Hall Ticket	No											Question Paper Code: AHS011
IARE STATES	INS	STI	TU	ITE	0	F /	EI	RO (Au	N ton	\U ' om	TIC ous	CAL ENGINEERING

Four Year B.Tech III Semester End Examinations (Supplementary) - July, 2018 Regulation: IARE – R16

MATHEMATICAL TRANSFORM TECHNIQUES

Time: 3 Hours

(COMMON TO AE | ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Obtain the Fourier series of $\sqrt{1 \cos x}$ in $(0, 2\pi)$ and hence deduce that $\frac{1}{2} = \sum \frac{1}{4x^2 1}$. [7M]
 - (b) Find the Fourier series of $f(x) = \begin{cases} 4-x, 3 < x < 4 \\ x-4, 4 < x < 5 \end{cases}$ [7M]
- 2. (a) Find the Fourier series of $f(t) = \begin{cases} 0 \ if & -\pi < t < -\frac{\pi}{2} \\ 5 \ if & -\frac{\pi}{2} < t < \frac{\pi}{2} \\ 0 \ if & \frac{\pi}{2} < t < \pi \end{cases}$ [7M]

(b) Find the Fourier series of
$$f(t) = \begin{cases} 0 & if \quad -\pi < t < 0 \\ t & if \quad 0 < t < \pi \end{cases}$$
 [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Find the Fourier transform of $e^{-\frac{|t|}{T}}$. [7M] (b) Find the Fourier sine transform of $e^{-|x|}$ and hence evalute $\int_{0}^{\infty} \frac{x \sin(mx)}{1+x^2}$. [7M]
- 4. (a) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$. [7M] (b) Find f(x) if its Fourier sine transform is $w/(w^2 + 1)$. [7M]

$\mathbf{UNIT} - \mathbf{III}$

5. (a) Show that $L\left\{\sin\sqrt{t}\right\} = \frac{1}{s}e^{-s/w}$. $\sqrt{\frac{\pi}{s}}$.

(b) A periodic function of period $(2\pi/w)$ defined by $f(t) = \begin{cases} E \sin wt, & 0 \le t < \pi/w \\ 0, & \pi/w \le t < 2\pi/w \end{cases}$

Where E and W are constants show that $L\{f(t)\} = EW|(s^2 + w^2)(1 - e^{-\pi s/w}).$ [7M]

- 6. (a) Find *i*) $L^{-1}\left\{\frac{5s+3}{(s-1)(s^2+2s+5)}\right\}$ *ii*) $L\left\{\frac{\cos 6t \cos 4t}{t}\right\}$ [7M]
 - (b) The current i and q in a series circuit containing an inductance L, a capacitance C, e.m.f. E satisfying the D.E. Express $L\frac{di}{dt} + \frac{q}{c} = E$, i and q in terms of t given that L, C, E are constants and i, q both are initially zero using Laplace transforms. [7M]

$\mathbf{UNIT} - \mathbf{IV}$

7. (a) Find the Z-transform of $(n+p)C_p$. [7M]

(b) By resolving into partial fractions find
$$Z_T^{-1}\left[\frac{4z^2-2z}{z^3-5z^2+8z-4}\right]$$
. [7M]

8. (a) By using convolution theorem, find inverse Z-transform of $\frac{z}{(z-a)^3}$ and hence deduce for $\left(\frac{z}{z-1}\right)^3$. [7M]

(b) Solve the difference equation $u_{n+2} - 2u_{n+1} - 3u_n = 3^n + 2n$, $u_0 = 0$, $u_1 = 0$. [7M]

$\mathbf{UNIT} - \mathbf{V}$

9. (a) Find the temperature u(x,t) in a homogeneous bar of heat conducting material of length L in cm with its ends kept at zero temperature and initial temperature given by $dx (L-x)/L^3$. [7M]

- (b) Solve $(y + zx) p (x yz)q = x^2 y^2$. [7M]
- 10. (a) Solve $(x^2 2yz y^2)dx + (xy + xz)dy = (xy xz).$
 - (b) Solve $u_{xx} = u_y + 2u$ by separation of variables under the condition that $u = 0, u_x = e^{-y}$ when x=0 and for all y. [7M]

 $-\circ\circ\bigcirc\circ\circ-$

[7M]

[7M]