Hall Ticket	No Question Paper Code: AHS011
	INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)
Of FOR US	B.Tech III Semester End Examinations (Supplementary) - February, 2018 Regulation: IARE – R16 MATHEMATICAL TRANSFORM AND TECHNIQUES
	(Common to AE ECE)
Time: 3 Hours Max	

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1. (a) Find the Fourier series in
$$(-\pi, \pi)$$
 for the function $f(x) = \begin{cases} \pi + x, (-\pi, -\pi/2) \\ \pi/2, (-\pi/2, \pi/2) \\ \pi - x, (\pi/2, \pi) \end{cases}$ [7M]

(b) Obtain the half range Fourier cosine series of
$$f(x) = \begin{cases} x, \ 0 < x < \pi/2 \\ \pi - x, \ \pi/2 < x < \pi \end{cases}$$
 [7M]

2. (a) Find the Fourier series of the function $(1 + \sin x)$ in (-1, 1).[7M](b) Obtain the Fourier series of the function $|\cos x|$ in $(-\pi, \pi)$.[7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Express the function, $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ as Fourier sine integral and show that

$$\int_{0}^{\infty} \frac{\sin wx \, \sin \pi w}{1 - w^2} dw = \frac{\pi}{2} \, \sin x, \, 0 \le x \le \pi.$$
[7M]

(b) Find the Fourier transform of
$$f(x) = \begin{cases} 1 - x^2, & |x| \le |\\ 0, & |x| > | \end{cases}$$
 and hence evaluate [7M]

$$\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^{3}} \cdot \cos\left(\frac{x}{2}\right) dx.$$

4. (a) Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$ and hence derive the Fourier sine transform of $\frac{x}{1+x^2}$. [7M]

(b) Find the Fourier transform of
$$f(x) = \begin{cases} 1 - |x|, & |x| \le | \\ 0, & |x| \ge | \end{cases}$$
. Hence deduce that $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi/2.$ [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Find the Laplace transforms of the function $f(t)=sin^5x$. [7M]
 - (b) Show that $L\left\{\sin\sqrt{t}\right\} = \frac{1}{s}e^{-s/w}$. $\sqrt{\frac{\pi}{s}}$. [7M]
- 6. (a) Find the Laplace transform of square wave function of period 2a defined by [7M]

$$f(t) = \begin{cases} a, 0 \le t \le a \\ -a, a \le t \le 2a \end{cases}$$

(b) Using convolution theorem find $L^{-1}\left\{\frac{1}{(s^2+a^2)^2}\right\}$ [7M]

$\mathbf{UNIT} - \mathbf{IV}$

- 7. (a) Use convolution theorem to evaluate $Z^{-1}\left\{\frac{z^2}{(z-a)(z-b)}\right\}$ [7M]
 - (b) Using the Z-transform, solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0=0, u_1=1$. [7M]
- 8. (a) State and prove convolution theorem and by using convolution theorem find inverse Z-transform of $z^2/(z-a)(z-b)$. [7M]
 - (b) Solve the difference equation, $y_{n+2} + 4y_{n+1} + 4y_n = 7$, $y_0 = 1$, $y_1 = 2$. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Solve (mz ny) p + (nx lz) q = ly mx[7M]
 - (b) Solve $\nabla^2 V = 0$ subject to $V(0, y) = V(\pi, y) = 0, V(x, 0) = V_0$ and $\lim_{y \to \infty} V = 0$. [7M]

10. (a) Solve
$$z^2 \left(p^2 x^2 + q^2 \right) = 1.$$
 [7M]

(b) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(x,0) = 3\sin \pi x, u(0,t) = 0, u(1,t) = 0$ where 0 < x < 1, t > 0.

$$-\circ\circ\bigcirc\circ\circ-$$