INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

Four Year B.Tech III Semester End Examinations (Regular) - November, 2018
Regulation: IARE - R16
MATHEMATICAL TRANSFORM AND TECHNIQUES
Time: 3 Hours
(Common to AE|ECE)
Max Marks:
70

Answer ONE Question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT - I

1. (a) Expand the function from $f(x)=x-x^{2}$ to $\mathrm{x}=-\pi$ as a Fourier series. Prove that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+$ $\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots . \infty=\frac{\pi^{2}}{12}$.
(b) Obtain the Fourier series expansion of $f(x)=\frac{\pi-x}{2}$ in $0<x<2 \pi$. Deduce that $1-\frac{1}{3}+$ $\frac{1}{5}-\frac{1}{7}----\infty=\frac{\pi}{4}$.
2. (a) Find a Fourier series to represent x^{2} in the interval $(-1, l)$.
[7M]
(b) Expand $f(x)=\left\{\begin{array}{l}\frac{1}{4}-x, i f 0<x<\frac{1}{2} \\ x-\frac{3}{4}, i f \frac{1}{2}<x<1\end{array}\right.$ in the Fourier series of sine terms. .
UNIT - II
3. (a) Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1-|x|, & |x| \leq 1 \\ 0, & |x|>1\end{array}\right.$ and hence find the value of $\int_{0}^{\infty}\left[\frac{\sin t}{t}\right]^{2} d t$.
[7M]
(b) Find the Fourier cosine transform of $f(x)=e^{-a x}(a>0)$ and hence find the value of $\int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}$.
[7M]
4. (a) If the Fourier inverse finite sine transform of $\mathrm{f}(\mathrm{n})=\frac{1-\cos n \pi}{n^{2} \pi^{2}}, 0<x<\pi$, find $f(x)$.
(b) Find Fourier cosine transform of $\mathrm{f}(\mathrm{x})$, where $f(x)= \begin{cases}x & , 0<x<1 \\ 2-x, & 1<x<2 \\ 0 & , x>2 .\end{cases}$
[7M]

UNIT - III
5. (a) Find $L\left[t e^{-t} \cos t\right]$
[7M]
(b) Find $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]$.
6. (a) Find $L[f(t)]$, where $f(t)=\left\{\begin{array}{cc}1 & , 0 \leq t<2 \\ -1 & , 2 \leq t<4\end{array} \quad, \quad f(t+4)=f(t)\right.$.
[7M]
(b) Apply Laplace transforms, find the solution of the initial value problem $x^{\prime \prime}+9 x=\sin t$ if $\mathrm{x}(0)=1, x\left(\frac{\pi}{2}\right)=1$

UNIT - IV

7. (a) Find Z transform of $\left[\frac{2 n+3}{(n+1)(n+2)}\right]$
(b) Find $Z^{-1}\left[\frac{z^{2}}{(z-a)(z-b)}\right]$ using convolution theorem.
8. (a) Find $Z\left[(n+1)^{2}\right]$
(b) Determine $Z^{-1}\left[\frac{2 z(2 z-1)}{(z-1)(z-z)^{2}}\right]$.
[7M]

UNIT - V

9. (a) Apply Lagrange's method to solve the linear partial differential equation. $x^{2}(y-z)+y^{2}(z-x)=z^{2}(x-y)$.
(b) A tightly stretched string with fixed end-points $\mathrm{x}=0$ and $\mathrm{x}=1 \mathrm{~cm}$ is initially in its equilibrium position. If each of its points is given by velocity $g(x)=\lambda x(l-x)$. Determine the displacement of the string at any distance x from one end at any time t .
10. (a) Using the method of separation of variables, solve the partial differential equation.
$\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ given that $u(x, 0)=8 e^{-3 x}$
[7M]
(b) A rod of length 1 with insulated sides is initially at a uniform temperature u_{0}. Its ends are suddenly cooled to $0^{\circ} \mathrm{C}$ and kept at that temperature. Find the temperature function $u(x, t)$.
[7M]
