Hall Ticket I	Vo Question Pap	er Code: BST003			
	NSTITUTE OF AERONAUTICAL ENGINEERIN (Autonomous)	G			
M.Tech I Semester End Examinations (Regular) - February, 2017 Regulation: IARE–R16					
	COMPUTER ORIENTED NUMERICAL METHODS (Structural Engineering)				
Time: 3 Hours	3	Max Marks: 70			
	Answer ONE Question from each Unit				
	All Questions Carry Equal Marks				

All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1. (a) Solve the following system of linear equations with partial pivoting [7M]

 $\begin{array}{c} x_1 - x_2 + 3x_3 = 3\\ 2x_1 + x_2 + 4x_3 = 7\\ 3x_1 + 5x_2 - 2x_3 = 6 \end{array}$ (b) Use Householder's method to convert the matrix $\begin{bmatrix} 4 & 1 & -2 & 2\\ 1 & 2 & 0 & 1\\ -2 & 0 & 3 & -2\\ 2 & 1 & -2 & -1 \end{bmatrix} \text{ into tridiagonal form.}$ $\begin{bmatrix} 7M \end{bmatrix}$

2. (a) Solve the following linear system of equations using by Jacobi method rounded to four decimal places. [7M]

$$10x_1 - x_2 + 2x_3 = 6$$

- $x_1 + 11x_2 - x_3 + 3x_4 = 25$
 $2x_1 - x_2 + 10x_3 - x_4 = -11$
 $3x_2 - x_3 + 8x_4 = 15$

(b) Find the largest eigen value and corresponding eigen vector of the matrix $\begin{bmatrix} 1.5 & 0 & 1 \\ -0.5 & 0.5 & -0.5 \\ -0.5 & 0 & 0 \end{bmatrix}$ by using power method. [7M]

$\mathbf{UNIT} - \mathbf{II}$

3. (a) Using Newton divided differences, construct the interpolating polynomial for the data set given below [7M]

i	1	2	3	4	5
x	0	5	7	8	10
у	0	2	-1	-2	20

(b) The upward velocity of a rocket is given as a function of time in the following Table. [7M]

t(s)	0	10	15	20	22.5	30
v(t)(m/s)	0	227.04	362.78	517.35	602.97	901.67

Determine the value of the velocity at t=16 seconds with third order polynomial interpolation using Lagrangian polynomial interpolation.

4. Construct the free cubic spline to approximate $f(x) = \cos \pi x$ by using the values given by f(x) at x = 0, 0.25, 0.5, 0.75 and 1.0 [14M]

 $\mathbf{UNIT}-\mathbf{III}$

5. (a) Using the formula $f'(x) = \frac{f(x+h)-f(x-h)}{2h}$ and Richardson extrapolation find f'(3) from the following table values. [7M]

x	-1	1	2	3	4	5	7
f(x)	1	1	16	81	256	625	2401

(b) Given the values of $f(x) = \ln x$, find the approximate values of f'(2.0) and f''(2.0) using quadratic interpolation and also obtain an upper bound on the error. [7M]

х	2.0	2.2	2.6
f(x)	0.69315	0.78846	0.95551

6. Find the maximum and minimum values from the following table

[14M]

х	-2	-1	0	1	2	3	4
f(x)	2	-0.25	0	-0.25	2	15.75	56

$\mathbf{UNIT}-\mathbf{IV}$

7. (a) Estimate the values of $\frac{\delta f}{\delta x}$ at (0.2, 0.1), $\frac{\delta f}{\delta y}$ at (0.2, 0.2) using first order formula and $\frac{\partial^2 f}{\partial x \partial y}$ at (0.2, 0.2) using second order formula from the following table values. [7M]

$x \to_{/y \downarrow}$	0.1	0.2	0.3
0.1	2.02	2.0351	2.0403
0.2	2.0351	2.0801	2.1153
0.3	2.0403	2.1153	2.1803

(b) For the method $f'(x_0) = \frac{-3f(x_0)+4f(x_1)-f(x_2)}{2h} - \frac{h^2}{3}f'''(\zeta)$; $x_0 < \zeta < x_2$ determine the optimum value of h, using the criteria |RE| = |TE|. [7M]

8. Evaluate the integral $\int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x+y}$ using trapezoidal rule with h = k = 0.5 and h = k = 0.25. Improve the estimate using Romberg Integration. [14M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Apply Euler's method with step sizes h = 0.3, 0.2 and 0.15 to compute approximations to y(0.6) by solving ordinary differential equation y' = x(y+x), y(0) = 2 [7M]
 - (b) Using RK method of order 2 compute y(2.5) from $y' = \frac{(y+x)}{x}$, y(2) = 2, taking h = 0.25 [7M]
- 10. (a) Solve boundary value problem u'' = u + x; u(0) = 0, u(1) = 0 with h = 1/4 [7M]
 - (b) Solve by Taylor's series method the equation $y' = \log(xy)$; y(1) = 2 for y(1.1) and y(1.2) [7M]