\square

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

M.Tech I Semester End Examinations (Supplementary) - July, 2018

Regulation: IARE-R16
COMPUTER ORIENTED NUMERICAL METHODS
Time: 3 Hours
(STE)
Max Marks: 70

Answer ONE Question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT - I

1. (a) Solve the following equations using Gauss seidel iteration method. $2 \mathrm{x}+\mathrm{y}=3 ; 2 \mathrm{x}+3 \mathrm{y}=5$.
(b) Solve the following equations using Gauss Jordan method. $\mathrm{x}+\mathrm{y}=2,2 \mathrm{x}+3 \mathrm{y}=5[7 \mathrm{M}]$
2. (a) Solve the following equations using relaxation method.
$9 \mathrm{x}-\mathrm{y}-2 \mathrm{z}=9$;
$\mathrm{x}+10 \mathrm{y}-2 \mathrm{z}=15$;
$2 x-2 y-13 z=17$
[7M]
(b) Show that LU decomposition method fails to solve the system of equations.

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 2 & 5 \\
3 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
6
\end{array}\right]
$$

UNIT - II
3. (a) Find the Lagrange's interpolating polynomial of degree 2 approximating the function $y=\ln$ x defined by the following table of values. Hence determine the value of $\ln 2.7$
[7M]

$$
\begin{array}{cc}
\mathrm{x} & \mathrm{y}=\ln \mathrm{x} \\
2.0 & 0.69315 \\
2.5 & 0.91629 \\
3.0 & 1.09861
\end{array}
$$

(b) Construct the free cubic spline to approximate $f(x)=\cos \pi \mathrm{x}$ by using the values given by $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0 ; 0: 25 ; 0: 5 ; 0: 75$ and 1:0.
4. (a) For linear interpretation, in the case of equispaced tabular data, show that the error does not exceed $1 / 8$ of the second difference.
[7M]
(b) Determine the natural cubic spline s (x, y) which approximates the below Table 1, the function $z=f(x, y)$ satisfies the following data for $0 X, Y$ Z. Find the approximate value of $\mathrm{z}(0.5,0.5)$.
[7M]

Table 1

	X		
Y	0	1	2
0	1	2	9
1	2	3	10
2	9	10	17

UNIT - III
5. (a) If $y(75)=246, y(80)=202, y(85)=118, y(90)=40)$. Find $y(79)$.
(b) Find the cubic polynomial which takes the following values shown in Table 2.

Table 2

x	0	1	2	3
$f(x)$	1	2	1	10

6. (a) Find $f(32)$ by applying central difference formula given that
$\mathrm{f}(25)=0.2707, \mathrm{f}(30)=0.3027$, $\mathrm{f}(35)=0.3386$, $\mathrm{f}(40)=0.3794$.
(b) Find the value of x correct to one decimal place for which $\mathrm{y}=7$ for the given data shown in
Table 3.
Table 3

x	1	3	4
y	4	12	19

UNIT - IV

7. (a) Evaluate $\int_{0}^{1} e^{-x^{2}} \mathrm{dx}$ by dividing the range into 4 equal parts using Trapezoidal rule. [7M]
(b) A rod is rotating in a plane as shown in Table 4 which gives the angle θ through which the rod has turned for various values of time $t \mathrm{sec}$.
[7M]

Table 4

t	0	0.2	0.4	0.6	0.8	1.0
θ	0	0.12	0.49	0.49	2.02	3.20

Calculate the angular velocity and the angular acceleration of the rod when $t=0.6 \mathrm{sec}$.
8. (a) Find the value of $\log 2^{1 / 3}$ from $\int_{0}^{1} \frac{x^{2}}{1+x^{2}} d x$ using simpson's $1 / 3$ rule with $\mathrm{h}=0.25$.
(b) Find $\mathrm{y}^{\prime}(\mathrm{x})$ at $\mathrm{x}=0.5$ for the given data shown in Table 5

Table 5

x	0	1	2	3	4
$y(x)$	1	1	15	40	85

UNIT - V
9. (a) From the Taylor series for $y(x)$, find $y(0,1)$ correct to 4 decimal places if $y(x)$ satisfies. $y^{1}=\mathrm{x}-y^{2}$, and y $(0)=1$.
(b) Solve the equation $y^{1}=\mathrm{x}+y^{2}$, subject to the condition $\mathrm{y}=1$ when $\mathrm{x}=0$.
10. (a) Solve the boundary-value problem $\frac{\partial^{2} y}{\partial x^{2}-y}=0$ with $y(0)=y(2)=3.62686$
(b) Given the boundary value problem $x^{2} y^{11}+x y^{1}-y=0, y(1)=1, y(2)=0.5$ apply the cubic spline method to determine the value of y (1.5).
[7M]

