8th Edition, 2020
- 2. Schildt, Herbert. "Java: The Complete Reference" 11th Edition, McGraw-Hill Education, 2018.

#### **Reference Books**

- 1. Deitel, Paul and Deitel, Harvey. "Java: How to Program", Pearson, 11th Edition, 2018.
- 2. Evans, Benjamin J. and Flanagan, David. "Java in a Nutshell", O'Reilly Media, 7th Edition, 2018.
- 3. Bloch, Joshua. "Effective Java", Addison-Wesley Professional, 3rd Edition, 2017.
- 4. Sierra, Kathy and Bates, Bert. "Head First Java", O'Reilly Media, 2nd Edition, 2005.

#### Materials Online

- 1. https://docs.oracle.com/en/java/
- 2. https://www.geeksforgeeks.org/java
- 3. https://www.tutorialspoint.com/java/index.htm
- 4. https://www.coursera.org/courses?query=java

#### **20. COURSE PLAN**

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                           | CO's |
|------|----------------------------------------------------------------|------|
| 1    | Getting Started Exercises                                      | CO 1 |
| 2    | Exercises on Number Systems (for Science/Engineering Students) | CO 1 |
| 3    | Exercises on Decision and Loop                                 | CO 2 |
| 4    | Exercises on Input, Decision and Loop                          | CO 2 |
| 5    | Exercises on Nested-Loops (Patterns)                           | CO 2 |
| 6    | Magic(Special) Numbers                                         | CO 2 |
| 7    | Exercises on String and char Operations                        | CO 2 |
| 8    | Exercises on Arrays                                            | CO 2 |
| 9    | Exercises on Methods                                           | CO 3 |
| 10   | Exercises on Command-line Arguments, Recursion                 | CO 3 |
| 11   | More (Difficult) Exercises                                     | CO 3 |
| 12   | Exercises on Classes                                           | CO 4 |
| 13   | Exercises on Inheritance                                       | CO 5 |
| 14   | Exercises on Polymorphism, Abstract Classes and Interfaces     | CO 6 |

#### Experiments for enhanced learning (EEL):

| S.No | Design Oriented Experiments                                                                  |
|------|----------------------------------------------------------------------------------------------|
| 1.   | Given an array of integers nums and an integer target, return indices of the two numbers     |
|      | such that they add up to target.                                                             |
| 2.   | Given a sorted array of distinct integers and a target value, return the index if the target |
|      | is found. If not, return the index where it would be if it were inserted in order.           |
| 3.   | Given a roman numeral, convert it to an integer.                                             |

| 4. | Implement the myAtoi(string s) function, which converts a string to a 32-bit signed      |
|----|------------------------------------------------------------------------------------------|
|    | integer                                                                                  |
| 5. | Given a string s, find the length of the longest substring without repeating characters. |

# 21. PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations          |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques, resources,<br>and modern Engineering and IT tools including prediction and modelling to<br>complex Engineering activities with an understanding of the limitations                                                                  |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                      |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                 |

|       | Program Specific Outcomes                                                              |
|-------|----------------------------------------------------------------------------------------|
| PSO 1 | Build the prototype of UAVs and aero-foil models for testing by using low speed        |
|       | wind tunnel towards research in the area of experimental aerodynamics.                 |
| PSO 2 | Focus on formulation and evaluation of aircraft elastic bodies for characterization of |
|       | aero elastic phenomena.                                                                |
| PSO 3 | Make use of multi physics, computational fluid dynamics and flight simulation tools    |
|       | for building career paths towards innovative startups, employability and higher        |
|       | studies.                                                                               |

## 22. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes                                                                                                                                                                                                                                                                                                | Strength | Proficiency<br>Assessed by |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1 | <b>Engineering knowledge:</b> Engineering knowledge:<br>Apply the knowledge of mathematics, science,<br>engineering fundamentals, and an engineering<br>specialization to the solution of complex engineering<br>problems.                                                                                      | 1        | LAB PRO-<br>GRAMS/CIE/SEE  |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review<br>research literature, and analyze complex engineering<br>problems reaching substantiated conclusions using<br>first principles of mathematics, natural sciences,<br>and engineering sciences.                                                            | 3        | LAB PRO-<br>GRAMS/CIE/SEE  |
| PO 3 | <b>Design/development of solutions:</b> Design<br>solutions for complex engineering problems and<br>design system components or processes that meet<br>the specified needs with appropriate consideration<br>for the public health and safety, and the cultural,<br>societal, and environmental considerations. | 3        | LAB PRO-<br>GRAMS/CIE/SEE  |
| PO 5 | Modern tool usage: Create, select, and apply<br>appropriate techniques, resources, and modern<br>engineering and IT tools including prediction and<br>modeling to complex engineering activities with an<br>understanding of the limitations.                                                                   | 3        | LAB PRO-<br>GRAMS/CIE/SEE  |
| PO 6 | The engineer and society: Apply reasoning<br>informed by the contextual knowledge to assess<br>societal, health, safety, legal and cultural issues and<br>the consequent responsibilities relevant to the<br>professional engineering practice.                                                                 | 2        | LAB PRO-<br>GRAMS/CIE/SEE  |
| PO 8 | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                           | 3        | LAB PRO-<br>GRAMS/CIE/SEE  |

## 23. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes                         | Strength | Proficiency   |
|-------|---------------------------------------------------|----------|---------------|
|       |                                                   |          | Assessed by   |
| PSO 3 | Make use of multi physics, computational fluid    | 2        | LAB PRO-      |
|       | dynamics and flight simulation tools for building |          | GRAMS/CIE/SEE |
|       | career paths towards innovative startups,         |          |               |
|       | employability and higher studies.                 |          |               |

3 = High; 2 = Medium; 1 = Low

# 24. MAPPING OF EACH CO WITH PO(s), PSO(s):

|         |              |              |              | PSO'S |              |              |    |              |    |    |    |    |     |     |              |
|---------|--------------|--------------|--------------|-------|--------------|--------------|----|--------------|----|----|----|----|-----|-----|--------------|
| COURSE  | РО           | PO           | PO           | PO    | PO           | PO           | PO | PO           | PO | PO | РО | PO | PSO | PSO | PSO          |
| OUTCOME | 1            | 2            | 3            | 4     | 5            | 6            | 7  | 8            | 9  | 10 | 11 | 12 | 1   | 2   | 3            |
| CO 1    | $\checkmark$ | -            | -            | -     | $\checkmark$ | -            | -  | -            | -  | -  | -  | -  | -   | -   | $\checkmark$ |
| CO 2    | $\checkmark$ | $\checkmark$ | -            | -     | -            | -            | -  | -            | -  | -  | -  | -  | -   | -   | -            |
| CO 3    | $\checkmark$ | $\checkmark$ | -            | -     | -            | -            | -  | -            | -  | -  | -  | -  | -   | -   | $\checkmark$ |
| CO 4    | -            | $\checkmark$ | $\checkmark$ | -     | -            | -            | -  | -            | -  | -  | -  | -  | -   | -   | -            |
| CO 5    | -            | $\checkmark$ | -            | -     | -            | $\checkmark$ | -  | -            | -  | -  | -  | -  | -   | -   | -            |
| CO 6    | -            | $\checkmark$ | -            | -     | -            | $\checkmark$ | -  | $\checkmark$ | -  | -  | -  | -  | -   | -   | -            |

