Hall Ticket No	Question Paper Code: BST003
	NGINEERING
(Autonomous)	
M.Tech I Semester End Examinations (Supplement	itary) - July, 2018
Regulation: IARE–R16	

COMPUTER ORIENTED NUMERICAL METHODS

Time: 3 Hours

(STE)

Max Marks: 70

[7M]

[7M]

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1. (a) Solve the following equations using Gauss seidel iteration method. 2x+y=3; 2x+3y=5.

- (b) Solve the following equations using Gauss Jordan method. x + y = 2, 2x + 3y = 5 [7M]
- 2. (a) Solve the following equations using relaxation method.
 9x-y-2z=9; x+10y-2z=15; 2x-2y-13z=17

(b) Show that LU decomposition method fails to solve the system of equations. [7M]

1	1	-1	$\begin{bmatrix} x_1 \end{bmatrix}$		$\begin{bmatrix} 2 \end{bmatrix}$	
2	2	5	x_2	=	-3	
3	2	- 3	x_3		6	

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Find the Lagrange's interpolating polynomial of degree 2 approximating the function y=ln x defined by the following table of values. Hence determine the value of ln 2.7 [7M]

х	y=ln x
2.0	0.69315
2.5	0.91629
3.0	1.09861

(b) Construct the free cubic spline to approximate $f(x) = cos\pi x$ by using the values given by f (x) at x = 0; 0:25; 0:5; 0:75 and 1:0. [7M]

- 4. (a) For linear interpretation, in the case of equispaced tabular data, show that the error does not exceed 1/8 of the second difference. [7M]
 - (b) Determine the natural cubic spline s (x, y) which approximates the below Table 1, the function z=f(x, y) satisfies the following data for 0 X, Y Z. Find the approximate value of z (0.5,0.5). [7M]

	Х		
Y	0	1	2
0	1	2	9
1	2	3	10
2	9	10	17

Table 1

UNIT – III

5. (a) If
$$y(75) = 246$$
, $y(80) = 202$, $y(85) = 118$, $y(90) = 40$). Find $y(79)$. [7M]

(b) Find the cubic polynomial which takes the following values shown in Table 2. [7M]

Table	2
-------	---

x	0	1	2	3
f(x)	1	2	1	10

- 6. (a) Find f(32) by applying central difference formula given that f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794. [7M]
 - (b) Find the value of x correct to one decimal place for which y=7 for the given data shown in

Table 3.

Table 3

x	1	3	4
у	4	12	19

[7M]

UNIT - IV

7. (a) Evaluate $\int_{0}^{1} e^{-x^{2}} dx$ by dividing the range into 4 equal parts using Trapezoidal rule. [7M]

(b) A rod is rotating in a plane as shown in Table 4 which gives the angle θ through which the rod has turned for various values of time t sec. [7M]

t	0	0.2	0.4	0.6	0.8	1.0
θ	0	0.12	0.49	0.49	2.02	3.20

Tal	ble	4
-----	-----	---

Calculate the angular velocity and the angular acceleration of the rod when t=0.6 sec.

8. (a) Find the value of $\log 2^{1/3}$ from $\int_{0}^{1} \frac{x^2}{1+x^2} dx$ using simpson's 1/3 rule with h=0.25. [7M]

(b) Find y'(x) at x=0.5 for the given data shown in Table 5

Table	е5

x	0	1	2	3	4
y(x)	1	1	15	40	85

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) From the Taylor series for y (x), find y (0,1) correct to 4 decimal places if y(x) satisfies. $y^1 = x - y^2$, and y (0) =1. [7M]
 - (b) Solve the equation $y^1 = x + y^2$, subject to the condition y = 1 when x = 0. [7M]
- 10. (a) Solve the boundary-value problem $\frac{\partial^2 y}{\partial x^2 y} = 0$ with y (0) = y (2) = 3.62686 [7M]
 - (b) Given the boundary value problem $x^2y^{11} + xy^1 y = 0, y(1) = 1, y(2) = 0.5$ apply the cubic spline method to determine the value of y (1.5). [7M]

[7M]