	1			

institute of Aeronautical engineering
(Autonomous)
M.Tech I Semester End Examinations (Regular) - February, 2017

Regulation: IARE-R16
COMPUTER ORIENTED NUMERICAL METHODS
(Structural Engineering)
Time: 3 Hours
Max Marks:
70

Answer ONE Question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT - I

1. (a) Solve the following system of linear equations with partial pivoting

$$
\begin{gathered}
x_{1}-x_{2}+3 x_{3}=3 \\
2 x_{1}+x_{2}+4 x_{3}=7 \\
3 x_{1}+5 x_{2}-2 x_{3}=6
\end{gathered}
$$

(b) Use Householder's method to convert the matrix $\left[\begin{array}{cccc}4 & 1 & -2 & 2 \\ 1 & 2 & 0 & 1 \\ -2 & 0 & 3 & -2 \\ 2 & 1 & -2 & -1\end{array}\right]$ into tridiagonal form.
[7M]
2. (a) Solve the following linear system of equations using by Jacobi method rounded to four decimal places.
[7M]

$$
\begin{aligned}
& 10 x_{1}-x_{2}+2 x_{3}=6 \\
& -x_{1}+11 x_{2}-x_{3}+3 x_{4}=25 \\
& 2 x_{1}-x_{2}+10 x_{3}-x_{4}=-11 \\
& 3 x_{2}-x_{3}+8 x_{4}=15
\end{aligned}
$$

(b) Find the largest eigen value and corresponding eigen vector of the matrix $\left[\begin{array}{ccc}1.5 & 0 & 1 \\ -0.5 & 0.5 & -0.5 \\ -0.5 & 0 & 0\end{array}\right]$ by using power method.

UNIT - II

3. (a) Using Newton divided differences, construct the interpolating polynomial for the data set given below
[7M]

i	1	2	3	4	5
x	0	5	7	8	10
y	0	2	-1	-2	20

(b) The upward velocity of a rocket is given as a function of time in the following Table.
[7M]

$\mathrm{t}(\mathrm{s})$	0	10	15	20	22.5	30
$\mathrm{v}(\mathrm{t})(\mathrm{m} / \mathrm{s})$	0	227.04	362.78	517.35	602.97	901.67

Determine the value of the velocity at $\mathrm{t}=16$ seconds with third order polynomial interpolation using Lagrangian polynomial interpolation.
4. Construct the free cubic spline to approximate $f(x)=\cos \pi x$ by using the values given by $f(x)$ at $x=$ $0,0.25,0.5,0.75$ and 1.0
[14M]

UNIT - III

5. (a) Using the formula $f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}$ and Richardson extrapolation find $f^{\prime}(3)$ from the following table values.
[7M]

x	-1	1	2	3	4	5	7
$\mathrm{f}(\mathrm{x})$	1	1	16	81	256	625	2401

(b) Given the values of $f(x)=\ln x$, find the approximate values of $f^{\prime}(2.0)$ and $f^{\prime \prime}(2.0)$ using quadratic interpolation and also obtain an upper bound on the error.
[7M]

x	2.0	2.2	2.6
$\mathrm{f}(\mathrm{x})$	0.69315	0.78846	0.95551

6. Find the maximum and minimum values from the following table
[14M]

x	-2	-1	0	1	2	3	4
$\mathrm{f}(\mathrm{x})$	2	-0.25	0	-0.25	2	15.75	56
UNIT - IV							

7. (a) Estimate the values of $\frac{\delta f}{\delta x}$ at $(0.2,0.1), \frac{\delta f}{\delta y}$ at $(0.2,0.2)$ using first order formula and $\frac{\partial^{2} f}{\partial x \partial y}$ at $(0.2,0.2)$ using second order formula from the following table values.
[7M]

$x \rightarrow / y \downarrow$	0.1	0.2	0.3
0.1	2.02	2.0351	2.0403
0.2	2.0351	2.0801	2.1153
0.3	2.0403	2.1153	2.1803

(b) For the method $f^{\prime}\left(x_{0}\right)=\frac{-3 f\left(x_{0}\right)+4 f\left(x_{1}\right)-f\left(x_{2}\right)}{2 h}-\frac{h^{2}}{3} f^{\prime \prime \prime}(\zeta) ; x_{0}<\zeta<x_{2}$ determine the optimum value of h , using the criteria $|R E|=|T E|$.
8. Evaluate the integral $\int_{1}^{2} \int_{1}^{2} \frac{d x d y}{x+y}$ using trapezoidal rule with $h=k=0.5$ and $h=k=0.25$. Improve the estimate using Romberg Integration.

UNIT - V

9. (a) Apply Euler's method with step sizes $h=0.3,0.2$ and 0.15 to compute approximations to $y(0.6)$ by solving ordinary differential equation $y^{\prime}=x(y+x), y(0)=2$
(b) Using RK method of order 2 compute $y(2.5)$ from $y^{\prime}=\frac{(y+x)}{x}, y(2)=2$, taking $h=0.25 \quad[7 \mathrm{M}]$
10. (a) Solve boundary value problem $u^{\prime \prime}=u+x ; u(0)=0, u(1)=0$ with $h=1 / 4$
(b) Solve by Taylor's series method the equation $y^{\prime}=\log (x y) ; y(1)=2$ for $y(1.1)$ and $y(1.2)[7 \mathbf{M}]$