# 25. JUSTIFICATIONS FOR CO – PO / PSO MAPPING - DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                    | No. of Key<br>Competencies |
|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 1          | Apply the knowledge of mathematics, science, engineering                                                                                                                                                                | 1                          |
|                    |               | solution of complex engineering problems.                                                                                                                                                                               |                            |
|                    | PO 5          | Create, select, and apply appropriate techniques, resources,<br>and modern engineering and IT tools including prediction<br>and modeling to complex engineering activities with an<br>understanding of the limitations. | 1                          |
|                    | PSO 3         | Make use of Computational and Experimental tools for<br>Building Career Paths towards Innovation Startups,<br>Employability and Higher Studies.                                                                         | 1                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                 | No. of Key<br>Competencies |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 2               | PO 1          | Apply the knowledge of mathematics, science, engineering<br>fundamentals, and an engineering specialization to the<br>solution of complex engineering problems.                                                                                                      | 1                          |
|                    | PO 2          | Identify, formulate, review research literature, and analyze<br>complex engineering problems reaching substantiated<br>conclusions using first principles of mathematics, natural<br>sciences, and engineering sciences.                                             | 7                          |
| CO 3               | PO 1          | Apply the knowledge of mathematics, science, engineering<br>fundamentals, and an engineering specialization to the<br>solution of complex engineering problems.                                                                                                      | 2                          |
|                    | PO 2          | Identify, formulate, review research literature, and analyze<br>complex engineering problems reaching substantiated<br>conclusions using first principles of mathematics, natural<br>sciences, and engineering sciences.                                             | 7                          |
|                    | PSO 3         | Make use of Computational and Experimental tools for<br>Building Career Paths towards Innovation Startups,<br>Employability and Higher Studies.                                                                                                                      | 4                          |
| CO 4               | PO 2          | Identify, formulate, review research literature, and analyze<br>complex engineering problems reaching substantiated<br>conclusions using first principles of mathematics, natural<br>sciences, and engineering sciences.                                             | 7                          |
|                    | PO 3          | Design solutions for complex engineering problems and<br>design system components or processes that meet the<br>specified needs with appropriate consideration for the<br>public health and safety, and the cultural, societal, and<br>environmental considerations. | 6                          |
| CO 5               | PO 2          | Identify, formulate, review research literature, and analyze<br>complex engineering problems reaching substantiated<br>conclusions using first principles of mathematics, natural<br>sciences, and engineering sciences.                                             | 7                          |
|                    | PO 6          | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                  | 1                          |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                | No. of Key<br>Competencies |
|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 6               | PO 2          | Identify, formulate, review research literature, and analyze<br>complex engineering problems reaching substantiated<br>conclusions using first principles of mathematics, natural<br>sciences, and engineering sciences.            | 7                          |
|                    | PO 6          | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. | 3                          |
|                    | PO 8          | Apply ethical principles and commit to professional ethics<br>and responsibilities and norms of the engineering practice.                                                                                                           | 4                          |

### 26. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

|          |    |    |    | $\mathbf{PR}$ | OGR | AM | OUT | COM | 1ES |    |    |    | PSO'S |     |     |
|----------|----|----|----|---------------|-----|----|-----|-----|-----|----|----|----|-------|-----|-----|
| COURSE   | PO | PO | PO | PO            | PO  | PO | PO  | PO  | PO  | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2  | 3  | 4             | 5   | 6  | 7   | 8   | 9   | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 1  | -  | -  | -             | 1   | -  | -   | -   | -   | -  | -  | -  | -     | -   | 1   |
| CO 2     | 1  | 7  | -  | -             | -   | -  | -   | -   | -   | -  | -  | -  | -     | -   | -   |
| CO 3     | 1  | 7  | -  | -             | -   | -  | -   | -   | -   | -  | -  | -  | _     | -   | 1   |
| CO 4     | -  | 7  | 6  | -             | -   | -  | -   | -   | -   | -  | -  | -  | _     | -   | -   |
| CO 5     | -  | 7  | -  | -             | -   | 1  | -   | -   | -   | -  | -  | -  | _     | -   | -   |
| CO 6     | -  | 7  | -  | -             | -   | 3  | -   | 2   | -   | -  | -  | -  | -     | -   | -   |

## 27. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

|          |      | PROGRAM OUTCOMES |    |    |     |    |    |      |    |    |    |    |     |     | PSO'S |  |  |
|----------|------|------------------|----|----|-----|----|----|------|----|----|----|----|-----|-----|-------|--|--|
| COURSE   | РО   | PO               | PO | PO | PO  | PO | PO | PO   | PO | PO | PO | PO | PSO | PSO | PSO   |  |  |
| OUTCOMES | 1    | 2                | 3  | 4  | 5   | 6  | 7  | 8    | 9  | 10 | 11 | 12 | 1   | 2   | 3     |  |  |
| CO 1     | 33.3 | -                | -  | -  | 100 | -  | -  | -    | -  | -  | -  | -  | -   | -   | 33.33 |  |  |
| CO 2     | 33.3 | 70               | -  | -  | -   | -  | -  | -    | -  | -  | -  | -  | -   | -   | -     |  |  |
| CO 3     | 33.3 | 70               | -  | -  | -   | -  | -  | -    | -  | -  | -  | -  | -   | -   | 33.33 |  |  |
| CO 4     | -    | 70               | 60 | -  | -   | -  | -  | -    | -  | -  | -  | -  | -   | -   | -     |  |  |
| CO 5     | -    | 70               | -  | -  | -   | 20 | -  | -    | -  | -  | -  | -  | -   | -   | -     |  |  |
| CO 6     | -    | 70               | -  | -  | -   | 60 | -  | 66.6 | -  | -  | -  | -  | -   | -   |       |  |  |

