Hall Ticket No	Question Paper Code: AEE005
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)	
B.Tech III Semester End Examinations (Supplementary) - February, 2018 Regulation: IARE – R16 NETWORK ANALYSIS (Electrical and Electronics Engineering)	

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) A three phase, balanced delta connected load of $4+j8 \ \Omega$ is connected across a 400 V, three phase balanced supply. Determine the phase currents and line currents. Assume the phase sequence to be RYB?
 - (b) Explain in detail the star delta method of solving unbalanced load? [7M]
- 2. (a) The input power to a three phase load is 10 kW at 0.8 pf. Two wattmeters are connected to measure the power, find the individual readings of the wattmeters? [7M]
 - (b) An unbalanced four wire, star connected load has a balanced voltage of 400V, the loads are $Z_1 = 4+j8 \ \Omega, Z_2 = 3+j4 \ \Omega$ and $Z_3 = 15+j20 \ \Omega$ Calculate the [7M]
 - (a) Line currents
 - (b) Current in the neutral wire?

$\mathbf{UNIT}-\mathbf{II}$

3. (a) In the circuit shown in Figure 1 switch is closed at t=0+ Find the value of I, di/dt, d^2i/dt^2 .[7M]

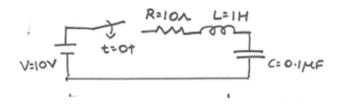


Figure 1

(b) In the circuit shown in Figure 2, switch is open at t=0+. Find the values of V, dv/dt, d^2v/dt^2 . [7M]

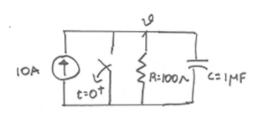
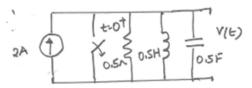



Figure 2

4. (a) Determine the voltage V(t) shown in Figure 3, when the switch is opened at t=0 +using Laplace transform method. [7M]

(b) In the network shown in Figure 4, the switch is opened at t=0+. Find the steady state value of I(t) using Laplace transform method. [7M]

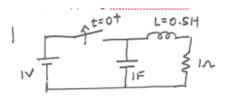


Figure 4

$\mathbf{UNIT} - \mathbf{III}$

5. (a) For the circuit shown in Figure 5 if the reactance is variable, plot the range of I for maximum and minimum values of X_L and maximum power consumed in the circuit? [7M]

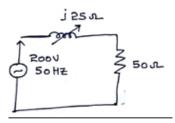


Figure 5

(b) For the network shown in Figure 6 obtain the transfer functions $G_{21}(S)$ and $Z_{21}(S)$ and the driving point impedance $Z_{11}(S)$? [7M]

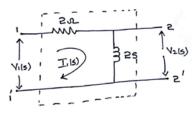


Figure 6

- 6. (a) Draw the locus diagrams for the following
 - i. Fixed R and variable L circuit
 - ii. Fixed R and variable C circuit.
 - (b) Plot the current locus for the circuit with R = 50Ohms and $X_c = 25$ Ohms with variable C. Find the power consumed with a supply voltage of 200V, 50HZ. [7M]
 - $\mathbf{UNIT}-\mathbf{IV}$
- 7. (a) Determine Y parameters for the following network shown in Figure 7. [7M]

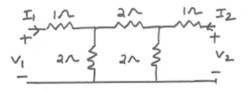


Figure 7

- (b) Determine the transmission(ABCD) parameters in terms of short circuit(Y) parameters. [7M]
- 8. (a) Two networks are connected in series shown in Figure 8. Obtain the Z-parameters of the combination. Also verify by direct calculation? [7M]

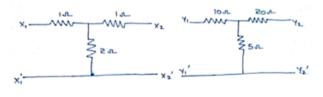


Figure 8

(b) Find the h-parameters of the network shown in Figure 9? [7M]

[7M]

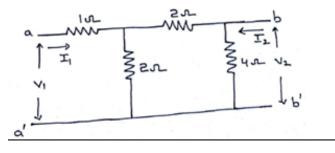


Figure 9

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Derive the propagation constant of a symmetrical T network. [7M]
 (b) Design m derived low pass T filter having a cut off frequency of 1kHZ, design impedance of 4000hms and resonant frequency of 1100Hz. [7M]
- 10. (a) Classify the various types of filters and derive the design equations of a K type low pass filter.
 - (b) Design a k type band stop T filter having design impedance of 600ohms and cut off frequency of 2kHz and 6kHz. [7M]

 $-\circ\circ\bigcirc\circ\circ-$

[7M]