Hall Ticket No	Question Paper Code: AEC002					
INSTITUTE OF AERONAUTICAL ENGINEERING						
(Autonomous)						
B.Tech III Semester End Examinations (Supplementary) - January/February, 2018						
${\bf Regulation: \ IARE-R16}$						

DIGITAL SYSTEM DESIGN

(Electronics and Communication Engineering))

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	1. (a) If a hamming code is constructed using even p correct errors if any.	a) If a hamming code is constructed using even parity and the received code is 1110110.Detect and correct errors if any. [7M]		
	 (b) Convert the following into Excess-3 Code i. (4B9)₁₆ ii. (58)₁₀ 	[7M]		
2.	2. (a) Convert the following. i. $(4C9)_{16} = ()_8$ ii. $(11011.11)_2 = ()_{10}$	[7M]		
	 (b) Represent the following decimal numbers in B (i) 9 (iii) 25 	CD format [7M]		
	UNIT	- II		
3.	3. (a) Use the tabular method obtain the minimal escape $F(A, B, C, D) = \sum m(0, 1, 5, 7, 8, 10, 14, 15)$	appression for [7M]		
	(b) What are the limitations of K-Maps.	[7M]		
4.	4. (a) Minimize the following expressions using K-M $F(A,B,C,D) = \sum (0,1,5,7,8,10,14,15)$	ap and implement using logic gates. $[7M]$		
	(b) Convert the following Sum of Product(SOP) t	o Product of Sums(POS) [7M]		

$$F(A, B, C) = A'BC' + ABC + A'B'C + AB'C + ABC'$$

$\mathbf{UNIT}-\mathbf{III}$

- 5. (a) Design 3-bit binary to gray code converter using basic gates , NAND gates and NOR gates. [7M]
 - (b) Design full adder combinational logic network using minimum number of NAND gates only. [7M]

6.	(a) Design a combinational circuit whose output is true for two bit BCD input.	[7M]
	(b) Design two bit BCD adder and explain its operation.	[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	Convert J-K Flip-Flop to S-R Flip-Flop.	[7M]
	(b)	With the help of logic Diagram and Functional Table explain the operation of 4-bit Joh counter	[7M]
8.	(a)	Sketch the logic networks for MOD-5 Johnson counter and explain its operation.	[7M]
	(b)	Design a Mod-6 Synchronous counter using clocked T flip-flops.	
		Ι	[7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Differentiate between Mealy Machine and Moore Machine. [7M]
 - (b) Minimize the State Table using Partition Technique as shown in Table-1 [7M]

Table 1

PS	$_{ m NS,Z}$	
	X=0	X=1
A	Е,0	D,1
В	F,0	D,0
С	Е,0	В,1
D	F,0	В,0
Е	С,0	F,1
F	В,0	С,0

10. (a) Write the state table for the state diagram shown in figure-1

[7M]

Figure 1

(b) With an example, explain what is state reduction and also mention its advantages [7M]