### 28. COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  -  $0 \leq C \leq 5\%$  – No correlation

 $\pmb{2}$  - 40 % < C < 60% – Moderate

 $1\text{-}5\ {\rm <C}{\rm \le }\ 40\% - {\rm Low}/\ {\rm Slight}$ 

 $\boldsymbol{3}$  -  $60\% \leq C < 100\%$  – Substantial /High

|          |     |    |    | $\mathbf{PR}$ | OGR | $\mathbf{A}\mathbf{M}$ | OUT | COM | 1ES |    |    |    | PSO'S |     |     |
|----------|-----|----|----|---------------|-----|------------------------|-----|-----|-----|----|----|----|-------|-----|-----|
| COURSE   | PO  | PO | PO | PO            | PO  | PO                     | PO  | PO  | PO  | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1   | 2  | 3  | 4             | 5   | 6                      | 1   | 8   | 9   | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 1   | -  | -  | -             | 3   | -                      | -   | -   | -   | -  | -  | -  | -     | -   | 1   |
| CO 2     | 1   | 3  | -  | -             | -   | -                      | -   | -   | -   | -  | -  | -  | -     | -   | -   |
| CO 3     | 1   | 3  | -  | -             | -   | -                      | -   | -   | -   | -  | -  | -  | -     | -   | 1   |
| CO 4     | -   | 3  | 3  | -             | -   | -                      | -   | -   | -   | -  | -  | -  | -     | -   | -   |
| CO 5     | -   | 3  | -  | -             | -   | 1                      | -   | -   | -   | -  | -  | -  | -     | -   | -   |
| CO 6     | -   | 3  | -  | -             | -   | 3                      | -   | 3   | -   | -  | -  | -  | -     | -   | -   |
| TOTAL    | 3   | 15 | 3  | -             | 3   | 4                      | -   | 3   | -   | -  | -  | -  | -     | -   | 2   |
| AVERAGI  | E 1 | 3  | 3  | -             | 3   | 2                      | -   | 3   | -   | -  | -  | -  | -     | -   | 1   |

## **29. ASSESSMENT METHODOLOGY DIRECT:**

| CIE Exams     | ~ | SEE Exams    | ~ | Laboratory<br>Practices   | ~ |
|---------------|---|--------------|---|---------------------------|---|
| Certification | - | Student Viva | ~ | Open Ended<br>Experiments | - |

# **30. ASSESSMENT METHODOLOGY INDIRECT:**

| x | Assessment of Mini Projects by | $\checkmark$ | End Semester OBE Feedback |
|---|--------------------------------|--------------|---------------------------|
|   | Experts                        |              |                           |
# **31.RELEVANCE TO SUSTAINABILITY GOALS**

Write brief description about the course and how its relevance to SDGs.

|   | NO<br>Poverty                      |                                                                                                                                              |
|---|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| X | ſŤ <b>ぉ</b> ′Ť <sup>®</sup> ŧŤ     |                                                                                                                                              |
|   | ZERO<br>HUNGER                     |                                                                                                                                              |
| x | 222                                |                                                                                                                                              |
|   | GOOD HEALTH<br>AND WELL-BEING      |                                                                                                                                              |
| X | -/\/                               |                                                                                                                                              |
| ~ | QUALITY<br>Education               | <b>Quality Education:</b> The students can gain a deeper understanding of how technology can be harnessed to address global challenges. This |
|   |                                    | promotes quality education by fostering critical thinking and<br>problem-solving skills in the context of sustainable development.           |
|   | GENDER<br>EQUALITY                 |                                                                                                                                              |
| X | Ę                                  |                                                                                                                                              |
| X | CLEAN WATER<br>And Sanitation      |                                                                                                                                              |
|   | <b>Q</b>                           |                                                                                                                                              |
| X | AFFORDABLE AND<br>Clean Energy     |                                                                                                                                              |
|   | ××                                 |                                                                                                                                              |
| X | DECENT WORK AND<br>Economic growth |                                                                                                                                              |
|   | 1                                  |                                                                                                                                              |

| ~ | INDUSTRY, INNOVATION<br>AND INFRASTRUCTURE   | <b>Industry, Innovation, and Infrastructure:</b> Java programming skills are essential for developing innovative software solutions. Students working on projects related to sustainable development can contribute to building resilient infrastructure and promoting inclusive and sustainable industrialization. |
|---|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X |                                              |                                                                                                                                                                                                                                                                                                                     |
| ~ |                                              | Sustainable Cities and Communities: Java programming plays a crucial role in developing applications for smart cities, efficient transportation, and waste management systems. Through projects in the lab, students can explore ways to create more sustainable urban environments.                                |
| X | RESPONSIBLE<br>CONSUMPTION<br>AND PRODUCTION |                                                                                                                                                                                                                                                                                                                     |
| ~ | CLIMATE<br>ACTION                            | Climate Action: Students can create climate-related applications,<br>such as carbon footprint calculators or climate data analysis tools,<br>using Java programming. This directly contributes to SDG 13 by<br>raising awareness and facilitating climate action.                                                   |
| x | LIFE BELOW<br>WATER                          |                                                                                                                                                                                                                                                                                                                     |
| x |                                              |                                                                                                                                                                                                                                                                                                                     |
| X | PEACE, JUSTICE<br>AND STRONG<br>INSTITUTIONS |                                                                                                                                                                                                                                                                                                                     |



**Partnerships for the Goals:** Collaborative projects can foster partnerships among students, educators, and local communities. These partnerships enhance knowledge sharing and the development of innovative solutions that align with multiple SDGs.

Approved by: Board of Studies in the meeting conducted on –

Signature of Course Coordinator Mr. Athota Rathan Babu, Assistant Professor HOD, AE



# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ENGINEERING WORKSHOP

### COURSE TEMPLATE

| 1  | Department              | AE/CE/ME                                                     | AE/CE/ME      |                 |                  |  |  |
|----|-------------------------|--------------------------------------------------------------|---------------|-----------------|------------------|--|--|
| 2  | Course Code             | AMED01                                                       | AMED01        |                 |                  |  |  |
| 3  | Course Title            | ENGINEEF                                                     | RING WORKS    | HOP             |                  |  |  |
| 4  | Semester                | I Semester                                                   |               |                 |                  |  |  |
| 5  | Regulation              | BT-23                                                        |               |                 |                  |  |  |
|    |                         |                                                              |               | Practical       |                  |  |  |
| 6  | Structure of the course |                                                              | Lecture Hours | Practical Hours |                  |  |  |
|    |                         | _                                                            |               |                 | 2                |  |  |
| 7  | Course Offered          | Odd Semester 🖌 Even Semest                                   |               |                 | ter $\times$     |  |  |
| 8  | Course Coordinator      | Mr G Shiva                                                   | Krishna       |                 |                  |  |  |
| 9  | Date Approved by BOS    | 24/08/2023                                                   |               |                 |                  |  |  |
| 10 | Course Webpage          | https://www.iare.ac.in/?q=pages/btech-course-syllabi-bt23-me |               |                 |                  |  |  |
|    |                         | Level                                                        | Course        | Semester        | Prerequisites    |  |  |
| 11 |                         |                                                              | Code          |                 |                  |  |  |
| 11 | Course Prerequistes     | _                                                            | _             | _               | No prerequisites |  |  |

