Question Paper Code: AME003

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech III Semester End Examinations (Supplementary) - July, 2018

Regulation: IARE – R16

THERMODYNAMICS

Time: 3 Hours

Hall Ticket No

(ME)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Explain Quasi static process with neat sketch.
 - (b) A fluid, contained in a horizontal cylinder fitted with a frictionless leak proof piston, is continuously agitated by means of a stirrer passing through the cylinder cover. The cylinder diameter is 0.40 m. During the stirring process lasting 10 minutes, the piston slowly moves out a distance of 0.485 m against the atmosphere. The net work done by the fluid during the process is 2 kJ. The speed of the electric motor driving the stirrer is 840 rpm. Determine the torque in the shaft and the power output of the motor. [7M]

2. (a) Explain the following

- i. Constant volume gas thermometer
- ii. Zeroth law of thermodynamics
- (b) A gas undergoes a thermodynamic cycle consisting of the following process [7M]
 - i. Process 1-2: constant pressure, $P_1=1.4$ bar, $V_1=0.028 m^3$, $W_{1-2}=10.5$ KJ
 - ii. Process 2-3: compression with PV=C, $U_3{=}U_2$
 - iii. Process 3-1: constant volume $U_1=U_3=-26.4$ KJ. There are no significant change in KE and PE. Sketch the cycle on a PV diagram and prove that $\sum Q_{cycle} = \sum W_{cycle}$

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) What are the limitations of first law of thermodynamics?
 - (b) A heat pump working on the Carnot cycle takes in heat from a reservoir at 5°C and delivers heat to a reservoir at 60^{0} C. The heat pump is driven by a reversible heat engine which takes in heat from a reservoir at 840°C and rejects heat to a reservoir at 60°C. The reversible heat engine also drives a machine that absorbs 30 kW. If the heat pump extracts 17 kJ/s from the 5^oC reservoir, determine [7M]
 - i. The rate of heat supply from the $840^\circ\mathrm{C}$ source
 - ii. The rate of heat rejection to the $60^\circ\mathrm{C}$ sink.
- 4. (a) Derive Maxwell's relations from thermodynamic relations
 - (b) One kg of ice at -10^{0} C is exposed to the atmosphere which is at 20^{0} C. The ice melts and comes into thermal equilibrium with the atmosphere. Determine the entropy increase of the universe. Take specific heat for ice 2.0982kJ/kgK and latent heat of fusion 333.3kJ/kg. [7M]

[7M]

[7M]

[7M]

[7M]

$\mathbf{UNIT}-\mathbf{III}$

5.	(a) With a neat sketch explain Throttling Calorimeter.	[7M]
	(b) Ten kg of water at 45 ^o C is heated at constant pressure of 10 bar until it become super vapor at 300 ^o C. Find the changes in volume, enthalpy, internal energy and entropy.	heated [7M]
6.	(a) Explain triple point and critical point with respect to pressure temperature [PT] plot.	[7M]

(b) A rigid vessel of volume 0.86 m^3 contains 1 kg of steam at a pressure of 2 bar. Evaluate the specific volume, temperature, dryness fraction, internal energy, enthalpy and entropy of steam.

[7M]

[7M]

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) State and prove the Gibbs theorem.
 - (b) A gaseous mixture consists of 1kg of oxygen and 2kg of nitrogen at a pressure of 150kPa and a temperature of 20^{0} C. Determine [7M]
 - i. Mole fraction of each constitute
 - ii. The equivalent molecular weight of the mixture
 - iii. The equivalent gas constant of the mixture
 - iv. The partial pressure and volumes
 - v. The c_p and c_v of the mixture
- 8. (a) Define below terms
 - i. Dry bulb temperature
 - ii. Wet bulb temperature
 - iii. Specific humidity
 - iv. Relative humidity
 - (b) The reading from sling psychrometer as follows, Dry bulb temperature = 30^{0} C, Wet bulb temperature = 20^{0} C and barometer reading = 740 mm of Hg. Using steam table determine, Dew point temperature, Relative humidity, Specific humidity and Degree of saturation. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Explain with PV and T s plot for same compression ratio and heat rejection, which cycle is highest efficiency (Otto, Diesel and Dual cycle) [7M]
 - (b) In an air standered Otto cycle the compression ratio is 7, and compression begins at 35° C, 0.1MPa. The maximum temperature of the cycle is 1100° C. Find [7M]
 - i. The work done per kg of air
 - ii. The cycle efficiency
 - iii. The mean effective pressure of the cycle.
- 10. (a) Explain Bell- Coleman cycle with PV and T s diagram. [7M]
 - (b) A diesel engine has a compression ratio of 14 and cutoff takes place at 6% of the stroke. Find air standard efficiency. [7M]

 $-\circ\circ\bigcirc\circ\circ-$