Hall Ticket No	Question Paper Code: BCC006
INSTITUTE OF AERONAUTICAL EN (Autonomous)	GINEERING
M.Tech II Semester End Examinations (Supplementary Regulation: IARE–R16 FLEXIBLE MANUFACTURING SY (CAD/CAM)	

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	What are the basic components of flexible manufacturing systems. Explain with suitable examples	mple.
			[7M]
	(b)	What are the different types of flexible manufacturing systems. Explain with suitable exam	nple. [7M]
2.	` '		[7M] [7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a) What are the advantages and disadvantages of centralized control.	[7M]
	(b) Explain backward scheduling approach with infinite capacity loading.	[7M]
4.	(a) Explain forward scheduling approach with finite capacity loading.	[7M]
	(b) Explain the terms conflicts and synchronization in terms of modelling issues.	[7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) What are the intervoven steps involved in simulation modeling. [7M]
 - (b) A 20-station transfer line is divided into two stages of 10 stations each. The ideal cycle time of each stage is T_o "" Lz mln. All of the stations in the line have the same probability of stopping, p = 0.005. We assume that the downtime is constant when a breakdown occurs, $T_d = 8.0$ min. Using the upper-bound approach, compute the line efficiency for the following buffer capacities: i. b = 0 [7M] ii. b = 10 iii. b = 100
- 6. (a) What are the issues related with deterministic and stochastic modelling. [7M]
 - (b) Differentiate between transfer lines with buffer storage and without buffer storage. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Explain briefly about manufacturing cycle time.	[7M]
	(b) What are different problems in computation of transient analysis.	[7M]
8.	(a) Explain the application of performance analysis in manufacturing .	[7M]
	(b) Explain mathematical programming approach in flexible manufacturing systems.	[7M]
$\mathbf{UNIT} - \mathbf{V}$		
9	(a) Explain the system of preventive maintenance	[7M]

9.	(a) Explain the system of preventive maintenance.	[7M]
	(b) Demonstrate KANBAN system with suitable examples.	[7M]
10.	(a) What is AS/RS systems. Explain briefly about AS/RS systems.	[7M]
	(b) Explain the single card system of KANBAN with diagram.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$