### 12. Course Overview:

This course provides the opportunity to become confident with new tools, equipment, and techniques for creating physical objects and mechanisms with a variety of materials. The students will learn principles of contemporary trends in manufacturing processes, such as CNC machining and 3D printing, as well as gain practical experience in carpentry, fitting, and welding. Skills learned in the course enable the students to learn about the design process in digital manufacturing used in various industrial applications.

### 13. Course objectives:

#### The students will try to learn:

| Ι   | The basics and hands-on practice of carpentry, fitting, and welding.                                  |
|-----|-------------------------------------------------------------------------------------------------------|
| II  | The impart knowledge and skill to use tools, equipment, measuring instruments, and modern techniques. |
| III | The concepts of manufacturing process by casting, moulding and forging.                               |
| IV  | The basic machining operations by CNC lathe, CNC milling, and 3D printing machine.                    |

### 14. Course outcomes:

| CO 1 | <b>Select</b> appropriate tools, work material and measuring instruments useful for carpentry, fitting, and welding.                                    | Apply      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO 2 | <b>Use</b> flat sheets for sheet metal and intricate shapes made from mild steel for Black smithy.                                                      | Apply      |
| CO 3 | <b>Choose</b> appropriate components and tools to prepare pipe fitting and joints of specific shapes and sizes.                                         | Apply      |
| CO 4 | <b>Experiment</b> with the moulding techniques for producing cast components in complex shapes using different patterns.                                | Apply      |
| CO 5 | <b>Execute</b> hard soldering techniques to join similar and dissimilar materials used in industries.                                                   | Understand |
| CO 6 | <b>Demonstrate</b> appropriate equipment and methods for various machining processes used in CNC machines and 3D printing for manufacturing industries. | Understand |

#### After successful completion of the course, students should be able to:

## 15. Employability Skills:

1. **Project based skills:** This can provide knowledge about engineering tools used in the manufacturing of products as well as project-based skills.

2. **Programming skills:** Modern manufacturing techniques (CNC programming ) will be useful for project and product-based skills.

### 16. Content delivery / Instructional methologies:

|              | 0 /                   |   |            | <u> </u> |                |   |                              |
|--------------|-----------------------|---|------------|----------|----------------|---|------------------------------|
|              |                       |   |            |          |                |   | <b>(</b>                     |
| $\checkmark$ | Day to Day            | x | Demo       | ~        | Viva Voce      |   | Open Ended                   |
|              | lab evaluation        |   | Video      |          | questions      |   | Experiments                  |
| x            | 2 1 3<br>Competitions | x | hackathons | x        | Certifications | ~ | Probing Further<br>Questions |

## 17. Evaluation methodology:

Each laboratory will be evaluated for a total of 100 marks consisting of 40 marks for internal assessment and 60 marks for semester end lab examination. Out of 40 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance including viva voce, 10 marks for the final internal lab assessment and remaining 10 marks for The remaining 10 marks are for Laboratory Report/Project and Presentation, which consists of the Design (or) Software / Hardware Model Presentation (or) App Development (or) Prototype Presentation submission which shall be evaluated after completion of laboratory course and before semester end practical examination.

### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 40 marks (Table 1), with 20 marks for continuous lab assessment during day-to-day performance including viva voce, 10 marks for final internal lab assessment and remaining 10 marks for Laboratory Report / Project and Presentation.

| Component          |               |                |                  |             |  |  |  |
|--------------------|---------------|----------------|------------------|-------------|--|--|--|
| Type of Assessment | Day to Day    | Final internal | Laboratory       | Total Marka |  |  |  |
|                    | performance   | lab assessment | Report / Project | TOTAL MALKS |  |  |  |
|                    | and viva voce |                | and Presentation |             |  |  |  |
|                    | examination   |                |                  |             |  |  |  |
| CIA marks          | 20            | 10             | 10               | 40          |  |  |  |

Table 3: CIA marks distribution

**Continuous Internal Examination (CIE):** One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

 Table 4: Experiment based

| Objective | Analysis | Design | Conclusion | Viva voce | Total |
|-----------|----------|--------|------------|-----------|-------|
| 4         | 4        | 4      | 4          | 4         | 20    |

#### Table 5: Programming based

| Objective | Analysis | Design | Conclusion | Viva voce | Total |  |
|-----------|----------|--------|------------|-----------|-------|--|
| _         | —        | _      | _          | —         | 20    |  |

### Semester End Examination:

The Semester End Examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed from the other colleges which will be decided by the Head of the institution.

In the Semester End Examination held for 3 hours, total 60 marks are divided and allocated as shown below:

- 1. 10 marks for write-up
- 2. 15 for experiment/program
- 3. 15 for evaluation of results
- 4. 10 marks for presentation on another experiment/program in the same laboratory course and
- 5. 10 marks for viva-voce on concerned laboratory course.

