Hall	Ticket	No
пап	TICKEt	110

Question Paper Code: AEC004

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech IV Semester End Examinations (Supplementary) - July, 2018 **Regulation:** IARE – R16

ELECTRONIC CIRCUIT ANALYSIS

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Design an emitter follower having $R_i = 600 \text{ k} \Omega$, $R_o = 10 \Omega$ Assume $h_{fe} = 150$, $h_{ie} = 1$	$K\Omega, h_{oe}=25$
	$\mu A/V$. Find A_I , A_V for the emitter follower using h-parameters.	[7M]
	(b) Define h- parameters of CE configuration from the input and output characteristics	. [7M]
2.	(a) Derive the expression for voltage gain, input and output impedance of a common emuration with neat circuit diagram.	utter config- [7M]
	(b) Discuss the importance of Miller's theorem in analyzing the ampliford	[7]

(b) Discuss the importance of Miller's theorem in analyzing the amplifiers. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Draw the high frequency small circuit of emitter follower amplifier and derive an expression for upper corner frequency. [7M]
 - (b) Derive an expression for short circuit current gain of a transistor with the help of hybrid- π model. [7M]
- 4. (a) It is required to find the midband gain and the upper 3dB frequency of the common emitter amplifier shown in Figure 1, with $R_{sig}=5K\Omega$, $R_B=100K\Omega$, $R_C=8K\Omega$, $R_L=5K\Omega$, $V_{CC}=V_{EE}$ =10V, DC current I=1mA at which $\beta_0=100$, $r_{\pi}=50\Omega$, $f_T=800$ MHz, $C_{\pi}=1$ pF. [7M]

Figure 1

(b) Determine the 3dB frequency of the short circuit current gain of a bipolar transistor, given $r_{\pi}=2.6\mathrm{K}\Omega$, $C_{\pi}=2\mathrm{PF}$ & $C_{\mu}=0.1\mathrm{pF}$. [7M]

$\mathbf{UNIT}-\mathbf{III}$

emes used in multistage amplifier	coupling schemes used	direct	coupling,	ansformer	ote on tr	a short n	Write	(a)	5.
[7N									
e h-parameters of it? [7N	nd derive the h-param	olifier a	oded amp	m of Case	t diagra	the circu	Draw	(b)	

- 6. (a) Draw the circuit diagram of darlington configuration and derive the expressions for input, output impedance, voltage and current gains? [7M]
 - (b) Calculate overall cut off frequency of 5 stage cascaded amplifiers having single stage lower cut off frequency of 5k Hz. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) With the help of equivalent circuit, derive the expression for input and output resistance of current series feedback amplifier. [7M]
 - (b) An amplifier with a closed loop gain of 200 is required & this gain should not vary more than 1% when the inherent gain of the amplifier without feedback varies by 20%. Find the values of $A_v \& \beta$. [7M]
- 8. (a) Explain how oscillators are classified and conditions for oscillations. [7M]
 - (b) Write short notes on
 - i. Colpitts & Hartley Oscillator
 - ii. RC phase shift Oscillator

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Explain the operation of class B push pull amplifier and also derive the expression for maximum conversion efficiency. [7M]
 - (b) A single stage class A amplifier has $V_{CC}=20V$, $V_{CEQ}=10V$, $I_{CQ}=600$ mA and collector load resistor $R_L=16\Omega$. The ac output current varies by ± 300 mA with the ac input signal. Determine
 - i. The power supplied by the dc source to the amplifier circuit. [7M]
 - ii. DC power consumed by the load resistor
 - iii. AC power developed across the load resistor
 - iv. DC power delivered to the transistor
 - v. DC power wasted in transistor collector
 - vi. Overall efficiency
- 10. (a) Explain the operation of transformer coupled class A amplifier & derive the maximum conversion efficiency. [7M]
 - (b) With a neat diagram, explain the classification of power amplifiers based on location of Q-points.

[7M]

[7M]