# 18. Course content:

| CO 1 | Select appropriate tools, work material and measuring instruments                                                                                                                                    |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|      | useful for carpentry, fitting, and welding                                                                                                                                                           |  |  |  |  |  |
|      | 1. Preparation of the cross-half lap joint.                                                                                                                                                          |  |  |  |  |  |
|      | 2. Preparation of the dove tail joint.                                                                                                                                                               |  |  |  |  |  |
|      | Try<br>1.1 Propagation of the mortise and tenen joint as per the following dimensions                                                                                                                |  |  |  |  |  |
|      | Width = 50  mm and tenon thickness = 10 mm.                                                                                                                                                          |  |  |  |  |  |
|      | 1.2 Preparation of the end lap joint as per the following dimensions. The end lap projection dimensions to be taken into consideration are width $= 50 \text{ mm}$ and thickness $= 15 \text{ mm}$ . |  |  |  |  |  |
|      | 3. Making of a square fitting using mild steel plates.                                                                                                                                               |  |  |  |  |  |
|      | 4. Making of a V-fit according to the size of the provided mild steel plates.                                                                                                                        |  |  |  |  |  |
|      | 'Iry<br>1.3 Straight fitting of mild steel plates to the specified gives                                                                                                                             |  |  |  |  |  |
|      | 1.4 Making of semicircular fit with mild steel plates.                                                                                                                                               |  |  |  |  |  |
|      | 5. Creating the lap joint in accordance with the mild steel plates.                                                                                                                                  |  |  |  |  |  |
|      | 6. Making the butt joint using the mild steel plates.                                                                                                                                                |  |  |  |  |  |
|      | <b>Try</b><br>1.5 Construction of the tee joint using the mild steel plates provided.<br>1.6 Creating the corner (L) joint using the provided mild steel plates.                                     |  |  |  |  |  |
| CO 2 | Use flat sheets for sheet metal and intricate shapes made from mild steel<br>for Black smithy.                                                                                                       |  |  |  |  |  |
|      | 1. Preparation of the rectangular tray as per the dimensions.                                                                                                                                        |  |  |  |  |  |
|      | 2. Prepare the developing surface and create cylindrical tin.                                                                                                                                        |  |  |  |  |  |
|      | Try                                                                                                                                                                                                  |  |  |  |  |  |
|      | <ul><li>2.1 Construct the open scoop as per the given GI sheet specificatios.</li><li>2.2 Making of the hexagonal prism using GI sheet.</li></ul>                                                    |  |  |  |  |  |
|      | 3. Make the s-hook using the given mild steel rod.                                                                                                                                                   |  |  |  |  |  |
|      | 4. Construct the J-hook using the given mild steel rod.                                                                                                                                              |  |  |  |  |  |
|      | $\mathbf{Try}$                                                                                                                                                                                       |  |  |  |  |  |
|      | 2.3 Create the C - hook with the given mild steel rod.                                                                                                                                               |  |  |  |  |  |
|      | 2.4 Prepare the U - bend with the given mild steel rod.                                                                                                                                              |  |  |  |  |  |

| CO 3 | Choose appropriate components and tools to prepare pipe fitting and joints of specific shapes and sizes.                                                                           |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|      | 1. Form of PVC pipe fitting through various components.                                                                                                                            |  |  |  |  |
|      | 2. Form of GI pipe fitting with various components.                                                                                                                                |  |  |  |  |
|      | $\mathbf{Try}$                                                                                                                                                                     |  |  |  |  |
|      | 3.1 Form of PVC pipe fitting with reducer for water tap with different components                                                                                                  |  |  |  |  |
|      | 3.2 Form of GI pipe fitting with different components for different fluids.                                                                                                        |  |  |  |  |
| CO 4 | Experiment with the moulding techniques for producing cast<br>components in complex shapes using different patterns.                                                               |  |  |  |  |
|      | 1. Making of flange mould using a given pattern.                                                                                                                                   |  |  |  |  |
|      | 2. Utilizing the provided pattern, create the bearing housing mould.                                                                                                               |  |  |  |  |
|      | Try                                                                                                                                                                                |  |  |  |  |
|      | 4.1 Making of dumble using a given pattern.<br>4.2 Using a single-piece pattern, create a one-stepped shaft                                                                        |  |  |  |  |
|      | 3. Preparation of concrete cube by moulding technique.                                                                                                                             |  |  |  |  |
|      | 4. Demonstration on plaster of paris mould making.                                                                                                                                 |  |  |  |  |
|      | Try                                                                                                                                                                                |  |  |  |  |
|      | <ul><li>4.3 Preparation of any house hold specimens by plaster of paris mould making.</li><li>4.4 Preparation of any intricate article by plaster of paris mould making.</li></ul> |  |  |  |  |
| CO 5 | Execute hard soldering techniques to join similar and dissimilar materials used in industries.                                                                                     |  |  |  |  |
|      | 1. Soldering of two mild steel plates.                                                                                                                                             |  |  |  |  |
|      | 2. Hard soldering of engine valve tappet.                                                                                                                                          |  |  |  |  |
|      | Try                                                                                                                                                                                |  |  |  |  |
|      | 5.1 Hard soldering of copper with brass material.<br>5.2 Hard soldering of stainless steel with brass.                                                                             |  |  |  |  |
|      |                                                                                                                                                                                    |  |  |  |  |
| CO 6 | Demonstrate appropriate equipment and methods for various machining<br>processes used in CNC machines and 3D printing for manufacturing<br>industries.                             |  |  |  |  |
|      | 1. Demonstration of the plain turning and facing opeartions on a CNC lathe                                                                                                         |  |  |  |  |
|      | 2. Demonstration of plain milling (facing) and precision slotting on CNC milling.                                                                                                  |  |  |  |  |
|      | 3. Demonstration of 3D printing machine using Acrylonitrile butadiene styrene (ABS) and Polylactic acid (PLA) material.                                                            |  |  |  |  |
|      | 4. Demonstration of the 6 – axis aristo robot and aristo sim software.                                                                                                             |  |  |  |  |
|      | 5. Demonstration of shaft grinding process on a cylindrical grinding machine.                                                                                                      |  |  |  |  |

### **TEXTBOOKS**

- 1. S.K.Hajra Choudhury, A.K.Hajra Choudhury A.K. and S.K.Nirjhar Roy, "*Elements of Workshop Technology*", Media promoters and publishers private limited, Mumbai, 4th Edition ,2020.
- 2. S.Kalpakjian, Steven S. Schmid, "Manufacturing Engineering and Technology", Pearson Education India Edition, 7th Edition, 2019.

#### **REFERENCE BOOKS:**

- 1. Gowri P. Hariharan, A. Suresh Babu, "Manufacturing Technology I", Pearson Education,5thEdition, 2018.
- 2. Roy A. Lindberg, "Processes and Materials of Manufacture", Prentice Hall India, 4th Edition, 2017.

#### MATERIALS ONLINE:

- 1. Lab manual
- 2. Question bank

#### 19. Course plan:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                         | CO's | Reference          |
|------|----------------------------------------------------------------------------------------------|------|--------------------|
| 1    | Preparation of the cross half-lap joint and dove tail joint.                                 | CO 1 | R1:11.1-11.5       |
| 2    | Making of square fitting and V –fit using mild steel plates.                                 | CO 1 | R1:4.8,R1:7.2      |
| 3    | Creating a lap joint and butt joint by welding.                                              | CO 1 | R1:6.3-6.52        |
| 4    | Creating the rectangular tray and cylindrical tin using GI sheet                             | CO 2 | R1:10.1-10.2       |
| 5    | Prepare the s-hook and j-hook with the given mild steel rods.                                | CO 2 | R2:12.6,<br>R1:5.2 |
| 6    | Form of PVC and GI pipe fitting through various components.                                  | CO 3 | R1:9.3-9.5         |
| 7    | Making of flange mould and bearing housing mould using a given pattern.                      | CO 4 | R2:10.4-10.7       |
| 8    | Preparation of concrete/cement cube and demonstration of plaster of paris moulding technique | CO 4 | R2:3.12            |
| 9    | Hard soldering of ferrous and nonferrous materials                                           | CO 5 | R1:2.18            |
| 10   | Demonstration of the CNC lathe machining process                                             | CO 6 | R2:13.8 -<br>13-11 |
| 11   | Demonstration of the CNC milling process.                                                    | CO 6 | R2:14.2-14-6       |
| 12   | Demonstration of 3D printing machine using different materials.                              | CO 6 | R1:17.4-17-5       |
| 13   | Demonstration of the 6-axis robot.                                                           | CO 6 | R1:15.3-15-5       |
| 14   | Demonstration of the cylindrical grinding machine.                                           | CO 6 | R2:9.5-9-7         |

# 20. Experiments for enhanced learning (EEL):

| S.No | Product Oriented Experiments                                                                    |
|------|-------------------------------------------------------------------------------------------------|
| 1    | <b>Divided Tenon Joint:</b> It is the simplest form of Mortise and tenon joint and this joint   |
|      | is made by fitting a short tenon into a continuous groove. This joint has the advantage         |
|      | of being easy to cut and is often used to make cabinet doors and other light duty frame         |
|      | and panel assemblies.                                                                           |
| 2    | <b>Cross Fitting:</b> It is the fundamental of type of fitting which are used fitting trade and |
|      | it is formed by joining the two inclined shaped cut specimens together and is often used        |
|      | to join the universal bearings.                                                                 |
|      |                                                                                                 |
| 3    | hard soldering: Metals and alloys of dissimilar compositions can be hard-soldered               |
|      | (brazed or silver-soldered) together, for example: copper to brass; copper to steel; brass      |
|      | to steel; cast iron to mild steel; and mild steel to stainless steel.                           |
| 4    | <b>T-Pipe Joint:</b> T-pipe is a type of fitting which is T-shaped having two outlets at 90     |
|      | degrees to the main line. It is short piece of pipe with a lateral outlet. It is widely used    |
|      | as pipe fittings.                                                                               |
| 5    | <b>Concrete cube:</b> Plastic or Steel Concrete Cube Moulds are used to form specimens          |
|      | for concrete compressive strength testing. They can also be used as sample containers in        |
|      | the determination of mortar set times as indicated in ASTM C403 and AASHTO T 197.               |

# 21. Program Outcomes and Program Specific Outcomes:

|      | Program Outcomes                                                                                                                                                                                                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,                                                                                                                                                                                                                             |
|      | engineering fundamentals, and an engineering specialization to the solution of                                                                                                                                                                                                                  |
|      | complex engineering problems.                                                                                                                                                                                                                                                                   |
| PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze                                                                                                                                                                                                                  |
|      | complex engineering problems reaching substantiated conclusions using first                                                                                                                                                                                                                     |
|      | principles of mathematics, natural sciences, and engineering sciences.                                                                                                                                                                                                                          |
| PO 3 | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations |
| PO 4 | Conduct Investigations of Complex Problems: Use research-based knowledge                                                                                                                                                                                                                        |
|      | and research methods including design of experiments, analysis and interpretation                                                                                                                                                                                                               |
|      | of data, and synthesis of the information to provide valid conclusions.                                                                                                                                                                                                                         |
| PO 5 | Modern Tool Usage: Create, select, and apply appropriate techniques, resources,                                                                                                                                                                                                                 |
|      | and modern Engineering and IT tools including prediction and modelling to                                                                                                                                                                                                                       |
|      | complex Engineering activities with an understanding of the limitations                                                                                                                                                                                                                         |
| PO 6 | The engineer and society: Apply reasoning informed by the contextual                                                                                                                                                                                                                            |
|      | knowledge to assess societal, health, safety, legal and cultural issues and the                                                                                                                                                                                                                 |
|      | consequent responsibilities relevant to the professional engineering practice.                                                                                                                                                                                                                  |
| PO 7 | Environment and sustainability: Understand the impact of the professional                                                                                                                                                                                                                       |
|      | engineering solutions in societal and environmental contexts, and demonstrate the                                                                                                                                                                                                               |
|      | knowledge of, and need for sustainable development.                                                                                                                                                                                                                                             |

|       | Program Outcomes                                                                       |
|-------|----------------------------------------------------------------------------------------|
| PO 8  | Ethics: Apply ethical principles and commit to professional ethics and                 |
|       | responsibilities and norms of the engineering practice.                                |
| PO 9  | Individual and team work: Function effectively as an individual, and as a              |
|       | member or leader in diverse teams, and in multidisciplinary settings.                  |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with   |
|       | the engineering community and with society at large, such as, being able to            |
|       | comprehend and write effective reports and design documentation, make effective        |
|       | presentations, and give and receive clear instructions.                                |
| PO 11 | Project management and finance: Demonstrate knowledge and understanding                |
|       | of the engineering and management principles and apply these to one's own work, as     |
|       | a member and leader in a team, to manage projects and in multidisciplinary             |
|       | environments.                                                                          |
| PO 12 | Life-Long Learning: Recognize the need for and having the preparation and              |
|       | ability to engage in independent and life-long learning in the broadest context of     |
|       | technological change                                                                   |
|       | Program Specific Outcomes                                                              |
| PSO 1 | Build the prototype of UAVs and aero-foil models for testing by using low speed        |
|       | wind tunnel towards research in the area of experimental aerodynamics.                 |
| PSO 2 | Focus on formulation and evaluation of aircraft elastic bodies for characterization of |
|       | aero elastic phenomena                                                                 |
| PSO 3 | Make use of multi physics, computational fluid dynamics and flight simulation tools    |
|       | for building career paths towards innovative startups, employability and higher        |
|       | studies.                                                                               |

# 22. How program outcomes are assessed:

|      | Program Outcomes                                                                                                                                                                                                                                | Strength | Proficiency<br>Assessed by |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                         | 3        | Lab Exercises              |
| PO 5 | Modern Tool Usage: Create, select, and apply<br>appropriate techniques, resources, and modern<br>engineering and IT tools including prediction and<br>modelling to complex engineering activities with an<br>understanding of the limitations.  | 3        | Lab Exercises              |
| PO 6 | The Engineer and Society: Apply reasoning<br>informed by the contextual knowledge to assess<br>societal, health, safety, legal and cultural issues and<br>the consequent responsibilities relevant to the<br>professional engineering practice. | 1        | Lab Exercises              |

| PO 7  | <b>Environment and Sustainability:</b> Understand<br>the impact of the professional engineering solutions<br>in societal and environmental contexts, and<br>demonstrate the knowledge of, and need for<br>sustainable development. | 3 | Lab Exercises               |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------|
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                              | 1 | Lab Exercises               |
| PO 9  | Individual and Team Work: Function effectively<br>as an individual, and as a member or leader in<br>diverse teams, and in multidisciplinary settings.                                                                              | 1 | Lab Exercises               |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for,<br>and have the preparation and ability to engage in<br>independent and life-long learning in the broadest<br>context of technological change                                   | 1 | Lab Exercises /<br>CIE /SEE |

# 23. How program specific outcomes are assessed:

|       | Program Specific Outcomes                          | Strength | Proficiency     |
|-------|----------------------------------------------------|----------|-----------------|
|       |                                                    |          | Assessed by     |
| PSO 1 | Build the prototype of UAVs and aero-foil models   | 3        | Lab Exercises / |
|       | for testing by using low speed wind tunnel towards |          | CIE / SEE       |
|       | research in the area of experimental aerodynamics. |          |                 |
| PSO 3 | Make use of multi physics, computational fluid     | 3        | Lab Exercises / |
|       | dynamics and flight simulation tools for building  |          | CIE / SEE       |
|       | career paths towards innovative startups,          |          |                 |
|       | employability and higher studies                   |          |                 |

3 = High; 2 = Medium; 1 = Low

# 24. Mapping of each CO with PO(s), PSO(s):

|         |              |    |    | PSO'S |              |              |              |              |              |    |    |              |              |     |              |
|---------|--------------|----|----|-------|--------------|--------------|--------------|--------------|--------------|----|----|--------------|--------------|-----|--------------|
| COURSE  | PO           | PO | PO | РО    | PO           | PO           | PO           | PO           | PO           | PO | РО | PO           | PSO          | PSO | PSO          |
| OUTCOME | 1            | 2  | 3  | 4     | 5            | 6            | 7            | 8            | 9            | 10 | 11 | 12           | 1            | 2   | 3            |
| CO 1    | $\checkmark$ | -  | -  | -     | -            | $\checkmark$ | -            | -            | -            | -  | -  |              | -            | -   | -            |
| CO 2    | $\checkmark$ | -  | -  | -     | -            | $\checkmark$ | -            | -            | -            | -  | -  | -            | -            | -   | -            |
| CO 3    | $\checkmark$ | -  | -  | -     | -            | -            | -            | $\checkmark$ | -            | -  | -  | -            | -            | -   | -            |
| CO 4    | $\checkmark$ | -  | -  | -     | -            | -            | $\checkmark$ | -            | -            | -  | -  | -            | -            | -   | -            |
| CO 5    | $\checkmark$ | -  | -  | -     | -            | $\checkmark$ | -            | -            | $\checkmark$ | -  | -  | -            | -            | -   | -            |
| CO 6    | $\checkmark$ | -  | -  | -     | $\checkmark$ | -            | $\checkmark$ | -            | -            | -  | -  | $\checkmark$ | $\checkmark$ | -   | $\checkmark$ |

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                       | No. of Key<br>Competencies |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 1          | Apply the knowledge of science, mathematics and<br>engineering fundamentals to select the proper tools and<br>machines for making wood and metal works                     | 3                          |
|                    | PO 6          | Acquire the knowledge of maintaining safety regulations on<br>the shop floor.                                                                                              | 1                          |
| CO 2               | PO 1          | Apply the knowledge of mathematics and engineering<br>fundamentals to develop rectangular trays and round tins.                                                            | 2                          |
|                    | PO 6          | Obtain knowledge about safety precautions in forging techniques.                                                                                                           | 1                          |
| CO 3               | PO 1          | Apply the basics of mathematics to measure the pipes and<br>use engineering concepts for appropriate joints.                                                               | 2                          |
|                    | PO 8          | Acquire awareness of the norms of the engineering practice.                                                                                                                | 1                          |
| CO 4               | PO 1          | Apply the science and engineering knowledge to prepare<br>the casting of complex shapes.                                                                                   | 2                          |
|                    | PO 7          | Understand the impact of professional engineering solutions in societal and environmental contexts.                                                                        | 2                          |
| CO 5               | PO 1          | Apply the science and engineering knowledge to make hard soldering in dissimilar materials.                                                                                | 2                          |
|                    | PO 6          | Obtain knowledge about safety precautions in hard soldering techniques.                                                                                                    | 1                          |
|                    | PO 9          | Function effectively as an individual and as a member in solder making of non ferrous/ ferrous materials.                                                                  | 1                          |
| CO 6               | PO 1          | Apply the science, mathematics and engineering knowledge<br>to understand the concepts of digital manufacturing                                                            | 3                          |
|                    | PO 5          | Identify and select appropriate machines with modern<br>techniques for the machining process.                                                                              | 1                          |
|                    | PO 7          | Demonstrate their knowledge of recent trends in<br>manufacturing, the need for sustainable development, and<br>the impact of professional engineering solutions on society | 2                          |
|                    | PO 12         | Use life-long learning in the broadest context of recent trends in manufacturing domains.                                                                                  | 1                          |
|                    | PSO 1         | Attain knowledge and ideation towards digital<br>manufacturing in product development and additive<br>manufacturing techniques                                             | 2                          |
|                    | PSO 3         | Make use of digital manufacturing demonstrations to build<br>career paths towards employability and higher studies.                                                        | 2                          |

# 25. Justifications for CO - PO/PSO mapping -DIRECT:

|          |    |    |    | PSO'S |    |    |    |    |    |    |    |    |     |     |     |
|----------|----|----|----|-------|----|----|----|----|----|----|----|----|-----|-----|-----|
| COURSE   | РО | РО | PO | РО    | РО | РО | PO | PO | РО | PO | РО | РО | PSO | PSO | PSO |
| OUTCOMES | 1  | 2  | 3  | 4     | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 3  | -  | -  | -     | -  | 1  | -  | -  | -  | -  | -  |    | -   | -   | -   |
| CO 2     | 2  | -  | -  | -     | -  | 1  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 3     | 2  | -  | -  | -     | -  | -  | -  | 1  | -  | -  | -  | -  | -   | -   | -   |
| CO 4     | 2  | -  | -  | -     | -  | -  | 2  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 5     | 2  | -  | -  | -     | -  | 1  | -  | -  | 1  | -  | -  | -  | -   | -   | -   |
| CO 6     | 3  | -  | -  | -     | 1  | -  | 2  | -  | -  | -  | -  | 1  | 2   | -   | 2   |

## 26. Total count of key competencies for CO – PO/ PSO mapping

### 27. Percentage of key competencies CO – PO/ PSO:

|          |     |    | PSO'S |    |     |    |    |    |     |    |    |      |     |     |     |
|----------|-----|----|-------|----|-----|----|----|----|-----|----|----|------|-----|-----|-----|
| COURSE   | РО  | PO | PO    | PO | PO  | PO | PO | PO | PO  | PO | РО | РО   | PSO | PSO | PSO |
| OUTCOMES | 1   | 2  | 3     | 4  | 5   | 6  | 7  | 8  | 9   | 10 | 11 | 12   | 1   | 2   | 3   |
| CO 1     | 100 | -  | -     | -  | -   | 20 | -  | -  | -   | -  | -  |      | -   | -   | -   |
| CO 2     | 66  | -  | -     | -  | -   | 20 | -  | -  | -   | -  | -  | -    | -   | -   | -   |
| CO 3     | 66  | -  | -     | -  | -   | -  | -  | 33 | -   | -  | -  | -    | -   | -   | -   |
| CO 4     | 66  | -  | -     | -  | -   | -  | 66 | -  | -   | -  | -  | -    | -   | -   | -   |
| CO 5     | 66  | -  | -     | -  | -   | 20 | -  | -  | 8.3 | -  | -  | -    | -   | -   | -   |
| CO 6     | 100 | -  | -     | -  | 100 | -  | 66 | -  | -   | -  | -  | 12.5 | 100 | -   | 100 |

## 28. Course articulation matrix PO / PSO mapping:

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- $\pmb{2}$  40 % <C < 60% Moderate

 $1-5 < C \le 40\% - Low/$  Slight

 $\boldsymbol{3}$  - 60%  $\leq$  C < 100% – Substantial /High

|          |    |    | PSO'S |    |    |    |    |    |    |    |    |    |     |     |     |
|----------|----|----|-------|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| COURSE   | РО | PO | PO    | PO | PO | PO | PO | PO | РО | PO | PO | PO | PSO | PSO | PSO |
| OUTCOMES | 1  | 2  | 3     | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 3  | -  | -     | -  | -  | 1  | -  | -  | -  | -  | -  |    | -   | -   | -   |
| CO 2     | 3  | -  | -     | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 3     | 3  | -  | -     | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -   | -   | -   |
| CO 4     | 3  | -  | -     | -  | -  | -  | 3  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 5     | 3  | -  | -     | -  | -  | 1  | -  | -  | 1  | -  | -  | -  | -   | -   | -   |
| CO 6     | 3  | -  | -     | -  | 3  | -  | 3  | -  | -  | -  | -  | 1  | 3   | -   | 3   |

|          |    |    |    | $\mathbf{PR}$ | OGR | $\mathbf{A}\mathbf{M}$ | OUT | COM | 1ES |    |    |    | PSO'S |   |   |  |
|----------|----|----|----|---------------|-----|------------------------|-----|-----|-----|----|----|----|-------|---|---|--|
| COURSE   | PO | PO | PO | PO            | PSO | PSO                    | PSO |     |     |    |    |    |       |   |   |  |
| OUTCOMES | 1  | 2  | 3  | 4             | 5   | 6                      | 7   | 8   | 9   | 10 | 11 | 12 | 1     | 2 | 3 |  |
| Total    | 18 | -  | -  | -             | 3   | 3                      | 6   | 1   | 1   | -  | -  | 1  | 3     | - | 3 |  |
| Average  | 3  | -  | -  | -             | 3   | 1                      | 3   | 1   | 1   | -  | -  | 1  | 3     | - | 3 |  |

# 29. Assessment methodology -Direct:

| CIE Exams     | ~ | SEE Exams    | ~ | Laboratory<br>Practices   | ~ |
|---------------|---|--------------|---|---------------------------|---|
| Certification | - | Student Viva | ~ | Open Ended<br>Experiments | - |

### 30. Assessment methodology -Indirect:

| x | Assessment of Mini Projects by | $\checkmark$ | End Semester OBE Feedback |  |
|---|--------------------------------|--------------|---------------------------|--|
|   | Experts                        |              |                           |  |

## 31. Relevance to Sustainability goals (SDGs):

Write brief description about the course and how its relevance to SDGs.

| 1 | NO<br>Poverty                 |                                                                                                                                                                                                    |
|---|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <b>Ĩ</b> ŧ <b>Ť</b> ŧĨ        |                                                                                                                                                                                                    |
| 2 | ZERO<br>HUNGER                |                                                                                                                                                                                                    |
|   | ***                           |                                                                                                                                                                                                    |
| 3 | GOOD HEALTH<br>AND WELL-BEING |                                                                                                                                                                                                    |
| 4 | QUALITY<br>EDUCATION          | <b>Quality Education:</b> The engineering workshop course provides students with a strong foundation and allows them to apply knowledge about engineering tools used in manufacturing of products. |
| 5 |                               |                                                                                                                                                                                                    |

| 6  | CLEAN WATER<br>AND SANITATION                |                                                                                                                                                                                  |
|----|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | AFFORDABLE AND<br>CLEAN ENERGY               |                                                                                                                                                                                  |
| 8  | DECENT WORK AND<br>ECONOMIC GROWTH           |                                                                                                                                                                                  |
| 9  | INDUSTRY, INNOVATION<br>AND INFRASTRUCTURE   |                                                                                                                                                                                  |
| 10 | REDUCED<br>INEQUALITIES                      |                                                                                                                                                                                  |
| 11 |                                              |                                                                                                                                                                                  |
| 12 | RESPONSIBLE<br>CONSUMPTION<br>AND PRODUCTION | <b>Responsible Consumption and Production:</b> Focusing on efficient material use and waste reduction in engineering workshops can aid in the developing of components/products. |
| 13 | CLIMATE<br>ACTION                            |                                                                                                                                                                                  |
| 14 | LIFE BELOW<br>WATER                          |                                                                                                                                                                                  |

| 15 | LIFE<br>ON LAND                              |  |
|----|----------------------------------------------|--|
|    | <b>\$</b> ~~                                 |  |
| 16 | PEACE, JUSTICE<br>And Strong<br>Institutions |  |
|    |                                              |  |
| 17 | PARTNERSHIPS<br>For the goals                |  |
|    | <b>8</b>                                     |  |

Approved by: Board of Studies in the meeting conducted on 24.08.2023.

Signature of Course Coordinator Mr. G.Shiva Krishna Assistant Professor HOD,AE